EP0319517A2 - Matériau à base de fibres conductrices, sa fabrication et son utilisation notamment pour la réalisation d'éléments cathodiques - Google Patents

Matériau à base de fibres conductrices, sa fabrication et son utilisation notamment pour la réalisation d'éléments cathodiques Download PDF

Info

Publication number
EP0319517A2
EP0319517A2 EP19890100455 EP89100455A EP0319517A2 EP 0319517 A2 EP0319517 A2 EP 0319517A2 EP 19890100455 EP19890100455 EP 19890100455 EP 89100455 A EP89100455 A EP 89100455A EP 0319517 A2 EP0319517 A2 EP 0319517A2
Authority
EP
European Patent Office
Prior art keywords
fibers
nickel
sheet
suspension
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19890100455
Other languages
German (de)
English (en)
Other versions
EP0319517B1 (fr
EP0319517A3 (en
Inventor
Jean Bachot
Jean Grosbois
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Elf Atochem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elf Atochem SA filed Critical Elf Atochem SA
Priority to EP89100455A priority Critical patent/EP0319517B1/fr
Priority to AT89100455T priority patent/ATE100502T1/de
Publication of EP0319517A2 publication Critical patent/EP0319517A2/fr
Publication of EP0319517A3 publication Critical patent/EP0319517A3/fr
Application granted granted Critical
Publication of EP0319517B1 publication Critical patent/EP0319517B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic

