WO1997024474A1 - Element cathodique exempt d'amiante utilisable pour l'electrolyse de solution de chlorure de sodium - Google Patents

Element cathodique exempt d'amiante utilisable pour l'electrolyse de solution de chlorure de sodium Download PDF

Info

Publication number
WO1997024474A1
WO1997024474A1 PCT/FR1996/002091 FR9602091W WO9724474A1 WO 1997024474 A1 WO1997024474 A1 WO 1997024474A1 FR 9602091 W FR9602091 W FR 9602091W WO 9724474 A1 WO9724474 A1 WO 9724474A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
element according
agent
aqueous suspension
weight
Prior art date
Application number
PCT/FR1996/002091
Other languages
English (en)
Inventor
Gérard BACQUET
Frédéric Kuntzburger
Original Assignee
Chloralp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU13810/97A priority Critical patent/AU1381097A/en
Priority to JP9524075A priority patent/JP2000502753A/ja
Priority to EA199800613A priority patent/EA000808B1/ru
Priority to EP96944091A priority patent/EP0870077B1/fr
Priority to UA98063370A priority patent/UA47449C2/uk
Priority to US09/101,010 priority patent/US6099704A/en
Priority to BR9612313-3A priority patent/BR9612313A/pt
Priority to DE69603092T priority patent/DE69603092T2/de
Application filed by Chloralp filed Critical Chloralp
Priority to CA002241230A priority patent/CA2241230C/fr
Priority to MXPA98005187A priority patent/MXPA98005187A/es
Priority to PL96327570A priority patent/PL327570A1/xx
Publication of WO1997024474A1 publication Critical patent/WO1997024474A1/fr
Priority to BG102564A priority patent/BG62785B1/bg
Priority to NO983011A priority patent/NO983011L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds

Definitions

  • the present invention relates to a cathode element devoid of asbestos fibers, its preparation process and its use for obtaining an alkali metal hydroxide solution.
  • the materials used for the preparation of the cathode element of an electrolysis cell must meet several precise characteristics. Thus, they must have a low electrical resistivity, compatible with the operation, at an acceptable energy level, of the electrolyser equipped with such a cathode element. They must also also make it possible to obtain a thin element while giving the said element a large specific surface area which can exceed several square meters.
  • Such cathode elements are generally obtained by depositing, by filtration through a porous support, a dispersion of the materials used.
  • One of the difficulties of this type of process is to be able to control the quantity of product actually retained on the surface of the porous support, the latter having a large opening rate or hole diameters relative to the size of the materials used.
  • the sheet must have controlled and reproducible characteristics of porosity, homogeneity, in terms of thickness of the sheet and distribution of these constituents, under penalty of obtaining unusable or poorly performing cathode elements.
  • cathode element consisted in depositing a suspension comprising carbon fibers, asbestos fibers, a fluoropolymer binding fibers, an electrocatalytic agent and a pore-forming agent.
  • the present invention aims to provide a fibrous web composition free of asbestos, organic and mineral fibers such as those which have just been mentioned.
  • the invention relates to a cathode element devoid of asbestos fibers capable of being obtained by depositing, by filtration through a porous support, an aqueous suspension comprising electrically conductive fibers, at least one cationic polymer, at least one electrocatalytic agent, at least one pore-forming agent and at least one binder chosen from fluorinated polymers.
  • the invention likewise relates to a process for the preparation of such a cathode element, consisting in implementing the following steps:
  • an aqueous suspension comprising fibers conducting electricity, at least one cationic polymer, at least one electrocatalytic agent, at least one binder chosen from fluorinated polymers, at least one pore-forming agent;
  • said suspension is deposited by filtration under programmed vacuum on a porous support;
  • the resulting assembly is sintered at a temperature greater than or equal to the melting or softening temperature of the binder
  • the blowing agent is eliminated by a treatment carried out before the use of the cathode element or during its use.
  • cathode elements can be obtained with a level of performance comparable to that of the elements previously described and known to those skilled in the art, by avoiding the obligation to use asbestos fibers, organic fibers based on fluorinated polymer and mineral fibers based on titanate in particular. This was not to be expected since, in the past, the tendency has always been to keep compounds of a fibrous nature, in addition to conductive fibers. It has also been found that, contrary to what is accepted in the field, it is possible to obtain stable sheets after heat treatment without using the fillers or mineral fibers considered essential before.
  • the present invention makes it possible to obtain a suspension which it is possible to filter vertically, that is to say under industrial conditions. This characteristic was also not obvious since the formulation of the suspension according to the invention is devoid of a thickening agent of the xanthan gum type, previously considered essential for obtaining this result.
  • the cathode element according to the invention can be obtained by depositing, by filtration through a porous support, a dispersion comprising electrically conductive fibers, at least one cationic polymer, at least one electrocatalytic agent, at least one pore-forming agent, at least one binder.
  • this dispersion is aqueous.
  • the electrically conductive fibers can be intrinsically conductive fibers or else treated so as to make them such.
  • intrinsically conductive fibers are used, such as in particular carbon or graphite fibers. More particularly, these fibers are in the form of filaments whose diameter is generally less than 1 mm and more particularly between 10 " 3 and 0.1 mm and whose length is greater than 0.5 mm and more especially between 1 and 20 mm.
  • the conductive fibers preferably have a monodispersed length distribution, that is to say a distribution such that the length of at least 80% and advantageously at least 90%, of the fibers, corresponds to the length average to within ⁇ 10%.
  • binder this is chosen from fluorinated polymers.
  • Fluorinated polymers means homopolymers or copolymers derived at least in part from olefinic monomers substituted by fluorine atoms, or substituted by a combination of fluorine atoms and at least one of chlorine atoms, bromine or iodine, per monomer.
  • Examples of homopolymers or fluorinated copolymers can be constituted by polymers and copolymers derived from tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, bromotrifluoroethylene.
  • Such polymers can also comprise up to 75 mol% of units derived from other ethylenically unsaturated monomers containing at least as many fluorine atoms as carbon atoms, such as for example vinylidene (di) fluoride, esters vinyl and perfluoroalkyl, such as perfluoroalkoxyethylen ⁇ .
