WO1991000368A1 - Procede et dispositif de refroidissement continu d'un fil d'acier trefile - Google Patents

Procede et dispositif de refroidissement continu d'un fil d'acier trefile Download PDF

Info

Publication number
WO1991000368A1
WO1991000368A1 PCT/BE1990/000036 BE9000036W WO9100368A1 WO 1991000368 A1 WO1991000368 A1 WO 1991000368A1 BE 9000036 W BE9000036 W BE 9000036W WO 9100368 A1 WO9100368 A1 WO 9100368A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
water
wire
temperature
tube
Prior art date
Application number
PCT/BE1990/000036
Other languages
English (en)
Inventor
Marios Economopoulos
Original Assignee
Centre De Recherches Metallurgiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre De Recherches Metallurgiques filed Critical Centre De Recherches Metallurgiques
Publication of WO1991000368A1 publication Critical patent/WO1991000368A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5732Continuous furnaces for strip or wire with cooling of wires; of rods
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/64Patenting furnaces

Definitions

  • the present invention relates to a process for the continuous cooling of a drawn steel wire.
  • the invention also relates to a device for implementing this method.
  • the expression "drawn wire” here designates a wire with a diameter of 1 mm to 5 mm, and preferably from 1 mm to 3 mm, which has already undergone a first drawing and which must still undergo minus a finishing drawing operation.
  • the wire considered here is made of steel having a carbon content of 0.15% to 0.85% by weight.
  • steel wire is usually produced by hot rolling of an ingot in billets, then in wire rod whose diameter is between 5 mm and 14 mm. It is also possible to produce the wire rod from blooms or continuous casting billets. The wire rod is then drawn in several passes, through dies of decreasing diameter, to the desired final diameter.
  • the wire rod does not however have a structure favorable to drawing and it must undergo a particular treatment intended to give it the required structure, namely a fine pearlitic structure.
  • This particular treatment called patenting, can be carried out either by immersion in a lead bath or by natural cooling in the air. After having undergone a first drawing operation, the wire no longer has a structure favorable to a new drawing and it must undergo an appropriate treatment to recover this structure.
  • this treatment consists in heating the wire, in an ultra-stranded oven, to a temperature above point A3 so as to make it austenitic. It is then cooled, then an adequate surface treatment is applied to it before winding it.
  • the decisive operation for the structure is obviously cooling, which is currently carried out either by patenting in a lead bath or by cooling in a fluidized bed.
  • Patenting in a lead bath poses well-known problems in terms of environmental protection, while the use of a fluidized bed imposes very high operating and maintenance costs.
  • the object of the present invention is to propose a method allowing cooling of the wire as close as possible to that which is ensured by patenting in a lead bath, under more favorable economic conditions than previously and without adversely affecting in the surrounding environment.
  • a continuous cooling process of a drawn steel wire in which the wire is cooled from a temperature above its transformation point A3 to ambient temperature, is characterized in that it operates said cooling in at least three successive separate stages, at least the first two stages consisting of water cooling and the last stage consisting of air cooling, and in that the cooling of the wire is regulated individually in each of said steps.
  • the ambient temperature is defined as being the temperature above which cooling no longer entails any substantial modification of the structure of steel.
  • the method of the invention comprises two steps of cooling with water followed by a step of cooling with air.
  • These stages are distinct from each other, in particular as regards the regulation of cooling; they are applied successively, and without cooling or intermediate heating, to the wire which passes through them in sequence at a constant speed.
  • the duration of each step depends on the length of the corresponding cooling device.
  • the cooling conditions in the different process steps can vary depending in particular on the carbon content of the steel and the austenitization temperature of the wire.
  • an austenitization temperature of 900 - 950 ⁇ C is high enough to ensure that the wire is completely austic, even for high heating rates, while at the same time limiting the consumption of heating energy and the amount of heat to be extracted during cooling.
  • the wire is cooled to cake, in a first step, from the austenitizing temperature to a temperature be tween 750 ° C and 650 "C with an average flux density calorifiqu between 900 kW / m 2 and 1100 kW / m 2 .
  • the average density of heat flux expresses the quantity of heat extracted from the wire per unit of time and pa unit of surface of the wire; it makes it possible to determine the cooling power of the device used, it can be calculated easily from the initial and final temperatures of the wire and the duration of the cooling. It actually reflects the intensity of the re-cooling.
  • the fi is cooled in Teau, in a second step, from a temperature between 750 * C and 650 ⁇ C to a temperature between 650 "C and 575" C with an average density of heat flow between 300 kW / m 2 and 550 kW / m 2 .
  • the Tair wire is cooled, in a last step, from a temperature between 650 * C and 575 * C to a temperature between 600 ⁇ C and 550 ⁇ C , with an average heat flux density between 75 kW / m 2 and 350 kW / m 2 .
  • the intensity of the cooling is adjusted by acting appropriately on the temperature of the water; for this purpose, the water is heated or cooled depending on whether the surface temperature of the wire, measured at the end of each cooling step, is less than or greater than a predetermined value.
  • this regulation of the water temperature is only started if the difference between the measured value and the predetermined value of the surface temperature of the wire exceeds a value also predetermined, for example 10 * vs.
  • the intensity of the cooling is adjusted by acting on the air circulation speed, that is to say on its flow rate; for this purpose, the circulation speed of air is increased or decreased depending on whether the surface temperature of the wire, measured at the end of the air cooling step, is higher or lower than a predetermined value.
  • this regulation of the air circulation speed is only activated if the difference between the measured value and the predetermined value of the surface temperature of the wire exceeds a also predetermined value, for example 10'C. It can be specified here that the air circulation speed is easily related to the flow rate and, taking account of the air temperature, to the heat transfer coefficient and to the corresponding average heat flux density.