Definitions

  • the subject of the present invention is a material which can be used in particular for the production of the cathode element of an electrolysis cell, and in particular of an electrolysis cell of aqueous solutions of alkali halides. It also relates to the cathode element comprising said material. The invention also applies to the process for manufacturing said materials and said cathode elements.
  • the material to which the invention relates in the first place consists of a sheet comprising fibers and a binder, this sheet being characterized in that at least part of the fibers consists of electrically conductive fibers, in that the binder is chosen from fluoropolymers and in that the resistivity is less than 0.4 ⁇ .cm and preferably less than 0.1 ⁇ .cm.
  • tablette designates a three-dimensional assembly whose thickness is substantially less than the smallest of the other dimensions, said assembly possibly or not having two parallel surfaces.
  • These plies generally have substantially flat and rectilinear surfaces but can also have the most diverse shapes, said shape being able in particular to be determined by the shape of the material with which the ply may be associated, as will be specified below.
  • the thickness of this sheet can be between 0.1 and 5 mm, one of the large dimensions, which can substantially correspond to the height of the cathode element, which can reach 1 m, or even more, the other large dimension, which can correspond substantially to the perimeter of said element up to several tens of meters. It should be recalled that these values are indicated at present for the sole purpose of giving an order of magnitude of sheets in accordance with the invention, but it is obvious that such indications cannot in any way limit the field concerned by the present invention to sheets of precise dimensions.
  • one of the constituents of the sheets according to the invention consists of fibers, at least part of which are electrically conductive fibers.
  • the choice of conductive fibers and their possible association with non-conductive fibers proceed from various criteria and in particular from compliance with the value chosen for the electrical resistance of the final sheet, taking into account the presence of the polyfluoroolefin binder.
  • electrically conductive fibers any material in the form of a filament whose diameter is generally less than 1 mm and preferably between 10 ⁇ 5 and 0.1 mm and whose length is greater than 0.5 mm and preferably between 1 and 20 mm, said material having a resistivity equal to or less than 0.4 ⁇ .cm.
  • Such fibers may consist entirely of a material that is intrinsically conductive of electricity; as examples of such materials, mention may be made of metallic fibers, and in particular iron fibers, ferrous alloys or nickel or carbon fibers. It is also possible to use fibers originating from material which is not electrically conductive but which are made conductive by a treatment: as an example, mention may be made of asbestos fibers, made conductive by chemical or electrochemical deposition of a metal such as nickel , or zirconia fibers (Zr O2), made conductive by nickel plating. In the case of fibers made conductive by treatment, this will be carried out under conditions such that the resulting fiber has the resistivity mentioned above.
  • the two types of fibers can be combined in the plies according to the invention, namely the intrinsically conductive fibers and the fibers made conductive, as explained above.
  • the invention includes the use of intrinsically conductive fibers, that is to say fibers having the maximum resistivity value mentioned above, these fibers having themselves undergone a treatment such as for example nickel plating to increase their conductivity.
  • the conductive fibers can be associated with non-electrically conductive fibers, this expression designating, by hypothesis, any filament whose resistivity is greater than 0.4 ⁇ .cm .
  • these fibers have a diameter less than 1 mm and preferably between 10 ⁇ 5 and 0.1 mm and a length greater than 0.5 mm and more generally between 1 and 20 mm.
  • non-conductive fibers can meet various requirements and in particular can be justified by the mechanical properties desired for the sheet of fibers.
  • non-conductive fibers within the meaning of the invention, particular mention will be made of mineral fibers such as asbestos fibers, glass fibers, quartz fibers, zirconia fibers, or organic fibers such as fibers of polypropylene or polyethylene, optionally halogenated and in particular fluorinated, polyhalovinylidene fibers and in particular polyvinylidene fluoride or also fibers of fluorinated polymers which will be discussed below with regard to the binder of sheets according to the invention.
  • the sheet of fibers is intended for application as a cathode element of a sodium chloride electrolysis cell.
  • non-conductive fibers and in particular asbestos fibers with conductive fibers, which can advantageously be constituted by carbon fibers.
  • the asbestos fibers and more generally the non-conductive fibers can represent up to 90% and preferably 20 to 70% of the weight of the conductive fiber / non-conductive fiber assembly.
  • the binder of the plies according to the invention consists of a fluoropolymer.
  • fluoropolymer currently designates a homopolymer or a copolymer derived at least in part from olefinic monomers fully substituted with fluorine atoms, or totally substituted with a combination of fluorine atoms and at least one of chlorine, bromine or iodine atoms per monomer.
  • fluorinated homo- or copolymers can be constituted by polymers and copolymers derived from tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, bromotrifluoroethylene.
  • Such fluorinated polymers can also contain up to 75 mole percent of units derived from other ethylenically unsaturated monomers containing at least as many fluorine atoms as carbon atoms, such as for example vinylidene (di) fluoride. vinyl and perfluoroalkyl esters, such as perfluoroalkoxyethylene.
  • the fluoropolymer is currently used as a binder of fibers defined above.
  • the different modes of implementation of said binder will be explained below. It will simply be indicated here that, in the sheets according to the invention, the fluoropolymer can represent up to 60% of the total weight of the sheet, that is to say fibers (conductive fibers, possibly associated with non-conductive fibers ) + binder, this rate being more generally between 5 and 50%.
  • the layers according to the invention have been defined above by their essential constituents, namely the fibers and the binder. Depending on the different applications for which these layers will be intended, they may, at one or the other moment of their existence, contain other materials or additives. These materials or additives are listed below, it being specified that the additives can be present simultaneously or, on the contrary, succeed one another within the sheet, in the case of treatments carried out on said sheet.
  • such materials may in particular be constituted by powders, whether they are conductive powders such as graphite, nickel, iron or magnetite powders or non-conductive powders, the concept of powder designating a product whose particle size is less than 50 ⁇ m and the conductivity being appreciated as in the case of fibers.
  • conductive powders such as graphite, nickel, iron or magnetite powders or non-conductive powders
  • non-conductive powders which may consist for example of asbestos powders or hydrated oxide can contribute with the binder to obtain the cohesion of the sheet of fibers.
  • the quantity of powdered additive can reach 30% of the weight of the conductive fibers + fluoropolymer assembly.
  • the sheets may also contain one or more electrocatalytic agents.
  • electrocatalytic agents which can be in the form of powder, the particle size of which can vary for example between 1 and 100 ⁇ m, makes it possible to combine the advantages linked to the use of an elementary cathode directly comprising a deposit of electrocatalytic agent. (voltage gain of the order of 150 mV in the case of sodium chloride electrolysis) and the advantages linked to the use of fiber layers in terms of current distribution, diaphragm support, etc.
  • platinum group metals and in particular platinum itself and palladium, nickel-zinc, nickel-aluminum, titanium-nickel, molybdenum- and alloys and couples. nickel, sulfur-nickel, nickel-phosphorus, cobalt-molybdenum, lanthanum-nickel.
  • the quantity of electrocatalytic agent in whatever form it may appear, may represent up to 50% of the weight of the bound sheet and more generally from 1 to 30% of this weight, depending on the nature of the catalyst.
  • the sheets can also contain hydrophilic agents.
  • hydrophilic agents are particularly recommended when the web is used in an aqueous medium, for example in a process for the electrolysis of aqueous solutions of sodium chloride.
  • the hydrophilic agent contributes to improving the wettability of the sheet of fibers by somewhat counterbalancing the highly hydrophobic nature of the fluoropolymers.
  • Hydrophilic agents can be chosen from various families of products. It can generally be liquid or pulverulent products, of organic or inorganic nature. As illustrative examples of such agents, mention may be made of surfactants or surfactants, such as sodium dioctylsulfosuccinate, etc. or inorganic compounds such as asbestos powder or short fibers, zirconia, carbon dioxide cerium, potassium titanate, hydrated oxides and in particular alumina.
  • surfactants or surfactants such as sodium dioctylsulfosuccinate, etc. or inorganic compounds such as asbestos powder or short fibers, zirconia, carbon dioxide cerium, potassium titanate, hydrated oxides and in particular alumina.
  • the amount of hydrophilic agent that can be present in the sheets according to the invention obviously depends on the use intended for this sheet, on the amount of hydrophobic product (essentially the fluorinated binder but also certain fibers contained in these sheets) and on the nature of the hydrophilic agent. As an order of magnitude, it can be indicated that the quantity of hydrophilic agent can reach 10% of the weight of the fluorinated binder and more specifically from 0.1 to 5% of the weight of said binder.
  • the sheets may also contain pore-forming agents, the role of which is to regulate the porosity of the sheet, porosity which, in the event of an application in electrolysis, influences the flow of liquids and the evacuation of gases. It should be understood that, when such pore-forming agents are used, the final layer, the porosity of which, under the effect of decomposition or elimination of these agents, has been adjusted or modified, will in principle no longer contain such agents.
  • pore-forming agents mention will be made of the mineral salts, which can then be removed by leaching and the salts which can be removed by chemical or thermal decomposition to which preference is given.
  • alkaline or alkaline-earth salts such as halides, sulfates, sulfites, bisulfites, phosphates, carbonates, bicarbonates. Mention may also be made of amphoteric alumina or silica which can be eliminated in an alkaline medium.
  • the quantity and the particle size of the blowing agents - when such agents are used - is closely linked to the application for which the sheets are intended. Simply as an order of magnitude, it will be specified that the particle size of the blowing agents most often varies between 5 and 50 ⁇ m, and that the quantity is chosen according to the desired porosity, this porosity being able to reach up to 90% or even more (according to standard ASTM D 276-72).
  • each of the plies defined above by its essential constituents and by its additives constitutes in itself a new product, directly targeted by the present invention.
  • the present invention also relates to a method of manufacturing the plies defined above. It should be understood that the process which will be described below constitutes an embodiment of the sheets, an embodiment by the wet method as will appear on reading the following, but that this description does not in any way constitute a limitation of the field of the invention and that any process making it possible to obtain the plies claimed, whether it be a wet method or a dry process, is part of the field of said invention.
  • This process essentially comprises the following stages: - preparation of a suspension comprising the fibers and the binder - elimination of the liquid medium and drying of the sheet.
  • the suspension comprises, as indicated above, on the one hand the electrically conductive fibers and on the other hand the binder consisting of a fluoropolymer, these constituents being dispersed in a liquid medium.
  • this medium can be of very diverse natures, an aqueous medium or an electrolytic medium is generally used.
  • the medium may contain, in addition to water, caustic soda, for example at a rate of 5 to 20% and sodium chloride, for example at a rate of 5 to 20%. It goes without saying that this indication is valid for an electrolytic medium corresponding to the electrolysis of sodium chloride but that it is possible, mutatis mutandis, to use any other electrolytic medium.
  • aqueous or electrolytic medium a small amount - for example 0.1 to 5% relative to the weight of the solid materials to be dispersed - of dispersing agents or surfactants such as, for example, sodium dioctylsulfosuccinate and, more generally, anionic sulfonic surfactants, such as sulfonates, sulfosuccinates, C6 to C24 alkyl sulfosuccinamates.
  • dispersing agents or surfactants such as, for example, sodium dioctylsulfosuccinate and, more generally, anionic sulfonic surfactants, such as sulfonates, sulfosuccinates, C6 to C24 alkyl sulfosuccinamates.