  • This fluoropolymer, or binder is more particularly in the form of an aqueous dispersion containing 30 to 80% by weight of dry polymer, the particle size of which is between 0.1 and 5 ⁇ m and preferably between 0.1 and 1 ⁇ m.
  • the fluoropolymer is polytetrafluoroethylene.
  • a Raney metal is used, such as preferably nickel, or else a precursor of this Raney metal, consisting in fact of an alloy based on said metal associated with another than one can easily eliminate. More particularly, it is an alloy comprising aluminum which can be leached for example by a basic treatment.
  • This type of electrocatalytic agent has in particular been described in European patent EP 296 076 to which reference may be made on this subject.
  • particles comprising an oxide of ruthenium, platinum, iridium, palladium, or a mixture of these oxides.
  • mixture particles comprising in themselves a mixture of oxides, but also particles, based on a metal oxide, mixed with other particles comprising a different oxide.
  • Said agent can also be in the form of particles consisting of an electrically conductive support, comprising a coating in the form of ruthenium oxide, platinum, iridium, palladium; these oxides being alone or in admixture in the sense which has just been explained.
  • the electrocatalytic agent according to the invention is in the form of a coating of a support such as in particular iron, cobalt, nickel, Raney iron, Raney cobalt, Raney nickel, the elements of columns IVA and VA of the periodic table, carbon, graphite.
  • a support such as in particular iron, cobalt, nickel, Raney iron, Raney cobalt, Raney nickel, the elements of columns IVA and VA of the periodic table, carbon, graphite.
  • the aqueous dispersion also comprises at least one pore-forming agent.
  • derivatives based on silica are used. These compounds are particularly advantageous because they practically do not dissolve the microporous electroconductive material and form networks with the fiber-binding polymer, when the latter is used in the form of a latex. Furthermore, these compounds are eliminated by leaching with a base such as sodium hydroxide for example.
  • sica derivatives is meant according to the invention precipitated silicas and combustion or pyrogenic silicas. They more particularly have a BET specific surface area between 100 m a / g and 300 m a / g and / or a particle size evaluated with the COULTER® counter between 1 and 50 ⁇ m and, preferably, between 1 and 15 ⁇ m.
  • one of the essential constituents of the dispersion used according to the invention consists of a cationic polymer.
  • cationic polymers two categories of polymers can be mentioned, organic polymers and inorganic polymers, which can be used alone or as a mixture.
  • the synthetic polymers chosen from epychlorohydrin, polyimines, polyacrylamides and polyacrytamines are polymers capable of entering into the composition of the suspension used in the invention .
  • Polymers of natural origin such as, in particular, cationic starches and cationic guars are compounds which are suitable for the invention.
  • the suspension according to the invention comprises at least one polymer of the type of poiyacrylamines, sold especially under the name ® FLOERGER by Floerger society, cationic starches such as cationic starches soluble in hot (starches cationic HI-CAT ®, marketed by Roquette) and cationic starches soluble in cold, ytpe cationic guar marketed under the brand Meypro ® by Meyhall; these polymers can be present alone or as a mixture.
  • cationic starches such as cationic starches soluble in hot (starches cationic HI-CAT ®, marketed by Roquette) and cationic starches soluble in cold, ytpe cationic guar marketed under the brand Meypro ® by Meyhall; these polymers can be present alone or as a mixture.
  • a nanoparticulate system when used, it is associated with at least one cationic polymer.
  • a cationic polymer chosen from epychlorohydrin, polyimines, polyacrylamides or even cationic starches is used more particularly.
  • the suspension used in the process according to the invention can also comprise additional compounds.
  • the suspension comprises, where appropriate, a fibrous material. More particularly, the fibrous material is chosen from cellulose-based fibers, cellulose-based fibers to which a positive ionic charge has been given, glass fibers or also calcium silicate fibers.
  • positively charged cellulose fibers include the BECOFLOC ® fiber, as fiber calcium silicate, Promaxon ® fibers.
  • additives can enter into the composition of the suspension according to the invention.
  • the suspension comprises, in addition to the above-mentioned constituent elements, at least one surfactant.
  • surfactant more particularly nonionic compounds are used, such as ethoxylated alcohols or fluorocarbon compounds with functionalized groups, generally having carbon chains comprising 6 to 20 carbon atoms.
  • ethoxylated alcohols chosen from ethoxylated alkylphenols, such as in particular octoxynols, are used.
  • the suspension according to the invention is therefore deposited on a porous support. This porous support is generally conductive of electricity.
  • the porous support is more particularly constituted by fabrics or grids whose void, the perforations or the porosity can be between 20 ⁇ m and 5 mm.
  • the porous support may have one or more flat or cylindrical surfaces, commonly called "thimble", having an open surface.
  • the porous conductive support consists in particular of iron, nickel, or else of any material treated so as to make it even less sensitive to the corrosivity of the medium, such as for example iron on which a nickel deposit would have been produced.
  • the fibrous sheet deposited on the porous support conducting electricity is associated with a microporous diaphragm.
  • a first embodiment consists in depositing the diaphragm on the fibrous sheet.
  • This type of process is known to those skilled in the art and has in particular been the subject of the following patents:
  • the diaphragm is not deposited on the fibrous sheet but is arranged separately so to separate the anode and cathode compartments.
  • the cathode comprising the fibrous sheet deposited on a support conducting electricity, is associated with a membrane.
  • membranes suitable for the process according to the invention mention may be made of perfluorosulfonic membranes, of the Nafion type (sold by the company DU PONT), or alternatively perfluorinated membranes comprising functional carboxylic groups (series 890 or Fx- 50, sold by the company ASAHI GLASS). It is also possible to use bilayer membranes, comprising on one side sulfonic groups and on the other carboxylic groups.