  • the present invention also relates to a device for implementing the process for cooling a drawn steel wire which has just been described.
  • a device for continuous cooling of a drawn steel wire comprises at least three successive distinct cooling units, in that at least the first and the second of these units comprises means for cooling the thread, and that the last of these units comprises means for cooling the thread, and in that means are provided for individually regulating the cooling of the wire in each of these units.
  • said adjustment means equipping a water cooling unit comprises a heat exchanger immersed in the cooling water; this heat exchanger can be associated with a heating element, which operates for example with electricity or steam.
  • the adjustment means comprise a blower for varying the air circulation speed.
  • Fig. 1 schematically represents a device according to the invention, composed of two successive water cooling units followed by a air cooling unit;
  • Fig. 2 illustrates the comparison of the treatment of a wire of mm in diameter by lead patenting (a) and pa the method of the invention (b);
  • the Fig. 3 illustrates the comparison of the treatment of a wire of 1 mm in diameter by lead patenting (a) and by the method of the invention (b).
  • FIG. 1 a device for cooling a drawn wire 1 which moves, at constant speed, in the direction indicated by the arrow 2.
  • a device for cooling a drawn wire 1 which moves, at constant speed, in the direction indicated by the arrow 2.
  • FIG. 1 In the longitudinal view of FIG. 1, as well as in the corresponding description, reference is systematically made to a single wire 1. It goes without saying, however, that the invention is perfectly applicable in installations of current practice, where one simultaneously treats a sheet of several parallel wires, for example from 15 to 40 wires.
  • the cooling device of FIG. 1 comprises a first water cooling unit of length A, a second water cooling unit of length B and an air cooling unit of length C, the lengths A, B, C being taken in the direction of movement wire 1.
  • the two water cooling units differ only in their length. We will therefore only describe the first, the identical elements being moreover designated by the same numerical references in the two units.
  • a water cooling unit comprises a tube 3, of internal diameter d and of length A or B respectively, through which the wire 1 to be cooled circulates.
  • the tube 3 is supplied with water from a tank 4, located under the tube 3 and connected by a line 5 and a pump 6, to a transverse feeder 7, of diameter D.
  • the feeder 7 is connected individually by 8 at the entrance to each of the parallel tubes 3, only one of which is shown as shown above.
  • the tube 3 also has an outlet tube 9, through which the cooling water returns to the tank 4.
  • Each tube is also equipped with an inlet airlock 10, and an outlet airlock 11, intended to prevent any flow. of water through the ends of the tube 3.
  • an electric heater 12 such as a plunger, and a water-water heat exchanger, 13, intended respectively to reheat or cool the water contained in the tank 3.
  • an electric heater 12 such as a plunger
  • a water-water heat exchanger 13
  • temperature sensors 1 intended to measure the surface temperature of the wire 1 at the inlet e at the outlet of each cooling unit.
  • the air cooling unit essentially consists of a tube 15, having the same internal diameter d and a length C, through which the wire 1 flows.
  • the tube 15 is supplied with cooling air by a pipe 16 from 'a fan not shown.
  • An entry airlock 17 prevents the air from escaping to the tube 3 of the second water cooling unit.
  • the downstream end of the tube 15 may be free, in which case the air is discharged directly to the atmosphere, or connected, via an airlock and a tube not shown, to a storage tank supplying the blower. This end is also equipped with a temperature sensor 14.
  • the wires were cooled from an austenitization temperature of 950 ⁇ C.
  • Fig. 2a illustrates the conventional cooling a wire mm in a lead bath at 500 ° C, followed by cooling dan Tair quiet.
  • the abscissa axis indicates the time t expressed in seconds (s) ,; Y-axis tax indicates the temperature T ( * C).
  • the curve (a) represents the evolution of the temperature of the surface of the wire
  • the curve (b) represents the evolution of the temperature of the center of the wire.
  • the drawn wire to be cooled is in the tubes at a constant speed of 0.5 m / s, while the speed of the water in the tubes was 1 m / s.
  • the water flow in a tube was therefore 76.31 l / h; in the case of an installation of 30 wires of this type in parallel, a water flow of 2.29 ⁇ r h is required, which results in a speed of 0.1 m / s in the transverse nurse e.
  • Tair was applied an average density of heat flow from 325 kW / m 2 with Tair at 20 ° C, and the yarn was cooled to 610 ° C; this re-cooling step includes the heating of the wire due to the phenomenon of calefaction.
  • Fig. 2b traces the evolution of the temperatures of the surface (curve a) and of the center (curve b) of a 3 mm wire cooled in accordance with the invention. It can be seen that these curves are almost perfectly superimposed on curves (a) and (b) of FIG. 2a. Stage IV corresponds to the final cooling of the wire in Tair calm.
  • Fig. 3a shows the evolution of the surface temperature of the fi in the lead bath; this curve is also well known in practice and does not call for particular remarks.
  • the cooling according to the invention is illustrated in Fig 3b.
  • the wires to be cooled and the cooling water circulated at the same speed in the tubes as in the previous case, at 0.5 m / s and 1 m / s respectively. This resulted in a flow rate of 98.9 l / h in one tube and 2.97 nrfyh for 30 tubes; the speed of the water in the nurse was thus 0.13 m / s.
  • FIG. 3b traces the development of the surface temperature of a 1 mm wire cooled in accordance with the invention. O notes that this curve is almost perfectly superimposed on that of FIG. 3a. In both cases, the wire was finally cooled in still air (step IV Fig. 2b - 3b).
  • the invention is obviously not limited to the examples of implementation which have just been described and illustrated. In particular, it would not be outside the scope of the invention to split the water cooling of the wire into more than two stages and consequently to provide more than two water cooling units in the device proposed. Furthermore, it goes without saying that the device of the invention is followed by a zone for cooling the wire in the calm air.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