  • the final sheet must contain other additives and in particular those listed above such as non-conductive fibers, conductive or non-conductive powders, hydrophilic agents, pore-forming agents, catalytic agents, these can generally be incorporated as soon as the initial suspension is prepared. It can however be specified that, apart from the case of additional fibers which, in principle, must be dispersed among the conductive fibers, the other additives can also be introduced into the sheet, for example by filtration through said sheet of a suspension containing such agents.
  • the fluoropolymer is generally in the form of a dry powder or of fibers or of an aqueous dispersion (latex) generally containing 30 to 70% of dry polymer.
  • the largest dimension of the particles or fibers of fluoropolymer is less than 50 ⁇ m, the particle size usually being between 0.1 and 10 ⁇ m in the case of powdered polymer.
  • suspension defined above by its essential constituents and by its optional additives is generally highly diluted in the sense that the ratio: suspension medium / dry matter (fibers, polymer, additives) is of the order of 30 to 100 : 1. These indications correspond to a suspension which can be used industrially, but one could obviously use a much higher ratio.
  • a thickening agent chosen, for example, from natural or synthetic polysaccharides, can be added to the suspension if necessary.
  • the various constituents can be directly introduced into the medium, in particular the aqueous, optionally electrolytic medium.
  • a dispersion of the fibrous materials is first carried out, with the addition of a dispersing agent, in a fraction, for example 1/5 to 1/2 of the final amount of dispersion medium, then the fluoropolymer is incorporated into this dispersion, the suspension then being diluted and homogenized.
  • the next phase of the process according to the invention consists in forming the sheet comprising the fibers, the fluorinated binder and possibly the other additives.
  • This sheet can be formed by filtration of the suspension through a highly porous material, such as a metal grid, for example of iron or bronze, the mesh size of which can be between 20 ⁇ m and 5 mm.
  • this filtration is advantageously carried out under vacuum, generally following a program ranging, continuously or in stages, from atmospheric pressure to final depression (1.5 ⁇ 10 3 to 4.10 Pa).
  • the sheet resulting from this filtration can be dried, for example at a temperature between 70 and 120 ° C. for a period which can range from 1 to 24 hours.
  • the final formation of the web possibly after the drying mentioned above, comprises heating to a temperature above the melting or softening point of the fluoropolymer, for example from 5 to 50 ° C. above this point, and for a duration which can range, depending on the polymer and the temperature chosen, from 2 min to 60 min and, more precisely, from 5 to 40 min.
  • the sheet thus formed, and constituted by a set of conductive fibers linked by a fluoropolymer constitutes, as has been specified, the primary object of the present invention.
  • the invention also relates, and very particularly the aforementioned plies activated by an electrocatalytic agent.
  • electrocatalytic agents have been mentioned previously which can be incorporated and dispersed in said sheet. According to an embodiment of electrocatalytic agents, and as far as the nature of the latter allows, these agents can be deposited on the sheet formed by electrochemical deposition. This technique is particularly interesting when one wishes to use as an agent electrocatalytic nickel, which is deposited in the form of a nickel-zinc alloy and then leached in an alkaline medium in order to remove the zinc and obtain large surface nickel.
  • the fiber sheet is deposited on a cathode, the anode is made of nickel and the electrocatalytic bath comprises halides of nickel and zinc.
  • the nickel / zinc couple is deposited on the electrically conductive fibers, the zinc being eliminated as has just been specified.
  • an electrocatalytic agent can be incorporated directly into the suspension in the form of a powder or filtered through the fiber web, before or after melting of the binder, a suspension of electrocatalytic agent in any liquid vehicle, most often water, possibly supplemented with surfactant in order to maintain the dispersion of the powders, for example in the case of the reduction of precious metal salts by borohydride sodium.
  • Another object of the invention consists of a composite material comprising the sheet itself comprising the fibers and the fluoropolymer defined above and an elementary cathode.
  • the expression elementary cathode currently designates the metal part, generally made of iron or nickel, essentially constituted by a mesh or a piece of perforated metal and playing the role of cathode in an electrolysis cell.
  • This elementary cathode may consist of one or an assembly of flat surfaces or, in the case of electrolysis cells of the "thimble" type, may be in the form of a cylinder whose director is a more or less complex surface. , generally substantially rectangular with rounded corners.
  • the assembly of the sheet of fibers linked by the fluoropolymer with the elementary cathode can be done by various methods. According to a first way of proceeding, the suspension is directly filtered through the elementary cathode and then brings the elementary cathode / fiber sheet assembly to a temperature allowing the fluoropolymer binder to melt, as indicated above. According to another variant, the suspension is filtered separately and a sheet of fibers is formed and the binder is melted, this only operation being carried out after application of the sheet on the elementary cathode.
  • the choice between the different techniques can be linked to the nature of the elementary cathode (grid, perforated metal, expanded metal) and to the desired degree of penetration of the sheet of fibers into the mesh voids or perforations of the elementary cathode.
  • the composite material comprising the elementary cathode and the sheet of fibers, as described above constitutes in fact the cathode itself of an electrolysis cell, this application to the production of cathode element of electrolysis cell constituting the privileged but not exclusive area of materials according to the invention.
  • a membrane or a diaphragm between the anode and cathode compartments In the case of a membrane, which can be chosen from the many electrolysis membranes described in the literature, the composite element according to the invention constitutes an excellent mechanical support and ensures a remarkable distribution of the current. This distribution of the current is naturally linked to the particular structure of the composite elements in accordance with the invention.
  • the multiplicity of current conductors ensures a maximum voltage gain due to the large active area, which gain can be increased when electrocatalytic elements have been, in one or the other form previously disclosed. , dispersed within the fiber sheet.
  • the composite material can also be associated with a diaphragm.
  • This diaphragm which can also be chosen from the many diaphragms for electrolysis now known, can be manufactured separately. It can also, and this constitutes an advantageous method, be manufactured directly on the fiber web or on the composite fiber web / elementary cathode. This direct manufacture is particularly easy when the diaphragm is produced by filtration of a suspension.
  • Composite materials made up of a compre nant, from one face to the other, the elementary cathode, the sheet of fibers linked by the fluoropolymer and the porous or microporous membrane or diaphragm also constitute an object of the invention.
  • Such composite materials constitute coherent assemblies, benefiting from all the advantages specific to the fiber sheet and to the fiber sheet / elementary cathode composite, to which is added the considerable advantage represented by the elimination of the traditional diaphragm / cathode interface. and its harmful effects, namely a parasitic ohmic drop in the gas-liquid emulsion close to the cathode substrate.
  • Carbon fibers are prepared as follows: Dry route: we pass for 4 minutes in a grinder-mixer carbon fiber and the same amount of NaCl (50 or 62.5 g of each ingredient). Fibers are removed whose average length is 1 to 3 mm, the average diameter is 5 to 10 ⁇ m. The resistivity is less than 5.10 ⁇ 3 ⁇ .cm. Wet process: the same carbon fluff is ground in 1 liter of water. The characteristics of the fibers are identical.
  • Type I aqueous route.
  • a suspension is prepared from: - 100 g of fibers made up of: . 37 or 50 g of the carbon fibers described under (a) . 63 or 50 g of asbestos fibers - type A: chrysotile variety - average length between 1 and 5 mm, average diameter around 200 ⁇ or - type B: chrysotile variety - length between 5 and 20 mm, average diameter around 200 ⁇ . 1 g sodium dioctylsulfosuccinate, as a 65% aqueous solution . 7,000 g of softened water.
  • PTFE polytetrafluoroethylene
  • Type II alkaline route
  • the procedure is as for the aqueous route but replaces the softened water with the same amount of electrolytic soda (150 g / l of NaCl and 150 g / l of NaOH).
  • electrolytic soda 150 g / l of NaCl and 150 g / l of NaOH.
  • PCTFE polychlorotrifluoroethylene
  • the suspension is stirred by air for 30 min (air circulation at a flow rate of 10 m3 / h).
  • the suspensions I or II are filtered through a bronze grid opening 40 ⁇ m while respecting the following vacuum program: 1 min of decantation then successive stages for 1 min at increasing voids (from 100 to 100 Pa).
  • the sheet obtained after filtration is detached from the grid and brought to an oven at 350 ° C for 10 min when the polymer is PTFE or at 260 ° C for 30 min when the polymer is PCTFE.
  • the composite material resulting from this filtration and from the fusion of the fluoropolymer (12 hours at 100 ° then 10 min at 350 °) is used as a cathode in a sodium chloride electrolysis cell (operation at 25 A / dm2 at 85 ° C - soda outlet: 120 to 140 g / l).
  • the excess thickness of the sheet of fibers linked by the fluoropolymer relative to the surface of the elementary cathode varies from 0.1 to 1 mm, depending on the amount of suspension filtered.
  • ⁇ Umv / ECS designates the potential measured at the surface of the composite material (fiber sheet side) or of the cathode surface with respect to the Saturated Calomel electrode (expressed in mv).
  • the cathode elements were activated by electrochemical deposition (examples 10 and 11), by nickel plating of fibers (examples 12 and 13), and by addition of electrocatalytic element in powder form (examples 14 to 28), the general technique for manufacturing the composite (elementary cathode + sheet of fibers) being that of Examples 4 to 9.
  • the electrochemical deposition is carried out as follows: the cathode element of Example 4 is used as the cathode of an electrolyser whose anode consists of nickel.
  • the electrolysis is carried out in an agitated medium, at 20 ° under a current density of 10 A / dm2.
  • the operation lasts 30 min.
  • this operation during which a nickel-zinc alloy is deposited on the conductive fibers of the cathode element, this element is immersed for 2 hours in electrolytic soda (concentration 150 g / l) at 80 ° C.
  • electrolytic soda concentration 150 g / l
  • Example 4 was repeated using either nickel-plated carbon fibers (63) and asbestos fibers (37), or only nickel-plated asbestos fibers.
  • the third activation technique involves the addition of powdered electrocatalytic element.
  • the cathode elements are wrung, dried (100 °, 12 h) and brought to 350 ° for 10 min.
  • Example Report Activation Potential of the cathode element ( ⁇ Umv / ECS) carbon fiber asbestos fibers Nature g / dm2 14 63/37 Platinum 0.2 - 1250 (- 1380) 15 100/0 Platinum 0.2 - 1280 16 63/37 Palladium 0.2 - 1260
  • the amount of activator is expressed by weight of platinum or palladium (metal) deposited per dm2 of surface of the cathode element.
  • Powder activators the particle size of which is equal to or less than 50 ⁇ m, are incorporated directly into the suspension.
  • Type designates the type of suspension (aqueous or alkaline, as in Examples 1 to 3)
  • C / A denotes the carbon fiber / asbestos fiber weight ratio
  • P / C + A designates the weight ratio fluoropolymer / carbon fibers + asbestos fibers
  • Po / A denotes the porogenic / asbestos fibers weight ratio.
  • the cathode element used is made from an elementary braided and rolled iron cathode and a type I suspension, containing a PTFE latex, asbestos fibers (A) and a carbon fiber / fiber ratio. asbestos 63/37. This item may be activated.
  • the diaphragm is deposited on this element by suction under programmed vacuum of a suspension comprising: . H2O 3300 g . Sulfosuccinate Na 1 g . Asbestos fibers A 100g in which have been incorporated, after 1/2 hour of stirring .
  • the programmed vacuum deposition is carried out as follows: 1 min of decantation 1 min under pressure reduced to 9.102 Pa 1 min under pressure reduced to 7.5.102 Pa 1 min under pressure reduced to 6.102 Pa 1 min under pressure reduced to 5.102 Pa
  • the cathode element / diaphragm assembly is wrung and placed at 100 ° for 12 hours and then at 350 ° for 10 minutes.
  • the porogen is eliminated by alkaline attack before mounting in the electrolyser.
  • the electrolysis conditions are those of the previous examples; however the inter-electrode distance is reduced to 6 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Catalysts (AREA)
  • Paper (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inorganic Fibers (AREA)