  • an aqueous suspension comprising fibers conducting electricity, at least one cationic polymer, at least one electrocatalytic agent, at least one binder chosen from fluorinated polymers, at least one pore-forming agent;
  • said suspension is deposited by filtration under programmed vacuum on a porous support;
  • the resulting assembly is sintered at a temperature greater than or equal to the melting or softening temperature of the binder
  • the blowing agent is eliminated by a treatment carried out before or during the use of the cathode.
  • aqueous suspension is prepared based on the elements which have just been described.
  • the content of conductive fibers is determined so that the overall resistivity of the final fibrous web is less than or equal to 0.4 ⁇ .cm.
  • the suspension more particularly comprises 20 to 100 parts by weight of conductive fibers.
  • the content of conductive fibers is between 50 and 90 parts by weight.
  • binder its content is between 10 to 60 parts by dry weight.
  • the amount of catalytic agent can vary within wide limits.
  • the content of this compound in the aqueous suspension is between 20 and 200 parts by weight. More particularly, the content is between 60 and 120 parts by weight.
  • the amount of blowing agent used in the composition of the dispersion also varies over a wide range.
  • this content is generally between 30 and 200 parts. More particularly, the amount of blowing agent used in the composition of the suspension is between 30 and 100 parts by weight.
  • the amount of this type of compound is more particularly between 10 and 200 parts by weight .
  • the amount of blowing agents corresponding to a mixture of chemically and thermally eliminable agents is more particularly between 30 and 200 parts by weight.
  • the aqueous suspension according to the invention also comprises at least one cationic polymer.
  • the content of this polymer in the suspension is such that the measurement of the turbidity of the supernatant liquid after settling of the suspension is greater than or equal to 50, and preferably greater than or equal to 75. It should be noted that the same measurement carried out with pure water gives a value of 100.
  • the turbidity measurement is carried out by transmission at 630 nm on a turbidimeter of the Methrom 662 Photometer® type.
  • the content of cationic polymer depends on the viscosity imparted to the suspension. This preferably should be such that it does not cause undue difficulty for the filtration of the suspension.
  • the content varies between 10 and 80 parts by dry weight.
  • the content of cationic polymer varies between 20 and 40 parts by dry weight.
  • the content of fibrous material, other than cellulose fibers, charged or not positively charged, is governed by the same conditions as the aforementioned conductive fibers. Thus, their content is such that the overall resistivity of the final fibrous web is less than or equal to 0.4 ⁇ .cm.
  • the suspension comprises cellulose-based fibers, charged or not positively charged, as fibrous material
  • their content is at most 60 parts by dry weight.
  • the content of cellulose fibers is between 10 and 40 parts by weight.
  • the amount of surfactant used in the composition of the suspension generally varies from 0.5 to 5 parts by weight, although amounts outside this range are quite conceivable.
  • the aqueous suspension thus prepared is left to stand for at least one hour.
  • the suspension obtained above is deposited on a porous support, which, preferably, is electrically conductive.
  • the sheet is deposited on the porous support by programmed vacuum filtration. This is carried out in a manner known per se and can be carried out continuously or in stages, at a final depression of 1.5 ⁇ 10 3 to 5.10 4 Pa.
  • the filtration of the suspension obtained can be carried out vertically, which represents a particularly advantageous advantage for exploitation on an industrial scale.
  • deposition of the suspension by horizontal filtration is entirely possible.
  • the tablecloth is deposited, it is wrung out by maintaining the vacuum for a few moments and then optionally air-dried at a temperature between room temperature and 150 ° C.
  • the sheet is then sintered by heating to a temperature greater than or equal to the melting point of the fluoropolymer.
  • a temperature greater than or equal to the melting point of the fluoropolymer is generally thermally degraded. This is particularly the case when the blowing agent is constituted at least in part by the nanoparticulate system mentioned previously.
  • blowing agent is constituted at least in part by agents such as silica derivatives
  • a step of removing the blowing agent is then carried out, in particular by means of an aqueous solution of alkali metal hydroxide.
  • this pore-forming agent can be done not only "in situ", that is to say during the first moments of the use of the cathode, but also before use. 10 of the electrically conductive microporous material. This latter possibility has the advantage of minimizing pollution of the electrolytic medium.
  • the cathode used in the method according to the invention comprises an associated diaphragm
  • steps [a] to [d] are carried out as indicated above.
  • the fibrous web of the diaphragm is deposited according to the methods known in the field.
  • the deposition of the suspension comprising the constituent elements of the fibrous sheet of the diaphragm as described in particular in patents EP 412 917 and EP 642 602 can be carried out either on the sintered fibrous sheet or not, on which whether or not treatment has been carried out to eliminate the blowing agent. Once the deposit has been made, the whole is then wrung and possibly dried.
  • a sintering step is carried out at a temperature greater than or equal to the melting or softening temperature of the binder present in the fibrous sheet of the diaphragm, before eliminating the pore-forming agent by a treatment carried out before the use of the cathode. or when using it.
  • a suspension is prepared from the following elements: - permuted water, the amount of which is calculated to obtain approximately 4 liters of suspension and a dry extract of approximately 3% by weight,
  • HI CAT® 165 cationic starch Rocket
  • precipitated silica in the form of particles with an average particle size of 3 mm and whose BET surface area is 250 m 2 .g "1 ,
  • Triton X 100 ® from the company Rohm and Haas
  • - 121 g of Raney nickel in the form of a 10 mm powder Ni 20 sold by the company Procatalyse.
  • Starch is introduced into 4 liters of deionized water, followed by cellulose fibers.
  • the suspension obtained is filtered, after having stirred it, under vacuum, on a braided iron mesh and rolled steel type "Gantois" whose opening is 2 mm and whose wire diameter is 1 mm, the deposition area being 1.21 dm.
  • the depression is therefore established and increases by 50.10 2 Pa per minute to reach a depression indicated in the table below. This maximum depression is maintained for approximately 15 minutes.
  • the whole is then dried, then consolidated by melting the fluoropolymer at 350 ° C.
  • the silica is eliminated "in situ" in the electrolyser by dissolution in an alkaline medium, especially during the first hours of electrolysis.
  • Test 1 was carried out one hour after the preparation of the aqueous suspension.