On refroidit le fil depuis une température supérieure à son point de transformation (A3), dite température d'austénitisation, jusqu'à la température ambiante, en au moins trois étapes distinctes successives, au moins les deux premières étapes consistant en des refroidissements à l'eau et la dernière étape consistant en un refroidissement à l'air. On règle le refroidissement du fil individuellement dans chacune desdites étapes, en agissant respectivement sur la température de l'eau ou sur la vitesse de l'air. On réalise ainsi dans chaque étape une densité moyenne de flux calorifique comparable à celle du patentage au plomb.

Description

Procédé et dispositif de refroidissement continu d'un fil d'acier tréfilé.
La présente invention concerne un procédé de refroidissement continu d'un fil d'acier tréfilé. L'invention porte également sur un dispositif pour la mise en oeuvre de ce procédé.
Dans la présente demande, on se réfère pour simplifier à un refroi¬ dissement à l'eau; il faut comprendre que cette eau peut contenir divers additifs, notamment des sels minéraux tels que le borax ou des substances organiques, tels que des décélérateurs de trempe, qui sont par ailleurs bien connus dans la technique. D'autre part, l'expression "fil tréfilé" désigne ici un fil d'un diamètre de 1 mm à 5 mm, et de préférence de 1 mm à 3 mm, qui a déjà subi un premier tréfilage et qui doit encore subir au moins une opération de tréfilage de finition. Le fil considéré ici est en acier ayant une teneur en carbone de 0,15 % à 0,85 % en poids.
Actuellement, le fil d'acier est habituellement produit par lami¬ nage à chaud d'un lingot en billettes, puis en fil machine dont le diamètre est compris entre 5 mm et 14 mm. On peut également produi¬ re le fil machine à partir de blooms ou de billettes de coulée con¬ tinue. Le fil machine est ensuite tréfilé en plusieurs passes, à travers des filières de diamètre décroissant, jusqu'au diamètre final désiré.
A l'état brut de laminage, le fil machine ne présente cependant pas une structure favorable au tréfilage et il doit subir un traitement particulier destiné à lui conférer la structure requise, à savoir une structure perlitique fine. Ce traitement particulier, appelé patentage, peut être effectué soit par immersion dans un bain de plomb soit par refroidissement naturel dans l'air. Après avoir subi une première opération de tréfilage, le fil ne présente plus une structure favorable à un nouveau tréfilage et il doit subir un traitement approprié pour recouvrer cette structure.
Actuellement, ce traitement consiste à échauffer le fil, dans un four ulti-brins, jusqu'à une température supérieure au point A3 de façon à le rendre austénitique. On le refroidit ensuite, puis on lui applique un traitement de surface adéquat avant de le bobiner. L'opération déterminante pour la structure est évidemment le re¬ froidissement, qui est actuellement réalisé soit par patentage en bain de plomb soit par refroidissement en lit fluidisé.
Le patentage en bain de plomb pose des problèmes bien connus en a- tière de protection de l'environnement, tandis que l'emploi d'un lit fluidisé impose des frais d'exploitation et d'entretien très élevés.
La présente invention a pour objet de proposer un procédé permet- tant de réaliser un refroidissement du fil aussi proche que pos¬ sible de celui qu'assure le patentage en bain de plomb, dans des condi ons économiques plus favorables que précédemment et sans porter atteinte au milieu environnant.
Conformément à la présente invention, un procédé de refroidissement continu d'un fil d'acier tréfilé, dans lequel on refroidit le fil depuis une température supérieure à son point de transformation A3 jusqu'à la température ambiante, est caractérisé en ce que Ton opère ledit refroidissement en au moins trois étapes distinctes successives, au moins les deux premières étapes consistant en des refroidissements à Veau et la dernière étape consistant en un refroidissement à l'air, et en ce que l'on règle le refroidissement du fil individuellement dans chacune desdites étapes.
Au sens de la présente demande, on définit la température ambiante comme étant la température à partir de laquelle un refroidissement n'entraîne plus de modification sensible de la structure de l 'acier.
De manière préférentielle, le procédé de l'invention comporte deu étapes de refroidissement à l'eau suivies d'une étape de refroidis sèment à l'air. Ces étapes sont distinctes Tune de l'autre, notam ment en ce qui concerne la régulation du refroidissement; elle sont appliquées successivement, et sans refroidissement ni réchauf fement intermédiaire, au fil qui les traverse en séquence à une vi tesse constante. Il en résulte que la durée de chaque étape dépen de la longueur du dispositif de refroidissement correspondant.