Abstract

L'invention concerne des matériaux constitués par des nappes de fibres et plus précisément des nappes de fibres conductrices de l'électricité, liées au moyen d'un polymère fluoré. Elle concerne également un procédé de fabrication de ces nappes à partir de suspensions contenant les fibres, le polymère fluoré et, en vue de certaines applications, des additifs tels que des agents électrocatalytiques. Ces nappes de fibres, et notamment celles renfermant des agents électrocatalyseurs sont utilisables pour la réalisation d'éléments cathodiques pour cellules d'électrolyse.

Description

  • La présente invention a pour objet un matériau utilisable notam­ment pour la réalisation de l'élément cathodique d'une cellule d'électrolyse, et en particulier d'une cellule d'électrolyse de solu­tions aqueuses d'halogénures alcalins. Elle concerne également l'élé­ment cathodique comprenant ledit matériau. L'invention s'applique aussi au procédé de fabrication desdits matériaux et desdits éléments cathodiques.
  • Le matériau sur lequel porte en premier lieu l'invention est constitué par une nappe comprenant des fibres et un liant, cette nappe étant caractérisée en ce qu'une partie au moins des fibres est constituée de fibres conductrices de l'électricité, en ce que le liant est choisi parmi les polymères fluorés et en ce que la résisti­vité est inférieure à 0,4 Ω.cm et de préférence inférieure à 0,1 Ω.cm.
  • Au sens de l'invention, on désigne par nappe un assemblage tri­dimensionnel dont l'épaisseur est sensiblement plus faible que la plus petite des autres dimensions, ledit assemblage pouvant ou non présenter deux surfaces parallèles. Ces nappes présentent généra­lement des surfaces sensiblement planes et rectilignes mais peuvent aussi présenter les formes les plus diverses, ladite forme pouvant notamment être déterminée par la forme du matériau auquel la nappe pourra être associée, ainsi qu'il sera précisé plus loin.
  • A titre purement informatif, et dans l'hypothèse d'une utili­sation des nappes selon l'invention en vue de la réalisation de l'élément cathodique d'une cellule d'électrolyse du chlorure de sodium, l'épaisseur de cette nappe peut être comprise entre 0,1 et 5 mm, l'une des grandes dimensions, qui peut sensiblement correspondre à la hauteur de l'élément cathodique, pouvant atteindre 1 m, voire davantage, l'autre grande dimension, qui peut correspondre sensible­ment au périmètre dudit élément pouvant atteindre plusieurs dizaines de mètres. Il doit être rappelé que ces valeurs sont indiquées présentement dans le but unique de donner un ordre de grandeur de nappes conformes à l'invention mais il est évident que de telles indications ne sauraient en aucune manière limiter le domaine concer­né par la présente invention à des nappes de dimensions précises.
  • Ainsi qu'il a été précisé, l'un des constituants des nappes selon l'invention est constitué par des fibres dont une partie au moins sont des fibres conductrices de l'électricité. Le choix des fibres conductrices et leur éventuelle association avec des fibres non conductrices procèdent de divers critères et notamment du respect de la valeur choisie pour la résistance électrique de la nappe finale, compte tenu de la présence du liant polyfluorooléfines.
  • On désignera présentement par fibres conductrices de l'électri­cité tout matériau sous forme de filament dont le diamètre est généralement inférieur à 1 mm et de préférence compris entre 10⁻⁵ et 0,1 mm et dont la longueur est supérieure à 0,5 mm et de préféren­ce comprise entre 1 et 20 mm, ledit matériau présentant une résisti­vité égale ou inférieure à 0,4 Ω.cm.
  • De telles fibres peuvent être entièrement constituées par un matériau intrinsèquement conducteur de l'électricité ; à titre d'exemples de tels matériaux on peut citer les fibres métalliques, et en particulier les fibres de fer, d'alliages ferreux ou de nickel ou les fibres de carbone. On peut également utiliser des fibres issues de matériau non conducteur de l'électricité mais rendues conductrices par un traitement : on peut à titre d'example citer les fibres d'amiante, rendues conductrices par dépôt chimique ou électrochimique d'un métal tel que nickel, ou les fibres de zircone (Zr O₂), rendues conductrices par nickelage. Dans le cas de fibres rendues conductrices par traitement, on effectuera celui-ci dans des condi­tions telles que la fibre en résultant présente la résistivité men­tionnée ci-avant.
  • Il doit être noté que ce traitement de fibres, et en particulier le nickelage mentionné ci-avant non seulement permet d'augmenter la conductibilité de fibres et de la nappe en résultant mais joue un rôle électrocatalytique certain : des informations plus générales sur les agents électrocatalytiques seront données plus loin.
  • Il va sans dire qu'on peut associer dans les nappes conformes à l'invention les deux types de fibres, à savoir les fibres intrinsè­quement conductrices et les fibres rendues conductrices, ainsi qu'il a été exposé ci-avant. Il doit être aussi entendu que l'invention englobe l'emploi de fibres intrinsèquement conductrices c'est-à-dire présentant la valeur maximum de résistivité mentionnée ci-avant, ces fibres ayant elles-mêmes subi un traitement tel que par exemple un nickelage pour augmenter leur conductibilité.
  • Sous réserve de respecter les valeurs de maximum de résistivité mentionnées précédemment, les fibres conductrices peuvent être associées à des fibres non conductrices de l'électricité, cette expression désignant, par hypothèse, tout filament dont la résis­tivité est supérieure à 0,4 Ω.cm. D'une manière générale, ces fibres ont un diamètre inférieur à 1 mm et de préférence compris entre 10⁻⁵ et 0,1 mm et une longueur supérieure à 0,5 mm et plus généralement comprise entre 1 et 20 mm.
  • L'emploi de fibres non conductrices peut répondre à divers impératifs et notamment peut être justifié par les propriétés mécani­ques souhaitées pour la nappe de fibres. A titre d'illustration de fibres non conductrices au sens de l'invention, on mentionnera notamment les fibres minérales telles que les fibres d'amiante, fibres de verre, fibres de quartz, fibres de zircone, ou les fibres organiques telles que les fibres de polypropylène ou de polyéthylène, éventuellement halogéné et notamment fluoré, les fibres de polyhalo­génovinylidène et notamment polyfluorure de vinylidène ou encore les fibres des polymères fluorés dont il sera question plus loin à propos du liant des nappes conformes à l'invention.
  • Bien que cette donnée n'ait qu'une valeur indicative et non pas limitative, on a constaté qu'il était avantageux, lorsque la nappe de fibres est destinée à une application comme élément cathodique d'une cellule d'électrolyse du chlorure de sodium, d'associer effectivement des fibres non conductrices et en particulier des fibres d'amiante aux fibres conductrices, lesquelles pouvant avantageusement être constituées par des fibres de carbone. Dans une telle association, les fibres d'amiante et plus généralement les fibres non conductrices peuvent représenter jusqu'à 90 % et de préférence 20 à 70 % du poids de l'ensemble fibres conductrices/fibres non conductrices.
  • Le liant des nappes conformes à l'invention est constitué par un polymère fluoré. L'expression polymère fluoré désigne présentement un homopolymère ou un copolymère dérivé(s) au moins en partie de monomè­res oléfiniques totalement substitués avec des atomes de fluor, ou totalement substitués avec une combinaison d'atomes de fluor et de l'un au moins des atomes de chlore, brome ou iode par monomère.
  • Des exemples d'homo- ou copolymères fluorés peuvent être cons­titués par les polymères et copolymères dérivés de tétrafluoro­éthylène, hexafluoropropylène, chlorotrifluoroéthylène, bromotrifluo­roéthylène.
  • De tels polymères fluorés peuvent aussi contenir jusqu'à 75 moles pour cent de motifs dérivés d'autres monomères éthyléniquement insaturés contenant au moins autant d'atomes de fluor que d'atomes de carbone, comme par exemple le (di)fluorure de vinylidène les esters de vinyle et de perfluoroalkyle, tel que le perfluoroalcoxyéthylène.
  • On peut naturellement utiliser dans l'invention plusieurs homo- ou copolymères fluorés tels que définis ci-avant. Il va sans dire qu'on ne sortirait pas du cadre de l'invention en associant à ces polymères fluorés une faible quantité, par exemple jusqu'à 10 ou 15% en poids de polymères dont la molécule ne renferme pas d'atomes de fluor, comme par exemple du polypropylène.
  • Le polymère fluoré est utilisé présentemment en tant que liant des fibres définies précédemment. Il sera précisé plus loin les différents modes de mise en oeuvre dudit liant. Il sera simplement indiqué ici que, dans les nappes conformes à l'invention, le polymère fluoré peut représenter jusqu'à 60 % du poids total de la nappe c'est-à-dire fibres (fibres conductrices, éventuellement associées aux fibres non conductrices) + liant, ce taux étant plus généralement compris entre 5 et 50 %.
  • Les nappes conformes à l'invention ont été définies ci-avant par leurs constituants essentiels, à savoir les fibres et le liant. En fonction des différentes applications auxquelles ces nappes seront destinées, elles peuvent, à l'un ou l'autre moment de leur existence renfermer d'autres matériaux ou additifs. Ces matériaux ou additifs sont énumérés ci-après étant précisé que les additifs peuvent être présents simultanément ou au contraire se succéder au sein de la nappe, dans le cas de traitements effectués sur ladite nappe.
  • A titre donc purement illustratif, on mentionnera en premier lieu des produits ne se présentant pas sous forme de fibres et susceptibles soit d'améliorer la conductivité électrique de la nappe, soit d'augmenter ses propriétés mécaniques : de tels matériaux peuvent notamment être constitués par des poudres, qu'il s'agisse de poudres conductrices telles que les poudres de graphite, nickel, fer ou magnétite ou de poudres non conductrices, la notion de poudre désignant un produit dont la granulométrie est inférieure à 50 µm et la conductivité étant appréciée comme dans le cas des fibres. Ces poudres et notamment les poudres non conductrices, qui peuvent consister par exemple de poudres d'amiante ou d'oxyde hydraté peuvent contribuer avec le liant à obtenir la cohésion de la nappe de fibres. A titre purement indicatif, la quantité d'additif en poudre peut atteindre 30 % du poids de l'ensemble fibres conductrices + polymère fluoré.
  • Les nappes peuvent également renfermer un ou plusieurs agents électrocatalytiques. L'utilisation de tels catalyseurs, qui peuvent se présenter sous forme de poudre dont la granulométrie peut varier par exemple entre 1 et 100 µm permet de cumuler les avantages liés à l'utilisation d'une cathode élémentaire comportant directement un dépôt d'agent électrocatalytique (gain de tension de l'ordre de 150 mV dans le cas d'une électrolyse de chlorure de sodium) et les avantages liés à l'emploi des nappes de fibres au niveau répartition du courant, support de diaphragme, etc ...
  • A titre d'illustration de tels agents électrocatalytiques, on mentionnera notamment les métaux de groupe du platine, et en particu­lier le platine lui-même et le palladium, les alliages et couples nickel-zinc, nickel-aluminium, titane-nickel, molybdène-nickel, soufre-nickel, nickel-phosphore, cobalt-molybdène, lanthane-nickel.
  • A titre purement indicatif, la quantité d'agent électrocataly­tique, sous quelque forme qu'il se présente, peut représenter jusqu'à 50 % du poids de la nappe liée et plus généralement de 1 à 30 % de ce poids, selon la nature du catalyseur.
  • Les nappes peuvent aussi renfermer des agents hydrophiles. L'utilisation de tels agents est notamment recommandée lorsque la nappe sera utilisée en milieu aqueux comme par exemple dans un procédé d'électrolyse de solutions aqueuses de chlorure de sodium. L'agent hydrophile contribue à améliorer la mouillabilité de la nappe de fibres en contrebalançant en quelque sorte le caractère fortement hydrophobe des polymères fluorés.
  • Les agents hydrophiles peuvent être choisis dans diverses familles de produits. Il peut d'une manière générale s'agir de produits liquides ou pulvérulents, de nature organique ou inorga­nique. Comme exemples illustratifs de tels agents, on peut citer les agents tensio-actifs ou surfactifs, tels que le dioctylsulfosuccinate de sodium, ... ou des composés minéraux tels que l'amiante en poudre ou en courtes fibres, la zircone, le dioxyde de cérium, le titanate de potassium, les oxydes hydratés et notamment l'alumine.