  • Tests 2 and 3 were carried out, respectively 5 and 4 days after the preparation of the suspension.
  • Tests 1 and 2 show that the storage of the suspension has little influence on the filtration conditions thereof and rather goes in the direction of improving the final vacuum for the same deposited weight. The feasibility of the operation is increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Paper (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

La présente invention a pour objet un élément cathodique dépourvu de fibres d'amiante susceptible d'être obtenu par un dépôt par filtration à travers un support poreux, d'une suspension aqueuse comprenant des fibres conductrices de l'électricité, au moins un polymère cationique, au moins un agent électrocatalytique, au moins un agent porogène et au moins un liant choisi parmi les polymères fluorés. La présente invention a de même pour objet un procédé de préparation d'un tel élément cathodique.

Description

ELEMENT CATHODIQUE EXEMPT D'AMIANTE UTILISABLE POUR L'ELECTROLYSE DE SOLUTION DE CHLORURE DE SODIUM
La présente invention a pour objet un élément cathodique dépourvu de fibres d'amiante, son procédé de préparation et son utilisation pour l'obtention de solution d'hydroxyde de métal alcalin.
Les matériaux utilisés pour la préparation de l'élément cathodique d'une cellule d'électrolyse doivent répondre à plusieurs caractéristiques précises. Ainsi, ils doivent présenter une resistivité électrique faible, compatible avec le fonctionnement, à un niveau énergétique acceptable, de l'électrolyseur équipé d'un tel élément cathodique. Ils doivent par ailleurs également permettre d'obtenir un élément de faible épaisseur tout en conférant au dit élément une surface spécifique importante pouvant dépasser plusieurs mètres carrés. De tels éléments cathodiques sont en général obtenus en déposant, par filtration à travers un support poreux, une dispersion des matériaux utilisés. L'une des difficultés de ce type de procédé est de pouvoir contrôler la quantité de produit effectivement retenu à la surface du support poreux, ce dernier présentant un taux d'ouverture ou des diamètres de trous importants par rapport à la taille des matériaux utilisés. En outre, la nappe doit présenter des caractéristiques contrôlées et reproductibles de porosité, d'homogénéité, en terme d'épaisseur de la nappe et de répartition de ces constituants, sous peine d'obtenir des éléments cathodiques inutilisables ou peu performants.
L'une des premières générations d'élément cathodique consistait à déposer une suspension comprenant des fibres de carbone, des fibres d'amiante, un polymère fluoré liant les fibres, un agent électrocatalytique et un agent porogène.
L'intérêt de ce type d'élément cathodique se voit maintenant limité du fait des nouvelles réglementations prévues concernant les fibres d'amiante. En effet, la toxicité de ces fibres est maintenant reconnue et l'on tend à ne plus autoriser l'emploi d'un tel matériau. Par ailleurs, on a constaté que la stabilité à long terme des fibres d'amiante dans le milieu électroiytique comprenant une base concentrée et un sel, était à améliorer de manière à limiter le remplacement, jugé trop fréquent, des éléments cathodiques.
Dans un premier temps, il a été proposé de supprimer purement et simplement les fibres d'amiante de la suspension fibreuse. Cependant, la nappe résultante s'est avérée inutilisable en electrolyse à l'échelle industrielle car il n'était pas possible de contrôler efficacement l'épaisseur, et la porosité de ladite nappe. En outre, sa cohésion avec la cathode n'était pas non plus suffisante. Au vu de tels résultats, une proposition a consisté à substituer les fibres d'amiante par des fibres organiques du type des polymères fluorés. Mais les performances de l'élément cathodique n'ont pas non plus été satisfaisantes. En effet, la porosité et l'épaisseur ne pouvaient toujours pas être contrôlées, essentiellement après l'étape de consolidation de ladite nappe (ou frittage).
Etant donné ces faits, un nouveau type d'élément cathodique exempt d'amiante a été proposé dans lequel ces fibres ont été remplacées par un mélange de fibres organiques, du type des polymères fluorés, et de fibres minérales, comme notamment les fibres de titanate. Tout comme la génération précédente d'élément cathodique à base de fibres d'amiante, cette nouvelle composition de la nappe fibreuse permet d'obtenir des propriétés très satisfaisantes en electrolyse de solutions de chlorure de sodium.
Cependant, l'inconvénient de cette dernière composition de nappe est son coût élevé, dû principalement aux fibres organiques et minérales qui représentent une part non négligeable de la composition.
La présente invention a pour but de proposer une composition de nappe fibreuse exempte d'amiante, de fibres organiques et minérales telles que celles qui viennent d'être mentionnées.
Ainsi, l'invention a trait à un élément cathodique dépourvu de fibres d'amiante susceptible d'être obtenu par un dépôt par filtration à travers un support poreux, d'une suspension aqueuse comprenant des fibres conductrices de l'électricité, au moins un polymère cationique, au moins un agent électrocatalytique, au moins un agent porogène et au moins un liant choisi parmi les polymères fluorés.
L'invention concerne de même un procédé de préparation d'un tel élément cathodique, consistant à mettre en oeuvre les étapes suivantes :
[a] on prépare une suspension aqueuse comprenant des fibres conductrices de l'électricité, au moins un polymère cationique, au moins un agent électrocatalytique, au moins un liant choisi parmi les polymères fluorés, au moins un agent porogène ;
[b] on dépose par filtration sous vide programmé ladite suspension sur un support poreux ;
[c] on essore et on sèche éventuellement la nappe ainsi obtenue ;
[d] on fritte l'ensemble résultant à une température supérieure ou égale à la température de fusion ou de ramollissement du liant ;
[e] on élimine si nécessaire l'agent porogène par un traitement effectué avant l'utilisation de l'élément cathodique ou lors de son utilisation.