Les conditions de refroidissement dans les différentes étapes d procédé peuvent varier en fonction notamment de la teneur en car bone de l'acier et de la température d'austenitisation du fil.
A cet égard, il s'est avéré préférable de choisir une températur d'austenitisation de 900 - 950βC; une telle température est suf fisamment élevée pour assurer que le fil est entièrement austé nitique, même pour des vitesses de chauffage élevées, tout en limi tant d'une part la consommation d'énergie de chauffage et la quan tité de chaleur à extraire lors du refroidissement.
Selon une caractéristique intéressante du procédé de l'invention on refroidit le fil à Teau, dans une première étape, depuis l température d'austenitisation jusqu'à une température comprise en tre 750*C et 650"C avec une densité moyenne de flux calorifiqu comprise entre 900 kW/m2 et 1100 kW/m2.
On rappellera ici que la densité moyenne de flux calorifique expri me la quantité de chaleur extraite du fil par unité de temps et pa unité de surface du fil; elle permet de déterminer la puissance d refroidissement du dispositif utilisé, elle peut être calculée ai sément à partir des températures initiale et finale du fil et de l durée du refroidissement. Elle traduit en fait l'intensité du re froidissement.
Selon une autre caractéristique de l'invention, on refroidit le fi à Teau, dans une deuxième étape, depuis une température comprise entre 750*C et 650βC jusqu'à une température comprise entre 650"C et 575"C avec une densité moyenne de flux calorifique comprise en¬ tre 300 kW/m2 et 550 kW/m2.
Selon encore une autre caractéristique de l'invention, on refroidit le fil à Tair, dans une dernière étape, depuis une température comprise entre 650*C et 575*C jusqu'à une température comprise en¬ tre 600βC et 550βC, avec une densité moyenne de flux calorifique comprise entre 75 kW/m2 et 350 kW/m2.
Dans les étapes du procédé de l'invention qui consistent en un re¬ froidissement à Teau, on règle l'intensité du refroidissement en agissant de manière appropriée sur la température de Teau; à cet effet, on réchauffe, ou on refroidit cette eau selon que la tempé¬ rature de surface du fil, mesurée à la fin de chaque étape de re¬ froidissement, est inférieure ou supérieure à une valeur prédéter¬ minée. De manière connue en soi cette régulation de la température de Teau n'est mise en route que si l'écart entre la valeur mesurée et la valeur prédéterminée de la température de surface du fil dé¬ dépasse une valeur également prédéterminée, par exemple 10*C.
Dans l'étape du procédé de l'invention qui consiste en un refroi¬ dissement à Tair, on règle l'intensité du refroidissement en agis- sant sur la vitesse de circulation de Tair, c'est-à-dire sur son débit; à cet effet, on augmente ou on diminue la vitesse de circu¬ lation de Tair selon que la température de surface du fil, mesurée à la fin de l'étape de refroidissement à Tair, est supérieure ou inférieure à une valeur prédéterminée. De manière également connue en soi, cette régulation de la vitesse de circulation de Tair n'est mise en route que si l'écart entre la valeur mesurée et la valeur prédéterminée de la température de surface du fil dépasse une valeur également prédéterminée, par exemple 10'C. On peut pré¬ ciser ici que la vitesse de circulation de Tair se relie aisément au débit et, compte tenu de la température de Tair, au coefficient de transfert de chaleur et à la densité moyenne de flux calorifique correspondants. Par un autre aspect, la présente invention porte également sur u dispositif pour la mise en oeuvre du procédé de refroidissemen d'un fil d'acier tréfilé qui vient d'être décrit.
Conformément à cet aspect de l'invention, un dispositif de refroi dissement continu d'un fil d'acier tréfilé, est caractérisé en c qu'il comporte au moins trois unités de refroidissement distincte successives, en ce qu'au moins la première et la deuxième de ce unités comprennent des moyens de refroidissement du fil à Teau, e ce que la dernière de ces unités comprend des moyens de refroidis sement du fil à Tair, et en ce qu'il est prévu des moyens pou régler individuellement le refroidissement du fil dans chacune d ces unités.