  • La quantité d'agent hydrophile pouvant être présente dans les nappes selon l'invention dépend bien évidemment de l'utilisation prévue pour cette nappe, de la quantité de produit hydrophobe (essen­tiellement le liant fluoré mais aussi certaines fibres contenues dans ces nappes) et de la nature de l'agent hydrophile. A titre d'ordre de grandeur, on peut indiquer que la quantité d'agent hydrophile peut atteindre 10 % du poids du liant fluoré et plus spécifiquement de 0,1 à 5 % du poids dudit liant.
  • Les nappes peuvent encore renfermer des agents porogènes, dont le rôle est de régler la porosité de la nappe, porosité qui, dans l'hypothèse d'une application dans l'électrolyse, influence l'écou­lement des liquides et l'évacuation des gaz. Il doit être entendu que, lorsqu'il est fait appel à de tels agents porogènes, la nappe finale dont la porosité aura, sous l'effet de décomposition ou d'élimination de ces agents, été réglée ou modifiée, ne renfermera en principe plus de tels agents. A titre d'illustration des agents porogènes on mentionnera les sels minéraux, qu'on pourra ensuite éliminer par lixiviation et les sels éliminables par décomposition chimique ou thermique auxquels on donne la préférence.
  • Ces divers produits peuvent être notamment choisis parmi les sels alcalins ou alcalino-terreux, tels que les halogénures, sulfa­tes, sulfites, bisulfites, phosphates, carbonates, bicarbonates. On peut également citer l'alumine amphotère ou la silice qu'on pourra éliminer en milieu alcalin.
  • Il va sans dire que la quantité et la granulométrie des agents porogènes -lorsqu'on utilise de tels agents- est étroitement liée à l'application à laquelle les nappes sont destinées. A titre simple­ment d'ordre de grandeur, on précisera que la granulométrie des agents porogènes varie le plus souvent entre 5 et 50 µm, et que la quantité est choisie en fonction de la porosité désirée, cette porosité pouvant atteindre jusqu'à 90 % voire davantage (selon la norme ASTM D 276-72).
  • Il doit être entendu que chacune des nappes définies ci-avant par ses constituants essentiels et par ses additifs constitue en elle-même un produit nouveau, directement visé par la présente invention. Il en va ainsi notamment des nappes comprenant les fibres, le liant et l'agent électrocatalytique, avec ou sans agent porogène, des nappes comprenant les fibres, le liant, l'agent hydrophile, avec ou sans agent électrocatalytique et de chacune des nappes précitées renfermant en outre des agents porogènes et/ou des poudres conductri­ces ou non conductrices de l'électricité.
  • La présente invention concerne également un procédé de fabri­cation des nappes définies précédemment. Il doit être compris que le procédé qui sera décrit ci-après constitue un mode de réalisation des nappes, mode de réalisation par voie humide ainsi qu'il apparaîtra à la lecture de ce qui suit, mais que cette description ne constitue en aucune manière une limitation du domaine de l'invention et que tout procédé permettant d'obtenir les nappes revendiquées, qu'il s'agisse d'une variante par voie humide ou d'un procédé à sec, fait partie du domaine de ladite invention.
  • Ce procédé comporte essentiellement les étapes suivantes :
    - préparation d'une suspension comprenant les fibres et le liant
    - élimination du milieu liquide et séchage de la nappe.
  • La suspension comprend, ainsi qu'il a été indiqué ci-avant, d'une part les fibres conductrices de l'électricité et d'autre part le liant constitué par un polymère fluoré, ces constituants étant dispersés dans un milieu liquide. Bien que ce milieu puisse être de natures très diverses, on utilise en général un milieu aqueux ou un milieu électrolytique.
  • Dans cette seconde hypothèse, le milieu peut contenir, outre l'eau, de la soude caustique, par exemple à raison de 5 à 20 % et du chlorure de sodium, par exemple à raison de 5 à 20 %. Il va sans dire que cette indication est valable pour un milieu électrolytique correspondant à l'électrolyse du chlorure de sodium mais qu'on peut, mutatis mutandis, utiliser tout autre milieu électrolytique.
  • D'une manière générale, il est avantageux d'incorporer dans le milieu aqueux ou électrolytique une faible quantité - par exemple de 0,1 à 5 % par rapport au poids des matières solides à disperser - d'agents dispersants ou agents tensio-actifs tels que, par exemple, le dioctylsulfosuccinate de sodium et, plus généralement, des surfactifs anioniques sulfoniques, tels que les sulfonates, sulfo­succinates, sulfosuccinamates d'alkyle en C₆ à C₂₄.
  • Il doit être entendu que, dans l'hypothèse où la nappe finale doit contenir d'autres additifs et notamment ceux énumérés précédem­ment comme les fibres non conductrices, les poudres conductrices ou non conductrices, les agents hydrophiles, agents porogènes, agents catalytiques, ceux-ci peuvent d'une manière générale, être incorporés dès la préparation de la suspension initiale. On peut cependant préciser que, hormis le cas des fibres additionnelles qui, en princi­pe, devront être dispersées parmi les fibres conductrices, les autres additifs peuvent également être introduits dans la nappe par exemple par filtration au travers de ladite nappe d'une suspension contenant de tels agents.
  • Le polymère fluoré se présente généralement sous forme de poudre sèche ou de fibres ou de dispersion aqueuse (latex) renfermant en général 30 à 70 % de polymère sec. D'une manière générale, la plus grande dimension des particules ou des fibres de polymère fluoré est inférieure à 50 µm, la granulométrie étant habituellement comprise entre 0,1 et 10 µm dans le cas de polymère en poudre.
  • La suspension définie ci-avant, par ses constituants essentiels et par ses additifs éventuels est en général fortement diluée en ce sens que le rapport : milieu de suspension/matières sèches (fibres, polymère, additifs) est de l'ordre de 30 à 100:1. Ces indications correspondent à une suspension utilisable industriellement mais on pourrait bien évidemment utiliser un rapport beaucoup plus élevé.
  • Dans le but d' obtenir une vitesse de filtration aisément contrôlable, on peut si nécessaire ajouter à la suspension un agent épaississant choisi par exemple parmi les polysaccharides naturels ou synthétiques.
  • Les différents constituants peuvent être directement introduits dans le milieu, notamment le milieu aqueux éventuellement électroly­tique.
  • Selon une variante et notamment lorsque le polymère fluoré est lui-même sous forme de dispersion, on effectue dans un premier temps une dispersion des matériaux fibreux (fibres conductrices et, éven­tuellement fibres non conductrices), avec addition d'un agent disper­sant, dans une fraction, par exemple 1/5 à 1/2 de la quantité finale de milieu de dispersion puis on incorpore dans cette dispersion le polymère fluoré, la suspension étant ensuite diluée et homogénéisée.
  • La phase suivante du procédé conforme à l'invention consiste à former la nappe comprenant les fibres, le liant fluoré et éventuel­lement les autres additifs. Cette nappe peut être formée par filtra­tion de la suspension au travers d'un matériau fortement poreux, comme une grille métallique, par exemple en fer ou en bronze, dont le vide de maille peut être compris entre 20 µm et 5 mm. D'une manière générale, cette filtration s'effectue avantageusement sous vide en suivant généralement un programme allant, en continu ou par paliers, de la pression atmosphérique à la dépression finale (1,5.10³ à 4.10⁴ Pa).
  • La nappe résultant de cette filtration peut être séchée, par exemple à une température comprise entre 70 et 120°C pendant une durée pouvant aller de 1 à 24 heures. La formation définitive de la nappe, éventuellement après le séchage mentionné ci-avant, comprend le chauffage à une température supérieure au point de fusion ou de ramollissement du polymère fluoré, par exemple de 5 à 50°C supérieure à ce point, et pendant une durée pouvant aller, selon le polymère et la température choisie, de 2 mn à 60 mn et, plus précisément, de 5 à 40 mn.
  • La nappe ainsi formée, et constituée par un ensemble de fibres conductrices liées par un polymère fluoré constitue, ainsi qu'il a été précisé, l'objet premier de la présente invention.
  • L'invention concerne aussi, et tout particulièrement les nappes précitées activées par un agent électrocatalytique. Il a été mention­né précédemment divers agents électrocatalytiques pouvant être incorporés et dispersés dans ladite nappe. Selon un mode de mise en oeuvre d'agents électrocatalytiques, et pour autant que la nature de ces derniers le permette, ces agents peuvent être déposés sur la nappe formée par dépôt électrochimique. Cette technique est particu­lièrement intéressante lorsqu'on souhaite utiliser comme agent électrocatalytique du nickel, lequel est déposé sous forme d'alliage nickel-zinc puis lessivé en milieu alcalin dans le but d'éliminer le zinc et d'obtenir du nickel de grande surface.
  • Selon cette technique, la nappe de fibre est déposée sur une cathode, l'anode est en nickel et le bain électrocatalytique comprend des halogénures de nickel et de zinc. Le couple nickel/zinc est déposé sur les fibres conductrices de l'électricité, le zinc étant éliminé comme il vient d'être précisé.
  • Selon d'autres modes de mise en oeuvre et ainsi qu'il a été déjà indiqué, on peut incorporer directement dans la suspension un agent électrocatalytique sous forme de poudre ou filtrer à travers la nappe de fibres, avant ou après fusion du liant, une suspension d'agent électrocatalytique dans un véhicule liquide quelconque, le plus souvent de l'eau, éventuellement additionnée de surfactif dans le but de maintenir la dispersion des poudres, par exemple dans le cas de la réduction de sels de métaux précieux par du borohydrure de sodium.
  • Un autre objet de l'invention est constitué par un matériau composite comprenant la nappe comprenant elle-même les fibres et le polymère fluoré définis précédemment et une cathode élémentaire. L'expression cathode élémentaire désigne présentement la pièce métallique, généralement en fer ou en nickel, essentiellement consti­tuée par un grillage ou une pièce de métal perforé et jouant le rôle de cathode dans une cellule d'électrolyse. Cette cathode élémentaire peut se composer d'une ou d'un assemblage de surfaces planes ou, dans le cas de cellules d'électrolyse du type "doigt de gant" se présenter sous forme de cylindre dont la directrice est une surface plus ou moins complexe, en général sensiblement rectangulaire aux angles arrondis.
  • L'assemblage de la nappe de fibres liées par le polymère fluoré avec la cathode élémentaire peut se faire de diverses méthodes. Selon une première façon de procéder, on filtre directement la suspension au travers de la cathode élémentaire puis porte l'ensemble cathode élémentaire/nappe de fibres à une température permettant la fusion du liant polymère fluoré, comme indiqué précédemment. Selon une autre variante, on effectue séparément la filtration de la suspension et formation d'une nappe de fibres et la fusion du liant, cette seule opération étant effectuée après application de la nappe sur la cathode élémentaire. Le choix entre les différentes techniques peut être lié à la nature de la cathode élémentaire (grille, métal per­foré, métal déployé) et au degré souhaité de pénétration de la nappe de fibres dans les vides de maille ou perforations de la cathode élémentaire.
  • Le matériau composite comprenant la cathode élémentaire et la nappe de fibres, tel que décrit ci-avant constitue en fait la cathode elle-même d'une cellule d'électrolyse, cette application à la réali­sation d'élément cathodique de cellule d'électrolyse constituant le domaine privilégié mais non pas exclusif des matériaux selon l'in­vention. Dans l'hypothèse d'une telle application, on peut, selon une pratique maintenant courante, utiliser dans la cellule une membrane ou un diaphragme entre les compartiments anodique et cathodique. Dans le cas d'une membrane, laquelle peut être choisie parmi les nombreu­ses membranes d'électrolyse décrites dans la littérature, l'élément composite selon l'invention constitue un excellent support mécanique et assure une remarquable répartition du courant. Cette répartition du courant est naturellement liée à la structure particulière des éléments composites conformes à l'invention. De surcroît, la multi­plicité des conducteurs de courant (fibres conductrices) assure un gain maximum de tension du fait de la grande surface active, gain qui peut être accru lorsque des éléments électrocatalytiques ont été, sous l'une ou l'autre forme divulguées précédemment, dispersés au sein de la nappe de fibres.