Il a été trouvé de façon totalement inattendue que l'on pouvait obtenir des éléments cathodiques d'un niveau de performance comparable à celui des éléments précédemment décrits et connus de l'homme du métier, en s'affranchissant de l'obligation d'employer des fibres d'amiante, des fibres organiques à base de polymère fluoré et des fibres minérales à base de titanate notamment. Ceci n'était pas prévisible du fait qu'auparavant, la tendance a toujours été de conserver des composés de nature fibreuse, en plus des fibres conductrices. On a de même constaté que contrairement à ce qui est admis dans le domaine, il est possible d'obtenir des nappes stables après traitement thermique sans que l'on utilise les charges ou fibres minérales considérées comme essentielles auparavant.
En outre, la présente invention permet d'obtenir une suspension qu'il est possible de filtrer verticalement, c'est-à-dire dans les conditions industrielles. Cette caractéristique n'était pas non plus évidente car la formulation de la suspension selon l'invention est dépourvue d'agent épaississant du type de la gomme xanthane, considérée auparavant comme essentielle pour l'obtention de ce résultat.
Mais d'autres avantages et caractéristiques apparaîtront plus clairement à la lecture de la description et des exemples qui vont suivre. Ainsi que cela a été mentionné auparavant, l'élément cathodique selon l'invention est susceptible d'être obtenu par dépôt par filtration à travers un support poreux d'une dispersion comprenant des fibres conductrices de l'électricité, au moins un polymère cationique, au moins un agent électrocatalytique, au moins un agent porogène, au moins un liant. Généralement et d'une façon avantageuse, cette dispersion est aqueuse.
Les fibres conductrices de l'électricité peuvent être des fibres intrinsèquement conductrices ou bien traitées de façon à les rendre telles.
Selon un mode de réalisation particulier de l'invention, on emploie des fibres intrinsèquement conductrices, comme notamment les fibres de carbone ou de graphite. Plus particulièrement, ces fibres se présentent sous une forme de filaments dont le diamètre est généralement inférieur à 1 mm et plus particulièrement compris entre 10"3 et 0,1 mm et dont la longueur est supérieure à 0,5 mm et plus spécialement comprise entre 1 et 20 mm.
Par ailleurs, les fibres conductrices présentent de préférence une distribution de longueur monodispersee, c'est-à-dire une distribution telle que la longueur d'au moins 80 % et avantageusement d'au moins 90 %, des fibres, correspond à la longueur moyenne à ± 10 % près.
En ce qui concerne le liant, celui-ci est choisi parmi les polymères fluorés.
Par "polymères fluorés", on entend les homopolymères ou des copolymères dérivés au moins en partie de monomères olefiniques substitués par des atomes de fluor, ou substitués par une combinaison d'atomes de fluor et de l'un au moins des atomes de chlore, de brome ou d'iode, par monomère. Des exemples d'homopolymères ou de copolymères fluorés peuvent être constitués par les polymères et copolymères dérivés de tétrafluoroéthylène, hexafluoropropylène, chlorotrifluoroéthylène, bromotrifluoroéthylène.
De tels polymères peuvent également comprendre jusqu'à 75 % molaire de motifs dérivés d'autres monomères éthyléniquement insaturés contenant au moins autant d'atomes de fluor que d'atomes de carbone, comme par exemple le (di)fluorure de vinylidène, les esters de vinyle et de perfluoroalkyle, tel que le perfluoroalcoxyéthylènβ.
Ce polymère fluoré, ou liant, se présente plus particulièrement sous la forme d'une dispersion aqueuse renfermant 30 à 80 % en poids de polymère sec, dont la granulométrie est comprise entre 0,1 et 5 μm et de préférence entre 0,1 et 1 μm.
Selon un mode de réalisation particulier de l'invention, le polymère fluoré est le polytétrafluoroéthylène.
On peut employer, en tant qu'agent électrocatalytique tous les types de métaux connus dans le domaine pour activer la réaction d'électrolyse. Cependant selon une première variante particulière de l'invention, on utilise un métal de Raney, comme de préférence le nickel, ou bien encore un précurseur de ce métal de Raney, consistant en fait en un alliage à base dudit métal associé à un autre que l'on peut facilement éliminer. Plus particulièrement, il s'agit d'un alliage comprenant de l'aluminium qui peut être lessivé par exemple par un traitement basique. Ce type d'agent électrocatalytique a notamment été décrit dans le brevet européen EP 296 076 auquel on pourra se référer à ce sujet.
Selon une seconde variante, on peut utiliser comme agent électrocatalytique, des particules comprenant un oxyde de ruthénium, de platine, d'iridium, de palladium, ou un mélange de ces oxydes. Par mélange, on entend des particules comprenant en elles mêmes, un mélange d'oxydes, mais aussi des particules, à base d'un oxyde métallique, mélangées à d'autres particules comprenant un oxyde différent. Bien évidemment, les combinaisons intermédiaires entre ces deux possibilités sont tout à fait envisageables.
Ledit agent peut se présenter en outre sous la forme de particules constituées d'un support conducteur de l'électricité, comprenant un revêtement sous forme d'oxyde de ruthénium, de platine, d'iridium, de palladium ; ces oxydes étant seuls ou en mélange au sens qui vient d'être explicité.
On ne sortirait pas du cadre de la présente invention en combinant ces deux variantes, c'est-à-dire particules à base d'oxyde ou revêtus d'un oxyde. De préférence l'agent électrocatalytique selon l'invention se présente sous la forme d'un revêtement d'un support tel que notamment le fer, le cobalt, le nickel, le fer de Raney, le cobalt de Raney, le nickel de Raney, les éléments des colonnes IVA et VA de la classification périodique, le carbone, le graphite. Ici et pour toute la description qui va suivre, la classification périodique des éléments à laquelle il est fait référence est celle publiée dans le supplément au Bulletin de la Société Chimique de France (no.1 - 1966).
Ce type d'agent électrocatalytique est notamment décrit dans une demande de brevet français FR 94 01702.
Il est à noter que là encore la combinaison des deux types d'agents électrocatalytiques décrits auparavant est possible.
La dispersion aqueuse comprend en outre au moins un agent porogène.
Tous les composés conviennent dans la mesure où ils peuvent être éliminés par un traitement chimique ou thermique par exemple.