Selon une réalisation particulière, lesdits moyens de réglage équi pant une unité de refroidissement à Teau comprennent un echangeu de chaleur immergé dans Teau de refroidissement; cet echangeur d chaleur peut être associé à un élément chauffant, qui fonctionn par exemple à l'électricité ou à la vapeur.
Dans le cas de l'unité de refroidissement à Tair, les moyens d réglage comprennent une soufflante pour faire varier la vitesse d circulation de Tair.
D'autres particularités et avantages de l'invention apparaîtront la lecture de la description détaillée qui va suivre. Cette des cription porte sur des exemples de mise en oeuvre du procédé d l'invention; elle est illustrée par les dessins annexés, dan lesquels la
Fig. 1 représente schématiquement un dispositif conforme l'invention, composé de deux unités successives d refroidissement à Teau suivies d'une unité d refroidissement à Tair; la Fig. 2 illustre la comparaison du traitement d'un fil de mm de diamètre par le patentage au plomb (a) et pa le procédé de l'invention (b); et la Fig. 3 illustre la comparaison du traitement d'un fil de 1 mm de diamètre par le patentage au plomb (a) et par le procédé de l'invention (b).
On a représenté schématiquement dans la Fig. 1, un dispositif de refroidissement d'un fil tréfilé 1 qui se déplace, à vitesse cons¬ tante, dans le sens indiqué par la flèche 2. Dans la vue longitudi¬ nale de la Fig. 1, ainsi que dans la description correspondante, on se réfère systématiquement à un seul fil 1. Il va de soi cependant que l'invention est parfaitement applicable dans les installations de la pratique courante, où Ton traite simultanément une nappe de plusieurs fils parallèles, par exemple de 15 à 40 fils.
Le dispositif de refroidissement de la Fig. 1 comprend une première unité de refroidissement à Teau de longueur A, une seconde unité de refroidissement à Teau de longueur B et une unité de refroidis¬ sement à Tair de longueur C, les longueurs A, B, C étant prises dans la direction de déplacement du fil 1.
Les deux unités de refroidissement à Teau ne diffèrent que par leur longueur. On ne décrira donc que la première, les éléments identiques étant d'ailleurs désignés par les mêmes repères numé¬ riques dans les deux unités.
Une unité de refroidissement à Teau comprend un tube 3, de dia¬ mètre intérieur d et de longueur A ou B respectivement, à travers lequel circule le fil 1 à refroidir. Le tube 3 est alimenté en eau à partir d'une cuve 4, située sous le tube 3 et reliée par une con¬ duite 5 et une pompe 6, à une nourrice transversale 7, de diamètre D. La nourrice 7 est raccordée individuellement en 8 à l'entrée de chacun des tubes parallèles 3, dont un seul est représenté comme on Ta indiqué plus haut. Le tube 3 présente également une tubulure de sortie 9, par laquelle Teau de refroidissement retourne à la cuve 4. Chaque tube est également équipé d'un sas d'entrée 10, et d'un sas de sortie 11, destinés à empêcher tout écoulement d'eau par les extrémités du tube 3. Dans le fond de la cuve 3 sont disposés un appareil de chauffage électrique 12, tel qu'un plongeur, et un echangeur de chaleur eau-eau, 13, destinés respectivement à ré chauffer, ou à refoidir Teau contenue dans la cuve 3. Il est enfi prévu, aux extrémités du tube 3, des capteurs de température 1 destinés à mesurer la température de surface du fil 1 à l'entrée e à la sortie de chaque unité de refroidissement.
L'unité de refroidissement à Tair se compose essentiellement d'u tube 15, ayant le même diamètre intérieur d et une longueur C, travers lequel circule le fil 1. Le tube 15 est alimenté en air d refroidissement par une conduite 16 à partir d'une soufflante no représentée. Un sas d'entrée 17 empêche Tair de s'échapper vers l tube 3 de la seconde unité de refroidissement à Teau. L'extrémit aval du tube 15 peut être libre, auquel cas Tair est rejet directement à l'atmosphère, soit reliée, via un sas et une tubulur non représentés, à un réservoir de stockage alimentant l soufflante . Cette extrémité est également équipée d'un capteur d température 14.
A titre d'exemple, on a refroidi des fils tréfilés d'un diamètr respectif de 3 mm et de 1 mm, d'une part par patentage au plom conventionnel, d'autre part par le procédé de "patentage à Teau qui fait l'objet de la présente invention.
Dans tous les cas, les fils ont été refroidis à partir d'un température d'austenitisation de 950βC.
La Fig. 2a illustre le refroidissement conventionnel d'un fil de mm, dans un bain de plomb à 500*C, suivi d'un refroidissement dan Tair calme. L'axe des abscisses indique le temps t exprimé e secondes (s),; Taxe des ordonnées indique la température T (*C).