  • Le matériau composite peut aussi être associé à un diaphragme. Ce diaphragme, qui peut aussi être choisi parmi les nombreux dia­phragmes pour électrolyse maintenant connus, peut être fabriqué séparément. Il peut aussi, et ceci constitue une modalité avantageuse être fabriqué directement sur la nappe de fibre ou sur le composite nappe de fibre/cathode élémentaire. Cette fabrication directe est particulièrement aisée lorsque le diaphragme est fabriqué par filtra­tion d'une suspension. Ces techniques de fabrication de membranes ou diaphragme poreux et microporeux sont décrites par exemple dans les brevets français n° 2.229.739, 2.280.435 ou 2.280.609 et la demande de brevet français n° 81.9688 le contenu de ces brevets et demande de brevet étant incorporé ici par référence.
  • Les matériaux composites, constitués par un assemblage compre­ nant, d'une face vers l'autre, la cathode élémentaire, la nappe de fibres liées par le polymère fluoré et la membrane ou diaphragme poreux ou microporeux constituent encore un objet de l'invention. De tels matériaux composites constituent des ensembles cohérents, bénéficiant de tous les avantages propres à la nappe de fibres et au composite nappe de fibre/cathode élémentaire, auxquels s'ajoute l'avantage considérable représenté par la suppression de l'interface traditionnel diaphragme/cathode et de ses effets néfastes, à savoir une chute ohmique parasite dans l'émulsion gaz-liquide proche du substrat cathodique.
  • Dans les exemples qui suivent on donnera des détails pratiques de réalisation de l'invention, ces exemples n'ayant qu'un rôle d'illustration et ne pouvant en aucun cas être considérés comme limitant d'une quelconque manière l'invention.
  • Exemples 1 à 3
  • Ces exemples illustrent la réalisation de nappes de fibres liées par un polymère fluoré.
  • a) Préparation des fibres de carbone
  • Les fibres de carbone sont préparées comme suit :
    Voie sèche : on passe pendant 4 minutes dans un broyeur-­mélangeur de la bourre de carbone et la même quantité de NaCl (50 ou 62,5 g de chaque ingrédient). On retire des fibres dont la longueur moyenne est de 1 à 3 mm, le diamètre moyen est de 5 à 10 µm. La résistivité est inférieure à 5.10⁻³ Ω.cm.
    Voie humide : la même bourre de carbone est broyée dans 1 litre d'eau. Les caractéristiques des fibres sont identiques.
  • b) Préparation de la suspension
  • On utilise deux méthodes :
  • Type I : voie aqueuse.
  • On prépare une suspension à partir de :
    - 100 g de fibres constituées par :
    . 37 ou 50 g des fibres de carbone décrites sous (a)
    . 63 ou 50 g de fibres d'amiante
    - type A : variété chrysotile - longueur moyenne comprise entre 1 et 5 mm, diamètre moyen environ 200 Å
    ou
    - type B : variété chrysotile - longueur comprise entre 5 et 20 mm, diamètre moyen environ 200 Å
    . 1 g de dioctylsulfosuccinate de sodium, sous forme de solution aqueuse à 65 %
    . 7 000 g d'eau adoucie.
  • Après agitation rotative de 30 mn, on introduit dans cette suspension 40 à 80 g de polytétrafluoroéthylène (PTFE) :
    - sous forme de latex dans l'eau à 60 % d'extrait sec
    - sous forme de poudre (granulométrie inférieure à 50 µm)
  • On agite à nouveau pendant 30 mn.
  • Type II : voie alcaline
  • On procède comme pour la voie aqueuse mais remplace l'eau adoucie par la même quantité de soude électrolytique (150 g/l de NaCl et 150 g/l de NaOH). On a ici utilisé soit le polytétrafluoroéthylène en poudre ou sous forme de latex soit 30 g de polychlorotrifluoroé­thylène (PCTFE) sous forme de poudre de granulométrie moyenne 50 µm.
  • La suspension est agitée par l'air pendant 30 mn (circula­tion d'air au débit de 10 m³/h).
  • c) Fabrication de la nappe de fibres
  • Les suspensions I ou II sont filtrées à travers une grille de bronze d'ouverture 40 µm en respectant le programme de vide suivant : 1 mn de décantation puis paliers successifs pendant 1 mn à des vides croissants (de 100 en 100 Pa).
  • La nappe obtenue après filtration est détachée de la grille et portée dans un four à 350°C pendant 10 mn lorsque le polymère est le PTFE ou à 260°C pendant 30 mn lorsque le polymère est le PCTFE.
  • Les caractéristiques du mode opératoire et des nappes finales sont les suivantes :
    EXEMPLES
    1 2 3
    Type de suspension I I II
    Rapport fibre carbone / amiante 63/37 63/37 50/50
    Polymère fluoré
    PTFE poudre x
    PTFE latex x
    PCTFE x
    Amiante A B B
    Poids de polymère fluoré (kg/m² de nappe) 0,03 0,03 0,05
    Epaisseur de la nappe finale (en mm) 1,0 2,1 1,1
    Résistivité (Ω cm) 0,06 0,07 0,09
  • Exemples 4 à 9
  • On utilise les suspensions décrites sous (b) des exemples 1 à 3 mais procède à la filtration de ces suspensions à travers une cathode élémentaire constituée par
    . une grille de fer tressé et laminé (diamètre des fils 2 mm, ouverture 2 mm)
    . une plaque de fer perforé (épaisseur 1,5 mm, diamètre des trous 3 mm, entre-axe 5 mm , disposition en quinconce)
    . une plaque de nickel perforé (épaisseur 1,5 mm, diamètre des trous 3 mm, entre-axe 5 mm , disposition en quinconce)
  • Le matériau composite résultant de cette filtration et de la fusion du polymère fluoré (12 heures à 100° puis 10 mn à 350°) est utilisé en tant que cathode dans une cellule d'électrolyse du chlorure de sodium (fonctionnement sous 25 A/dm² à 85°C - sortie de la soude : 120 à 140 g/l).
  • Pour effectuer les mesures on place le diaphragme à 10 mm de la surface du matériau composite et le potentiel de ce matériau compo­site (élément cathodique) est obtenu avec une sonde de Luggin appli­quée sur sa surface (9 mesures réparties sur 1/2 dm² et calcul du potentiel moyen). La surface active de l'électrolyseur est de 1/2 dm².
  • Dans cette nouvelle cathode, la surépaisseur de la nappe de fibres liée par le polymère fluoré par rapport à la surface de la cathode élémentaire varie de 0,1 à 1 mm, selon la quantité de suspension filtrée.
  • Les caractéristiques opératoires et les mesures sont rassem­blées dans le tableau sui suit :
  • Dans ce tableau ΔUmv/ECS désigne le potentiel mesuré en surface du matériau composite (côté nappe de fibres) ou de la surface cathodique par rapport à l'électrode à Calomel Saturé (exprimé en mv).
    Figure imgb0001
  • Il ressort de ce tableau que les matériaux composites, consti­tués uniquement par les fibres et le liant donnent, en épaisseur très mince, un potentiel sensiblement égal au potentiel mesuré sur la cathode élémentaire.
  • L'accroissement de l'épaisseur de la nappe de fibres augmente également le potentiel mais cette augmentation reste très acceptable.
  • Exemples 10 à 28
  • Dans cette série d'essais on a procédé à l'activation des éléments cathodiques par dépôt électrochimique (exemples 10 et 11), par nickelage de fibres (exemples 12 et 13), et par addition d'élé­ment électrocatalytique sous forme de poudre (exemples 14 à 28), la technique générale de fabrication du composite (cathode élémentaire + nappe de fibres) étant celle des exemples 4 à 9.
  • a) Le dépôt électrochimique est effectué comme suit : on utilise l'élément cathodique de l'exemple 4 comme cathode d'un électrolyseur dont l'anode est constituée par du nickel. Le bain électrolytique comprend :
    NiCl₂, 6 H₂O = 1 mol/l
    NH₄Cl = 1 mol/l
    ZnCl₂ = 15 g/l
  • L'électrolyse est effectuée en milieu agité, à 20° sous une densité de courant de 10 A/dm². L'opération dure 30 mn. Après cette opération, au cours de laquelle se dépose sur les fibres conduc­trices de l'élément cathodique un alliage nickel-zinc, on immerge cet élément pendant 2 heures dans de la soude électrolytique (concen­tration 150 g/l) à 80°C. Au terme de cette opération, le zinc a été éliminé et la quantité de nickel déposée représente environ 30 % du poids de la nappe de fibres.
  • Les résultats sont les suivants :
    Figure imgb0002
  • b) Dans la deuxième technique d'activation, on a renouvelé l'exemple 4 en utilisant soit des fibres de carbone nickelées (63) et des fibres d'amiante (37), soit uniquement des fibres d'amiante nickelées.
  • On observe les résultats suivants :
    Figure imgb0003
  • c) La troisième technique d'activation comporte l'addition d'élément électrocatalytique en poudre.
  • On opère comme suit :
  • 1° méthode : (exemples 14 à 16)
  • On dépose sur une cathode élémentaire en fer doux perforé (épaisseur 1,5 mm, diamètre des trous 3 mm ; entre-axe 5 mm ; disposition en quinconce) une suspension type I contenant 60 g de PTFE en poudre, le rapport fibres de carbone/fibres d'amiante étant soit 63/37 soit 100/0.
  • Sur l'élément cathodique obtenu (en suivant la technique générale des exemples 4 à 9) on filtre une suspension de platine ou une suspension de palladium dans les conditions suivantes:
  • Suspension de platine : (pour 1 l de suspension)
  • . Dissolution de 2,4 g de H₂PtCl₆ dans 800 cm³ d'eau contenant 1 %oo de poly(oxyethanediyl)α [(tétramethyl 1,1,3,3 butyl)-4 phényl] ω hydroxy
    . Dissolution de 0,9 g de borohydrure de sodium dans 200 cm³ d'eau
    . Mélange sous lente agitation des deux solutions
  • Suspension de palladium (pour 1 l de suspension)
  • . Dissolution de 5,5 g de PdCl₂ dans 5 cm³ d'HCl 3N et dilu­tion jusqu'à 800 cm³ par H₂O contenant 1 %oo de poly(oxyethanediyl) α [(tétramethyl 1,1,3,3 butyl)-4 phényl] ω hydroxy
    . Dissolution de 0,9 g de borohydrure de sodium dans 200 cm³ d'eau
    . Mélange sous agitation des deux solutions
  • Après filtration, les éléments cathodiques sont essorés, séchés (100°, 12 h) et portés à 350° pendant 10 mn.
  • On note les résultats suivants
    Exemple Rapport Activation Potentiel de l'élément cathodique (ΔUmv/ECS)
    fibres carbone fibres amiante Nature g/dm²
    14 63/37 Platine 0,2 - 1250 (- 1380)
    15 100/0 Platine 0,2 - 1280
    16 63/37 Palladium 0,2 - 1260
  • Dans ce tableau, la quantité d'activateur est exprimée en poids de platine ou palladium (métal) déposé par dm² de surface de l'élé­ment cathodique.
  • La valeur du potentiel donnée entre parenthèses est celle de la cathode élémentaire seule.
  • 2° méthode : (exemples 17 à 28)
  • On incorpore directement dans la suspension des activateurs en poudre dont la granulométrie est égale ou inférieure à 50 µm.
  • Dans le tableau qui suit les termes ou abréviations ont les significations suivantes :
    Type désigne le type de suspension (voie aqueuse ou voie alcaline comme dans les exemples 1 à 3)
    C/A désigne le rapport pondéral fibres de carbone/fibres d'amiante
    P/C+A désigne le rapport pondéral polymère fluoré/fibres de carbone + fibres d'amiante
    Po/A désigne le rapport pondéral porogène/fibres d'amiante.
    Figure imgb0004
  • Exemples 29 à 40
  • Dans les essais qui suivent, on a réalisé une association élément cathodique/diaphragme.
  • (a) Mode opératoire
  • L'élément cathodique utilisé est fabriqué à partir d'une cathode élémentaire en fer tressé et laminé et d'une suspension type I, renfermant un latex PTFE, des fibres d'amiante (A) et un rapport fibres de carbone/fibres d'amiante de 63/37. Cet élément est éven­tuellement activé.
  • On dépose sur cet élément le diaphragme par aspiration sous vide programmé d'une suspension comprenant :
    . H₂O 3300 g
    . Sulfosuccinate Na 1 g
    . Fibres d'amiante A 100 g
    dans laquelle ont été incorporés, après 1/2 heure d'agitation
    . latex PTFE 133 g (latex à 60 % d'extrait sec)
    . porogène (Al₂O₃ à 25 % Al) 40 g
    l'ensemble ayant ensuite été agité pendant 1/2 heure, laissé au repos 24 h, à nouveau dispersé et homogénéisé pendant 1/4 d'heure avant utilisation.
  • Le dépôt sous vide programmé s'effectue comme suit :
    1 mn de décantation
    1 mn sous pression réduite à 9 .10² Pa
    1 mn sous pression réduite à 7,5.10² Pa
    1 mn sous pression réduite à 6 .10² Pa
    1 mn sous pression réduite à 5 .10² Pa
  • Après dépôt du diaphragme, on essore l'ensemble élément catho­dique/diaphragme et le place à 100° pendant 12 heures puis à 350° pendant 10 mn.
  • Le porogène est éliminé par attaque alcaline avant le montage dans l'électrolyseur.
  • (b) Utilisation en électrolyse.
  • Les conditions de l'électrolyse sont celles des exemples précé­dents ; toutefois la distance interélectrode est réduite à 6 mm.
  • On mesure :
    RF : rendement Faraday
    ΔU (volts) : tension aux bornes de l'électrolyseur
    NaOH g/l : concentration en sortie de l'électrolyseur
    et, par tracé de Δ U = f(I) ou courbe Intensité/Potentiel la valeur de ΔUI→0
  • Les résultats sont les suivants pour un chlorure anodique constant de 4,8 mole/l :
    Figure imgb0005
  • Ces résultats appellent les remarques suivantes :
    - A 180 g/l les rendements Faraday sont équivalents pour tous les essais soit environ 93 %
    - La tension d'extrapolation à I₀ baisse par activation par nickelage des fibres et surtout en présence de catalyseur.
    Nature de l'activation Témoin Fibres nickelées Platine Ni-Al
    ΔUI→0 moyen 2,34 2,31 2,25 2,27
    - La tension aux bornes met en évidence les mêmes gains de tension amplifiés.