Ainsi, selon une première variante de l'invention, on utilise des dérivés à base de silice. Ces composés sont particulièrement intéressants car ils ne déconsolident pratiquement pas le matériau microporeux électroconducteur et forment des réseaux avec le polymère liant les fibres, lorsque celui-ci est employé sous la forme d'un latex. Par ailleurs, ces composés sont éliminés par lixiviation avec une base comme la soude par exemple.
Par "dérivés à base de silice", on entend selon l'invention les silices précipitées et les silices de combustion ou pyrogénées. Elles présentent plus particulièrement une surface spécifique BET comprise entre 100 ma/g et 300 ma/g et/ou une granulométrie évaluée au compteur COULTER® entre 1 et 50 μm et, de préférence, entre 1 et 15 μm.
On peut aussi envisager d'utiliser à la place des agents porogènes précités, ou en mélange avec ceux-ci, des systèmes nanoparticulaires qui sont détruits thermiquement, plus particulièrement lors de l'opération de frittage de l'élément cathodique, comme les nanolatex ou des latex de taille inférieure à 100 μm. Enfin, l'un des constituants essentiels de la dispersion mise en oeuvre selon l'invention est constitué par un polymère cationique.
Parmi les polymère cationiques convenables, on peut mentionner deux catégories de polymères, les polymères organiques et les polymères inorganiques, pouvant être utilisés seuls ou en mélange. A titre d'exemple de polymères de la première catégorie, les polymères de synthèse choisis parmi l'épychlorhydrine, les polyimines, les polyacrylamides, les polyacrytamines sont des polymères susceptibles d'entrer dans la composition de la suspension mise en oeuvre dans l'invention. Les polymères d'origine naturelle comme notamment les amidons cationiques, les guars cationiques sont des composés convenables à l'invention.
Parmi les polymères inorganiques, on peut citer sans intention de se limiter les argiles, les bentonites, le sulfate d'aluminium, le polychlorure d'aluminium. Selon un mode de réalisation préférée, la suspension selon l'invention comprend au moins un polymère du type des poiyacrylamines, commercialisés notamment sous la dénomination FLOERGER® par la société Floerger, du type des amidons cationiques, comme les amidons cationiques solubles à chaud (amidons cationiques HI-CAT®, commercialisés par la société Roquette), ainsi que les amidons cationiques solubles à froid, du ytpe des guars cationiques commercialisés sous la marque MEYPRO® par la société Meyhall ; ces polymères pouvant être présents seuls ou en mélange.
Selon un mode de réalisation particulièrement avantageux de la présente invention, lorsque l'on met en oeuvre un système nanoparticulaire, on l'associe à au moins un polymère cationique. Dans un tel cas, on emploie plus particulièrement un polymère cationique choisi parmi l'épychlorhydrine, les polyimines, les polyacrylamides ou encore les amidons cationiques.
La suspension mise en oeuvre dans le procédé selon l'invention peut comprendre en outre des composés supplémentaires. Ainsi, selon une première variante de l'invention, la suspension comprend, le cas échéant, un matériau fibreux. Plus particulièrement, le matériau fibreux est choisi parmi les fibres à base de cellulose, des fibres à base de cellulose auxquelles on a donné une charge ionique positive, des fibres de verre ou encore des fibres de silicate de calcium.
Comme fibres de cellulose chargées positivement, on peut citer les fibres BECOFLOC®, comme fibres de silicate de calcium, les fibres PROMAXON®.
Il est à noter que des additifs peuvent entrer dans la composition de la suspension selon l'invention.
Ainsi, la suspension comprend, outre les éléments constitutifs précités, au moins un agent tensioactif. A titre de tensioactif, on utilise plus particulièrement des composés non ioniques, comme des alcools éthoxylés ou des composés fluorocarbonés à groupes fonctionnalisés, présentant généralement des chaînes carbonées comprenant 6 à 20 atomes de carbone. De préférence, on utilise des alcools éthoxylés choisis parmi les alkylphénols éthoxylés, tels que notamment les octoxynols. La suspension selon l'invention est donc déposée sur un support poreux. Ce support poreux est en général conducteur de l'électricité. Il est à noter que l'on ne sortirait pas du cadre de la présente invention en déposant la suspension sur un support non conducteur de l'électricité de manière à créer une nappe fibreuse qui serait par la suite associée à un support poreux conducteur de l'électricité. Le support poreux est plus particulièrement constitué par des toiles ou des grilles dont le vide de maille, les perforations ou la porosité peuvent être compris entre 20 μm et 5 mm. Le support poreux peut présenter une ou plusieurs surfaces planes ou cylindriques, appelées communément "doigt de gant", présentant une surface ouverte. Le support poreux conducteur est notamment constitué de fer, de nickel, ou encore de tout matériau traité de manière à le rendre encore moins sensible à la corrosivité du milieu, comme par exemple du fer sur lequel on aurait réalisé un dépôt de nickel. Selon une variante très avantageuse de l'invention, la nappe fibreuse déposée sur le support poreux conduisant l'électricité, est associée à un diaphragme microporeux.
Un premier mode de réalisation consiste à déposer le diaphragme sur la nappe fibreuse. Ce type de procédé est connu de l'homme du métier et a notamment fait l'objet des brevets suivants : Selon un second mode de réalisation de cette variante, le diaphragme n'est pas déposé sur la nappe fibreuse mais est disposé séparément de manière à séparer les compartiments anodique et cathodique.
De tels diaphragmes sont disponibles dans le commerce et sont notamment à base de fibres du type céramique, ou Téflon. Selon une seconde variante de l'invention, la cathode, comprenant la nappe fibreuse déposée sur un support conduisant l'électricité, est associée à une membrane.
On peut citer à titre d'exemples de membranes convenant au procédé selon l'invention, les membranes perfluorosulfoniques, du type Nafion (commercialisées par la société DU PONT), ou encore les membranes perfluorées comprenant des groupements fonctionnels carboxyliques (série 890 ou Fx-50, commercialisées par la société ASAHI GLASS). Il est de plus possible d'utiliser des membranes bicouches, comprenant sur une face des groupements sulfoniques et sur l'autre des groupements carboxyliques.