Dans cette Fig. 2a, la courbe (a) représente l'évolution de l température de la surface du fil, et la courbe (b) représent l'évolution de la température du centre du fil. Ces courbes son bien connues dans la pratique et elles n'appellent pas de commen taires particuliers. Pour mettre en oeuvre le procédé de l'invention, on a construit un dispositif du type illustré dans la Fig. 1, comportant deux unités I, II de refroidissement à Teau et une unité III de refroidis¬ sement à Tair, présentant les dimensions suivantes : longueur unité I A 0,35 m longueur unité II B 0, 40 m longueur unité III C 1 , 00 m diamètre nourrices D 0, 09 m diamètre tubes d 6 mm.
Les fi l s tréfil és à refroidir ci rcul aient dans l es tubes à une vitesse constante de 0, 5 m/s, alors que l a vitesse de Teau dans l es tubes était de 1 m/s . Le débit d' eau dans un tube était donc de 76,31 1/h ; dans l e cas d' une instal l ati on de 30 fi l s de ce type en paral l èl e, i l faut un débit d' eau de 2, 29 πr h, ce qui entraîne une vitesse de 0, 1 m/s dans l a nourrice transversal e.
*
Dans l'unité I, on a appliqué une densité moyenne de flux calorifi¬ que de 910 kW/m2, pour refroidir la surface du fil de 950*C à 725*C, avec de Teau à 20*C; il en est résulté un coefficient d'échange de chaleur de 1,11 kW/m2 *C.
Dans l'unité II, la densité moyenne de flux calorifique valait 500 kW/m2 et on a refroidi le fil de 725*C à 625*C en surface, toujours avec de Teau à 20'C.
Enfin, dans l'unité III de refroidissement à Tair, on a appliqué une densité moyenne de flux calorifique de 325 kW/m2 avec de Tair à 20*C, et on a refroidi le fil jusqu'à 610*C; cette étape de re- refroidissement comprend le réchauffement du fil dû au phénomène de caléfaction.
La Fig. 2b retrace l'évolution des températures de la surface (courbe a) et du centre (courbe b) d'un fil de 3 mm refroidi con- formément à l'invention. On constate que ces courbes se superposent de façon quasi parfaite aux courbes (a) et (b) de la Fig. 2a. L'é¬ tape IV correspond au refroidissement final du fil dans Tair calme.
Des essais similaires ont été effectués avec du fil tréfilé de 1 m de diamètre, d'une part par patentage dans un bain de plomb 575*C, et d'autre part en utilisant le même dispositif que pour le fils de 3 mm.
La Fig. 3a montre l'évolution de la température de surface du fi dans le bain de plomb; cette courbe est également bien connue dan la pratique et n'appelle pas de remarques particulières.
Le refroidissement conforme à l'invention est illustré dans la Fig 3b. Les fils à refroidir et Teau de refroidissement circulaient la même vitesse dans les tubes que dans le cas précédent, à savoi 0,5 m/s et 1 m/s respectivement. Il en est résulté un débit d'ea de 98,9 1/h dans un tube et de 2,97 nrfyh pour 30 tubes; la vitess de Teau dans la nourrice était ainsi de 0,13 m/s.
Dans l'unité I, on a appliqué une densité moyenne de flux calori fique de 1075 kW/m2, pour refroidir le fil, en surface, de 950*C 675*C, avec de Teau à 20*C; il en est résulté un coefficient d'é change de chaleur de 1,36 kW/m2 'C.
Dans l'unité II, la densité moyenne de flux calorifique valait 32 kW/m2 et on a ainsi refroidi le fil de 675*C à 600'C en surface toujours avec de Teau à 20*C.
Enfin, dans l'unité III de refroidissement à Tair, on a appliqu une densité moyenne de flux calorifique de 100 kW/m2 avec de Tai à 20*C; on a ainsi refroidi le fil jusqu'à 580*C, tout en compen sant le réchauffement dû au phénomène de caléfaction.
La courbe de la Fig. 3b retrace l'évolution de la température d surface d'un fil de 1 mm refroidi conformément à l'invention. O constate que cette courbe se superpose presque parfaitement à cell de la Fig. 3a. Dans les deux cas, le fil a été finalement refroidi dans Tair calme (étape IV Fig. 2b - 3b).
Les exemples précités montrent que le procédé de l'invention permet d'appliquer un refroidissement analogue à celui que procure le pa¬ tentage en bain de plomb. Par rapport à ce dernier, le procédé de l'invention présente l'avantage d'être plus économique et de ne pas provoquer d'effet défavorable en matière de protection de* l'environnement.
L'invention n'est évidemment pas limitée aux exemples de mise en oeuvre qui viennent d'être décrits et illustrés. En particulier, il ne sortirait pas du cadre de l'invention de fractionner le refroi¬ dissement à Teau du fil en plus de deux étapes et de prévoir par conséquent plus de deux unités de refroidissement à Teau dans le dispositif proposé. Par ailleurs, il va de soi que le dispositif de l'invention est suivi d'une zone de refroidissement du fil dans Tair calme.