Claims (17)

1. Matériau comprenant des fibres et un liant, utilisable notam­ment pour la réalisation de l'élément cathodique d'une cellule d'élec­trolyse, ledit matériau étant caractérisé en ce que :
a) une partie des fibres est constituée de fibres de carbone conductrices de l'électricité,
b) l'autre partie des fibres est constituée de fibres d'amiante non conductrices de l'électricité,
c) le liant est choisi parmi les polymères fluorés.
2. Matériau selon la revendication 1, caractérisé en ce que le poids des fibres non conductrices représente jusqu'à 90 % et de préfé­rence 20 à 70 % du poids de l'ensemble fibres conductrices/fibres non conductrices.
3. Matériau selon la revendication 1 ou 2, caractérisé en ce que le polymère fluoré est choisi parmi les polymères et copolymères dérivés de tétrafluoroéthylène, hexafluoropropylène, chlorotrifluoro­éthylène, bromotrifluoroéthylène.
4. Matériau selon la revendication 1 ou 2, caractérisé en ce que le polymère fluoré contient jusqu'à 75 moles pour cent de motifs dérivés d'autres monomères éthyléniquement insaturés contenant au moins autant d'atomes de fluor que d'atomes de carbone.
5. Matériau selon la revendication 1, caractérisé en ce que le polymère fluoré peut représenter jusqu'à 60 % du poids total de la nappe, c'est-à-dire fibres + liant, ce taux étant plus généralement compris entre 5 et 50 %.
6. Matériau selon la revendication 1, caractérisé en ce qu'il renferme un ou plusieurs agents électrocatalytiques.
7. Matériau selon la revendication 6, caractérisé en ce que l'agent électrocatalytique se présente sous forme de poudre de granulo­métrie comprise entre 1 et 100 µm.
8. Matériau selon la revendication 7, caractérisé en ce que l'agent électrocatalytique est choisi parmi les métaux du groupe de platine, et en particulier le platine lui-même et le palladium, les alliages et couples nickel-zinc, nickel-aluminium, titane-nickel, molybdène-nickel, soufre-nickel, nickel-phosphore, cobalt-molybdène, lanthane-nickel.
9. Matériau selon la revendication 6, caractérisé en ce que la quantité d'agent électrocatalytique représente jusqu'à 50 % du poids de la nappe liée, et de préférence 1 à 30 % dudit poids.
10. Procédé de fabrication des matériaux selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il consiste à préparer une suspension comprenant les fibres et le liant puis à éliminer le milieu liquide et à sécher la nappe obtenue.
11. Procédé selon la revendication 10, caractérisé en ce que la suspension comprend, en outre, l'un au moins des additifs choisis parmi les fibres non conductrices, les poudres conductrices ou non conduc­trices, les agents hydrophiles, les agents porogènes et les agents catalytiques.
12. Procédé selon la revendication 10, caractérisé en ce que la suspension est obtenue par incorporation, dans une dispersion de fibres, d'une dispersion de polymère fluoré, la dispersion de fibres étant réalisée sur 1/5 à 1/2 de la quantité finale du milieu de dis­persion.
13. Procédé selon l'une quelconque des revendications 10 à 11, caractérisé en ce que la nappe est formée par filtration de la suspen­sion à travers un matériau fortement poreux sous vide programmé.
14. Procédé selon l'une quelconque des revendications 10 à 13, caractérisé en ce que la nappe est séchée pendant 1 à 24 h une température comprise entre 70 et 120°C puis liée par chauffage à une température de 5 à 50°C supérieure au point de fusion ou de ramollis­sement du polymère fluoré pendant une durée pouvant aller de 2 à 60 mn.
15. Electrode formée par l'association du matériau selon l'une quelconque des revendications 1 à 9 et d'une cathode élémentaire constituée d'un grillage ou d'un métal perforé.
16. Electrode selon la revendication 16 dans laquelle l'associa­tion est réalisée par filtration de la suspension contenant les fibres et le polymère fluoré directement au travers de ladite cathode élémen­taire suivie de la fusion du liant.
17. Application des matériaux selon l'une quelconque des revendi­cations 1 à 9, 15 ou 16 à l'électrolyse.
EP89100455A 1983-06-22 1984-06-20 Matériau à base de fibres conductrices, sa fabrication et son utilisation notamment pour la réalisation d'éléments cathodiques Expired - Lifetime EP0319517B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP89100455A EP0319517B1 (fr) 1983-06-22 1984-06-20 Matériau à base de fibres conductrices, sa fabrication et son utilisation notamment pour la réalisation d'éléments cathodiques
AT89100455T ATE100502T1 (de) 1983-06-22 1989-01-12 Werkstoff auf basis von stromleitfaehigen fasern, seine herstellung und seine anwendung, insbesondere zur herstellung von katodischen elementen.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR8310291 1983-06-22
FR8310291 1983-06-22
EP89100455A EP0319517B1 (fr) 1983-06-22 1984-06-20 Matériau à base de fibres conductrices, sa fabrication et son utilisation notamment pour la réalisation d'éléments cathodiques