Le procédé de préparation susceptible d'être mis en oeuvre pour la préparation de l'élément cathodique selon l'invention va maintenant être décrit.
[a] on prépare une suspension aqueuse comprenant des fibres conductrices de l'électricité, au moins un polymère cationique, au moins un agent électrocatalytique, au moins un liant choisi parmi les polymères fluorés, au moins un agent porogène ;
[b] on dépose par filtration sous vide programmé ladite suspension sur un support poreux ;
[c] on essore et on sèche éventuellement la nappe ainsi obtenue ;
[d] on fritte l'ensemble résultant à une température supérieure ou égale à la température de fusion ou de ramollissement du liant,
[e] on élimine si nécessaire l'agent porogène par un traitement effectué avant ou lors de l'utilisation de la cathode.
Ainsi dans une première étape [a] on prépare une suspension aqueuse à base des éléments qui viennent d'être décrits. La teneur en fibres conductrices est déterminée de manière à ce que la resistivité globale de la nappe fibreuse finale soit inférieure ou égale à 0,4 Ω.cm.
La suspension comprend plus particulièrement 20 à 100 parties en poids de fibres conductrices. Selon une variante particulière de l'invention, la teneur en fibres conductrices est comprise entre 50 et 90 parties en poids.
En ce qui concerne le liant, sa teneur est comprise entre 10 à 60 parties en poids sec.
La quantité d'agent catalytique peut varier dans de larges limites.
Plus particulièrement, la teneur en ce composé dans la suspension aqueuse est comprise entre 20 et 200 parties en poids. Plus particulièrement, la teneur est comprise entre 60 et 120 parties en poids.
La quantité d'agent porogène entrant dans la composition de la dispersion varie elle aussi dans un large domaine.
Dans le cas où l'agent porogène est éliminable par un traitement chimique, comme c'est le cas des dérivés à base de silice notamment, cette teneur est en général comprise entre 30 et 200 parties. Plus particulièrement, la quantité d'agent porogène entrant dans la composition de la suspension est comprise entre 30 et 100 parties en poids.
Dans le cas où l'agent porogène est éliminable thermiquement, tel que pour les systèmes nanoparticulaires du type des latex de taille inférieure à 100 μm ou des nanolatex, la quantité en ce type de composé est plus particulièrement comprise entre 10 et 200 parties en poids.
Une combinaison de ces deux dernières possibilités est envisageable. Dans ce dernier cas, la quantité d'agents porogènes correspondant à un mélange d'agents éliminables chimiquement et thermiquement est comprise plus particulièrement entre 30 et 200 parties en poids.
La suspension aqueuse selon l'invention comprend en outre au moins un polymère cationique. La teneur en ce polymère dans la suspension est telle que la mesure de la turbidité du liquide surnageant après décantation de la suspension est supérieure ou égale à 50, et de préférence supérieure ou égale à 75. Il est à noter que la même mesure effectuée avec de l'eau pure donne une valeur de 100. La mesure de la turbidité est effectuée par transmission à 630 nm sur un turbidimètre de type Methrom 662 Photometer®.
Par ailleurs, un autre critère concernant le choix de la teneur en polymère cationique dépend de la viscosité conférée à la suspension. Celle-ci de préférence doit être telle qu'elle ne cause pas de difficulté excessive pour la filtration de la suspension. Dans le cas plus particulier de l'amidon cationique, la teneur varie entre 10 et 80 parties en poids sec. De préférence; la teneur en polymère cationique varie entre 20 et 40 parties en poids sec.
La teneur en matériau fibreux, autre que les fibres de cellulose, chargées ou non positivement, est régie par les mêmes conditions que les fibres conductrices précitées. Ainsi, leur teneur est telle que la resistivité globale de la nappe fibreuse finale soit inférieure ou égale à 0,4 Ω.cm.
Dans le cas particulier où la suspension comprend des fibres à base de cellulose, chargées ou non positivement, en tant que matériau fibreux, leur teneur est d'au plus 60 parties en poids sec. Selon une variante particulière, la teneur en fibres de cellulose est comprise entre 10 et 40 parties en poids.
La quantité de tensioactif entrant dans la composition de la suspension varie en général de 0,5 à 5 parties en poids, bien que des quantités hors de ce domaine soient tout à fait envisageables. Généralement, on laisse reposer pendant au moins une heure la suspension aqueuse ainsi préparée.
Dans une étape suivante [b], on dépose la suspension obtenue précédemment sur un support poreux, qui, de préférence, est conducteur de l'électricité.
La nappe est déposée sur le support poreux par filtration sous vide programmé. Celui-ci est réalisé de manière connue en soi et peut être effectué en continu ou par palier, à une dépression finale de 1 ,5 .103 à 5.104 Pa.
D'une manière tout à fait avantageuse, la filtration de la suspension obtenue peut être effectuée verticalement, ce qui représente un avantage particulièrement intéressant pour une exploitation à l'échelle industrielle. Bien évidemment, un dépôt de la suspension par filtration horizontale est tout à fait envisageable.
Une fois la nappe déposée, celle-ci est essorée par maintien du vide pendant quelques instants puis éventuellement séchée à l'air à une température comprise entre la température ambiante et 150°C.
La nappe est alors frittée par chauffage à une température supérieure ou égale à la température de fusion du polymère fluoré. Durant cette étape de frittage, une partie des constituants du mélange à partir duquel la nappe fibreuse est formée, est en général dégradée thermiquement. Ceci est notamment le cas lorsque l'agent porogène est constitué au moins en partie par le système nanoparticulaire mentionné auparavant.
Lorsque l'agent porogène est constitué au moins en partie par des agents tels que les dérivés de silice, on effectue ensuite une étape d'élimination de l'agent porogène, notamment au moyen d'une solution aqueuse d'hydroxyde de métal alcalin. Il est à noter que l'élimination de cet agent porogène peut se faire non seulement "in situ", c'est-à-dire pendant les premiers instants de l'utilisation de la cathode, mais aussi avant l'utilisation 10 du matériau microporeux électroconducteur. Cette dernière possiblité présente l'avantage de minimiser la pollution du milieu électrolytique.