Claims

REVENDICATIONS
1. Procédé de refroidissement continu d'un fil d'acier tréfilé dans lequel on refroidit le fil depuis une température supérieure son point de transformation A3, dite température d'austenitisation jusqu'à la température ambiante, caractérisé en ce que Ton opèr ledit refroidissement en au moins trois étapes distinctes succes sives, au moins les deux premières étapes consistant en des refroi disse ents à Teau et la dernière étape consistant en un refroidis sement à Tair, et en ce que Ton règle le refroidissement du fi individuellement dans chacune desdites étapes.
2. Procédé suivant la revendication 1, caractérisé en ce que, dan une première étape, on refroidit le fil à Teau depuis sa tempéra ture d'austenitisation jusqu'à une température comprise entre 750' et 650*C avec une densité moyenne de flux calorifique compris entre 900 kW/m2 et 1100 kW/m2.
3. Procédé suivant la revendication 1 ou 2, caractérisé en ce que dans une deuxième étape, on refroidit le fil à Teau depuis un température comprise entre 750*C et 650βC jusqu'à une températur comprise entre 650'C et 575'C avec une densité moyenne de flu calorifique comprise entre 300 kW/m2 et 550 kW/m.
4. Procédé suivant Tune ou l'autre des revendications 1 à 3 caractérisé en ce que, dans une dernière étape, on refroidit le fi à Tair depuis une température comprise entre 650βC et 575* jusqu'à une température comprise entre 600#C et 550*C, avec un densité moyenne de flux calorifique comprise entre 75 kW/m2 et 3 kW/m2.
5. Procédé suivant Tune ou l'autre des revendications 1 à caractérisé en ce que, dans les étapes qui consistent en refroidissement à Teau, on règle l'intensité du refroidissement agissant de manière appropriée sur la température de Teau.
6. Procédé suivant Tune ou l'autre des revendications 1 à 5, caractérisé en ce que, dans l'étape qui consiste en un refroidis¬ sement à Tair, on règle l'intensité du refroidissement en agissant de manière appropriée sur la vitesse de circulation de Tair.
7. Dispositif de refroidissement continu d'un fil d'acier tréfilé suivant le procédé de Tune ou l'autre des revendications 1 à 6, caractérisé en ce qu'il comporte au moins trois unités de refroi¬ dissement distinctes successives, en ce qu'au moins la première et la deuxième de ces unités comprennent des moyens de refroidissement du fil à Teau, en ce que la dernière de ces unités comprend des moyens de refroidissement du fil à Tair, et en ce qu'il comprend des moyens pour régler individuellement le refroidissement du fil dans chacune de ces unités.
8. Dispositif suivant la revendication 7, caractérisé en ce que lesdits moyens de réglage équipant une unité de refroidissement à Teau comprennent un echangeur de chaleur, immergé dans Teau de refroidissement.
9. Dispositif suivant la revendication 7 ou 8, caractérisé en ce que lesdits moyens de réglage équipant une unité de refroidissement à Tair comprennent une soufflante pour faire varier la vitesse de circulation de Tair.
10. Dispositif de refroidissement continu d'un fil d'acier tréfilé, comportant au moins deux unités distinctes successives de refroi¬ dissement du fil à Teau suivie d'une unité distincte de refroidis¬ sement du fil à Tair, caractérisé en ce que chaque unité de re- froidissement du fil à Teau comprend :
(a) un tube (3) à travers lequel circule le fil (1) à refroidir, ledit tube étant équipé d'une tubulure (9) de sortie de Teau;
(b) une cuve (4) située sous le tube (3), et dans laquelle débouche la tubulure (9);
(c) une nourrice (7) reliée à la cuve (4) par une conduite (5) et une pompe (6) et raccordée à l'entrée du tube (3) par une tubul ure (8) ;
(d) un sas d'entrée (10) et un sas de sortie (11) montés aux extrémités respectives du tube (3);
(e) un appareil (12) de chauffage de Teau, disposé dans le fond de la cuve (3);
(f) un echangeur eau-eau (13) disposé dans le fond de la cuve (3);
(g) des capteurs de température (14) disposés à l'entrée et/ou à la sortie du tube (3), et en ce que l'unité de refroidissement du fil à Tair comprend : (h) un tube (15) à travers lequel circule le fil (1) à refroidir, ce tube (15) étant situé dans le prolongement des tubes (3) des unités de refroidissement à Teau qui précèdent; (i) une conduite (16) d'alimentation du tube (15) en air de refroidissement;
(j) un sas d'entrée (17) monté à l'extrémité d'entrée du tube
(15); (k) des capteurs de température (14) disposés à l'entrée et/ou à la sortie du tube (15).
PCT/BE1990/000036 1989-07-03 1990-06-27 Procede et dispositif de refroidissement continu d'un fil d'acier trefile WO1991000368A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE8900727 1989-07-03
BE8900727A BE1004285A6 (fr) 1989-07-03 1989-07-03 Procede et dispositif de refroidissement continu d'un fil d'acier trefile.

Publications (1)

Publication Number Publication Date
WO1991000368A1 true WO1991000368A1 (fr) 1991-01-10

Family

ID=3884233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BE1990/000036 WO1991000368A1 (fr) 1989-07-03 1990-06-27 Procede et dispositif de refroidissement continu d'un fil d'acier trefile

Country Status (2)

Country Link
BE (1) BE1004285A6 (fr)
WO (1) WO1991000368A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0496715A1 (fr) * 1991-01-21 1992-07-29 CENTRE DE RECHERCHES METALLURGIQUES CENTRUM VOOR RESEARCH IN DE METALLURGIE Association sans but lucratif Procédé de fabrication de fil machine à haute résistance en acier dur et dispositif pour sa mise en oeuvre
EP0524689A1 (fr) * 1991-07-22 1993-01-27 N.V. Bekaert S.A. Procédé de traitement thermique de fils d'acier
WO2003031661A1 (fr) * 2001-10-08 2003-04-17 Metso Paper, Inc. Procede de traitement thermique
WO2012085651A1 (fr) * 2010-12-23 2012-06-28 Pirelli Tyre S.P.A. Procédé et installation de fabrication en continu un fil d'acier
WO2015124652A1 (fr) * 2014-02-21 2015-08-27 Compagnie Generale Des Etablissements Michelin Procédé de traitement thermique à refroidissement continu d'un élément de renfort en acier pour pneumatique