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP84401271.6 Division 1984-06-20

Publications (3)

Publication Number Publication Date
EP0319517A2 true EP0319517A2 (fr) 1989-06-07
EP0319517A3 EP0319517A3 (en) 1989-06-21
EP0319517B1 EP0319517B1 (fr) 1994-01-19

Family

ID=26119720

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89100455A Expired - Lifetime EP0319517B1 (fr) 1983-06-22 1984-06-20 Matériau à base de fibres conductrices, sa fabrication et son utilisation notamment pour la réalisation d'éléments cathodiques

Country Status (2)

Country Link
EP (1) EP0319517B1 (fr)
AT (1) ATE100502T1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995021950A1 (fr) * 1994-02-15 1995-08-17 Rhone-Poulenc Chimie Materiau electroactive, sa preparation et son utilisation pour l'obtention d'elements cathodiques
WO2005047012A1 (fr) 2003-11-07 2005-05-26 De La Rue International Limited Dispositif de securite
CN109437455A (zh) * 2018-12-25 2019-03-08 杭州蓝然环境技术股份有限公司 二沉池出水中水回用的处理设备和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2304184A1 (fr) * 1975-03-11 1976-10-08 Stamicarbon Electrode poreuse
EP0002787A1 (fr) * 1977-12-19 1979-07-11 Diamond Shamrock Technologies S.A. Electrode composite d'halogène; pile métal-halogène rechargeable contenant cette électrode et méthode d'emploi de cette électrode
US4339322A (en) * 1980-04-21 1982-07-13 General Electric Company Carbon fiber reinforced fluorocarbon-graphite bipolar current collector-separator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2304184A1 (fr) * 1975-03-11 1976-10-08 Stamicarbon Electrode poreuse
EP0002787A1 (fr) * 1977-12-19 1979-07-11 Diamond Shamrock Technologies S.A. Electrode composite d'halogène; pile métal-halogène rechargeable contenant cette électrode et méthode d'emploi de cette électrode
US4339322A (en) * 1980-04-21 1982-07-13 General Electric Company Carbon fiber reinforced fluorocarbon-graphite bipolar current collector-separator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995021950A1 (fr) * 1994-02-15 1995-08-17 Rhone-Poulenc Chimie Materiau electroactive, sa preparation et son utilisation pour l'obtention d'elements cathodiques
FR2716207A1 (fr) * 1994-02-15 1995-08-18 Rhone Poulenc Chimie Matériau électroactive, sa préparation et son utilisation pour l'obtention d'éléments cathodiques.
US6200457B1 (en) * 1994-02-15 2001-03-13 Rhone-Poulenc Chimie Electroactivated material, its preparation and its use in producing cathode components
WO2005047012A1 (fr) 2003-11-07 2005-05-26 De La Rue International Limited Dispositif de securite
US7483188B2 (en) 2003-11-07 2009-01-27 De La Rue International Limited Security device
CN109437455A (zh) * 2018-12-25 2019-03-08 杭州蓝然环境技术股份有限公司 二沉池出水中水回用的处理设备和方法
CN109437455B (zh) * 2018-12-25 2024-05-31 杭州蓝然技术股份有限公司 二沉池出水中水回用的处理设备和方法

Also Published As

Publication number Publication date
EP0319517B1 (fr) 1994-01-19
ATE100502T1 (de) 1994-02-15
EP0319517A3 (en) 1989-06-21

Similar Documents

Publication Publication Date Title
EP0132425A1 (fr) Matériau à base de fibres conductrices, sa fabrication et son utilisation notamment pour la réalisation d'éléments cathodiques
EP0412917B1 (fr) Diaphragme, association d'un tel diaphragme à un élément cathodique et leur procédé d'obtention
EP0296076B1 (fr) Préparation d'un matériau électroactivé à base de fibres conductrices et son utilisation pour réaliser des éléments cathodiques
FR2475581A1 (fr) Electrolyte a base de polymere solide et son procede d'obtention
CA2126653A1 (fr) Element cathodique depourvu de fibres d'amiante
FR2498197A1 (fr) Membrane echangeuse d'ions, cellule electrochimique et procede d'electrolyse mettant en oeuvre cette membrane
EP0745150B1 (fr) Materiau electroactive, sa preparation et son utilisation pour l'obtention d'elements cathodiques
WO1997024474A1 (fr) Element cathodique exempt d'amiante utilisable pour l'electrolyse de solution de chlorure de sodium
LU84147A1 (fr) Diaphragme,son procede de preparation et le procede d'electrolyse le mettant en oeuvre
EP0319517B1 (fr) Matériau à base de fibres conductrices, sa fabrication et son utilisation notamment pour la réalisation d'éléments cathodiques
FR2498208A1 (fr) Procede d'electrolyse et cellule electrochimique
EP0222671B1 (fr) Matériau microporeux, procédé pour son obtention, et applications notamment à la réalisation d'éléments cathodiques
FR2519030A1 (fr) Procede de production de produit caustique, ensemble unitaire membrane-electrode et structure d'electrodes multicouches
CA1095457A (fr) Diaphragmes permeables pour cellules d'electrolyse de solutions aqueuses d'halogenures de metaux alcalins
EP0412916B1 (fr) Diaphragme comprenant des fibres d'amiante, association d'un tel diaphragme à un élément cathodique et procédé d'obtention
EP0037140B1 (fr) Procédé d'électrolyse de solutions aqueuses d'halogénure de métal alcalin, dans lequel on met en oeuvre un diaphragme perméable en matière polymérique organique hydrophobe
EP0007674B1 (fr) Procédé d'électrolyse d'une solution aqueuse de chlorure de métal alcalin dans une cellule à diaphragme
EP0642602A1 (fr) Procede de preparation de diaphragme microporeux
JP3009912B2 (ja) アルカリ金属塩化物電解用陽イオン交換膜
FR2590276A1 (fr) Diaphragme synthetique et ses procedes de fabrication et d'utilisation
BE872632A (fr) Electrocatalyseur et electrode a base d'oxydes de metaux du groupe du platine, reduits et thermiquement stabilises.
FR2921073A1 (fr) Association d'un element cathodique et d'un diaphragme
EP0018034A1 (fr) Procédé de fabrication d'un diaphragme perméable pour cellule d'électrolyse
JPS6263695A (ja) 電解槽用隔膜、その製造方法および使用方法
FR2465797A1 (fr) Diaphragme poreux pour cellule d'electrolyse de solutions de chlorures alcalins

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 19890112

AC Divisional application: reference to earlier application

Ref document number: 132425

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19910722

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ELF ATOCHEM S.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 132425

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 100502

Country of ref document: AT

Date of ref document: 19940215

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940131

REF Corresponds to:

Ref document number: 3486268

Country of ref document: DE

Date of ref document: 19940303

ITF It: translation for a ep patent filed
EPTA Lu: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89100455.8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030604

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030610

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030611

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030618

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030630

Year of fee payment: 20

Ref country code: LU

Payment date: 20030630

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030702

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030707

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030902

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040619

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040619

Ref country code: CH

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040620

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040620

Ref country code: AT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040620

BE20 Be: patent expired

Owner name: S.A. *ELF ATOCHEM

Effective date: 20040620

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20040620

EUG Se: european patent has lapsed