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1421811A (fr) * 1964-01-13 1965-12-17 Morgan Construction Co Procédé et appareil de refroidissement réglé pour un laminoir de fil machine
FR1429755A (fr) * 1965-04-03 1966-02-25 Schloemann Ag Procédé de traitement de fil moyennement et fortement allié après sa sortie d'une cage finisseuse jusqu'à ce qu'il ait atteint la température qui convient à son évacuation
LU69039A1 (fr) * 1972-12-22 1974-02-22
EP0058324A2 (fr) * 1981-02-14 1982-08-25 Sms Schloemann-Siemag Aktiengesellschaft Dispositif pour le refroidissement réglé d'un fil à température de laminage
EP0169827A1 (fr) * 1984-07-23 1986-01-29 Arbed S.A. Procédé pour fabriquer du fil machine en acier dur
BE906040A (fr) * 1986-06-12 1987-06-23 Centre Rech Metallurgique Procede continu de fabrication de fil d'acier.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1421811A (fr) * 1964-01-13 1965-12-17 Morgan Construction Co Procédé et appareil de refroidissement réglé pour un laminoir de fil machine
FR1429755A (fr) * 1965-04-03 1966-02-25 Schloemann Ag Procédé de traitement de fil moyennement et fortement allié après sa sortie d'une cage finisseuse jusqu'à ce qu'il ait atteint la température qui convient à son évacuation
LU69039A1 (fr) * 1972-12-22 1974-02-22
EP0058324A2 (fr) * 1981-02-14 1982-08-25 Sms Schloemann-Siemag Aktiengesellschaft Dispositif pour le refroidissement réglé d'un fil à température de laminage
EP0169827A1 (fr) * 1984-07-23 1986-01-29 Arbed S.A. Procédé pour fabriquer du fil machine en acier dur
BE906040A (fr) * 1986-06-12 1987-06-23 Centre Rech Metallurgique Procede continu de fabrication de fil d'acier.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Vol. 5, No. 160 (C-75)(332), 15 Octobre 1981, & JP, A, 5690928 (Mitsubishi Denki K.K.) 23 Juillet 1981 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0496715A1 (fr) * 1991-01-21 1992-07-29 CENTRE DE RECHERCHES METALLURGIQUES CENTRUM VOOR RESEARCH IN DE METALLURGIE Association sans but lucratif Procédé de fabrication de fil machine à haute résistance en acier dur et dispositif pour sa mise en oeuvre
EP0524689A1 (fr) * 1991-07-22 1993-01-27 N.V. Bekaert S.A. Procédé de traitement thermique de fils d'acier
US6228188B1 (en) 1991-07-22 2001-05-08 N.V. Bekaert S.A. Heat treatment of a steel wire
WO2003031661A1 (fr) * 2001-10-08 2003-04-17 Metso Paper, Inc. Procede de traitement thermique
WO2012085651A1 (fr) * 2010-12-23 2012-06-28 Pirelli Tyre S.P.A. Procédé et installation de fabrication en continu un fil d'acier
WO2015124652A1 (fr) * 2014-02-21 2015-08-27 Compagnie Generale Des Etablissements Michelin Procédé de traitement thermique à refroidissement continu d'un élément de renfort en acier pour pneumatique
FR3017880A1 (fr) * 2014-02-21 2015-08-28 Michelin & Cie Procede de traitement thermique a refroidissement continu d'un element de renfort en acier pour pneumatique
CN106034403A (zh) * 2014-02-21 2016-10-19 米其林集团总公司 通过连续冷却热处理轮胎的钢增强元件的方法
US10131966B2 (en) 2014-02-21 2018-11-20 Compagnie Generale Des Etablissements Michelin Method for heat treatment with continuous cooling of a steel reinforcement element for tires

Also Published As

Publication number Publication date
BE1004285A6 (fr) 1992-10-27

Similar Documents

Publication Publication Date Title
EP0326005B1 (fr) Procédés et dispositifs permettant de traiter thermiquement des fils d'acier au carbone de façon à obtenir une structure perlitique fine
FR2572316A1 (fr) Procede de reglage des conditions de coulee continue
BE1004285A6 (fr) Procede et dispositif de refroidissement continu d'un fil d'acier trefile.
BE1010116A3 (fr) Procede et dispositif pour le refroidissement interne de tuyaux en matiere plastique.
FR2522291A1 (fr) Tube centrifuge en fonte a graphite spheroidal et son procede de fabrication
FR2498407A1 (fr) Procede et appareil de chauffage par induction d'un materiau allonge metallique ayant des sections d'epaisseurs differentes
BE586148A (fr)
EP0169827B1 (fr) Procédé pour fabriquer du fil machine en acier dur
FR2607519A1 (fr) Procede et dispositif pour traiter thermiquement un fil d'acier
CH628544A5 (fr) Procede et installation pour la coulee continue de produits tubulaires.
EP0686209B1 (fr) Procede et installation de traitement continu d'une bande d'acier galvanisee
EP0193422A1 (fr) Procédé de traitement de profils conducteurs, notamment métalliques installation pour sa mise en oeuvre
EP0132249B1 (fr) Procédé et dispositifs pour la fabrication d'armatures à béton en acier sur train à fil à grande vitesse
FR3017882A1 (fr) Procede de traitement thermique d'un element de renfort en acier pour pneumatique
FR2501631A1 (fr) Procede de sterilisation en continu de boites de conserve et installation pour la mise en oeuvre de ce procede
FR3017880A1 (fr) Procede de traitement thermique a refroidissement continu d'un element de renfort en acier pour pneumatique
EP0493424B1 (fr) Procedes et dispositifs permettant de traiter thermiquement des fils metalliques en les faisant passer sur des cabestans
BE1008648A6 (fr) Procede de fabrication de rails.
CA2022042A1 (fr) Procede et dispositif permettant de traiter thermiquement des feuillards metalliques
FR2502183A1 (fr) Procede de fabrication de fil machine en aluminium
BE1005224A7 (fr) Procede de fabrication de fil machine a haute resistance en acier dur et dispositif pour sa mise en oeuvre.
BE826200A (fr) Dispositif de refroidissement de produits en acier lamines
BE600560A (fr)
BE906040A (fr) Procede continu de fabrication de fil d'acier.
EP0254633A1 (fr) Unité de traitement en ligne de produits métalliques

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT LU SE