Dans le cas où la cathode employée dans le procédé selon l'invention comprend un diaphragme associé, au sens où le diaphragme est déposé directement sur la nappe fibreuse, on effectue les étapes [a] â [d] comme indiqué précédemment. Puis, on procède au dépôt de la nappe fibreuse du diaphragme selon les méthodes connues dans le domaine. Ainsi, le dépôt de la suspension comprenant les éléments constitutifs de la nappe fibreuse du diaphragme telle qu'elle est notamment décrite dans les brevets EP 412 917 et EP 642 602, peut être réalisé soit sur la nappe fibreuse frittée ou non, sur laquelle on aura effectué ou non un traitement d'élimination de l'agent porogène ou non. Une fois le dépôt effectué, l'ensemble est ensuite essoré et éventuellement séché. Puis on effectue une étape de frittage à une température supérieure ou égale à la température de fusion ou de ramollissement du liant présent dans la nappe fibreuse du diaphragme, avant d'éliminer l'agent porogène par un traitement effectué avant l'utilisation de la cathode ou lors de l'utilisation de celle-ci.
Des exemples concrets mais non limitatifs vont maintenant être présentés.
EXEMPLES 1
Ces exemples illustrent la préparation d'une nappe fibreuse comprenant le polymère cationique ainsi que des fibres de cellulose.
On prépare une suspension à partir des éléments suivants : - eau permutée, dont la quantité est calculée pour obtenir environ 4 litres de suspension et un extrait sec d'environ 3 % en poids,
- 35 g de polytétrafluoroéthylène sous forme de latex à 60% d'extrait sec,
- 20 g de fibres de cellulose BECOFLOC® (Begerow),
- 20 ou 40 g d'amidon cationique HI CAT® 165 (Roquette) - 100 g ou 200 g de silice précipitée sous forme de particules de granulométrie moyenne de 3 mm et dont la surface B.E.T. est de 250 m2.g"1 ,
- 70 g de fibres de carbone dont le diamètre est d'environ 10 mm et dont la longueur moyenne est de 1,5 mm,
- 3,3 g de Triton X 100 ® de la société Rohm et Haas, - 121 g de nickel de Raney sous forme de poudre de 10 mm (Ni 20 commercialisé par la Société Procatalyse). Dans 4 litres d'eau permutée, on introduit sous agitation l'amidon, puis les fibres de cellulose.
Puis on ajoute après agitation, la silice, le latex de PTFE, le Triton X 100®, les fibres de carbone et enfin le nickel de Raney.
On filtre la suspension obtenue, après l'avoir agitée, sous vide, sur un grillage de fer tressé et laminé d'acier type "Gantois" dont l'ouverture est de 2 mm et dont le diamètre de fils est de 1 mm, la surface de dépôt étant de 1,21 dm .
La dépression est donc établie et croit de 50.102 Pa par minute pour atteindre une dépression indiquée dans le tableau ci-dessous. Cette dépression maximale est maintenue pendant environ 15 minutes.
L'ensemble est alors séché, puis consolidé par fusion du polymère fluoré à 350°C.
La silice est éliminée "in situ" dans l'électrolyseur par dissolution en milieu alcalin notamment pendant les premières heures d'électrolyse.
Les résultats sont rassemblés dans le tableau 1 ci-dessous :
Figure imgf000013_0001
L'essai 1 a été effectué une heure après la préparation de la suspension aqueuse. Les essais 2 et 3 ont été faits, respectivement 5 et 4 jours après la préparation de la suspension.
Les essais 1 et 2 montrent que le stockage de la suspension influe peu sur les conditions de filtration de celle-ci et va plutôt dans le sens d'une amélioration du vide final pour un même poids déposé. La faisabilité de l'opération en est augmentée.
EXEMPLES 2
Ces exemples illustrent la préparation d'une nappe fibreuse comprenant le polymère cationique sans fibres de cellulose.
On procède comme pour l'exemple précédent excepté le fait que les quantités d'amidon et de fibres de cellulose sont différentes. Les résultats ainsi que les teneurs sont rassemblés dans le tableau 2 ci-dessous
Figure imgf000014_0001

Claims

REVENDICATIONS
1. Elément cathodique dépourvu de fibres d'amiante et susceptible d'être obtenu par un dépôt par filtration à travers un support poreux, d'une suspension aqueuse comprenant des fibres conductrices de l'électricité, au moins un polymère cationique, au moins un agent électrocatalytique, au moins un agent porogène et au moins un liant choisi parmi les polymères fluorés.
2. Elément cathodique selon la revendication précédente, caractérisé en ce que les fibres conductrices de l'électricité sont des fibres de carbone ou de graphite.
3. Elément cathodique selon la revendication précédente, caractérisé en ce que les fibres conductrices présentent une distribution de longueur monodispersee.
4. Elément cathodique selon l'une quelconque des revendications précédentes, caractérisé en ce que l'agent électrocatalytique est un métal de Raney ou un précurseur de ce métal, ou des particules comprenant un oxyde de ruthénium, de platine, d'iridium, de palladium, ou un mélange de ces oxydes, ou encore des particules comprenant un support conducteur de l'électricité présentant un revêtement sous forme d'oxyde de ruthénium, de platine, d'iridium, de palladium, ou d'un mélange de ces oxydes.
5. Elément cathodique selon l'une quelconque des revendications précédentes, caractérisé en ce que l'agent porogène peut être éliminé par un traitement chimique ou thermique, tels que les dérivés à base de silice, ou les systèmes nanoparticulaires qui sont détruits thermiquement comme les nanolatex ou des latex de taille inférieure à 100 μm.
6. Elément cathodique selon l'une quelconque des revendications précédentes, caractérisé en ce que le polymère cationique est choisi parmi les polymères organiques comme les polymères de synthèse choisis parmi répychlorhydrine, les polyimines, les polyacrylamides, les polyacrylamines, ou encore les polymères d'origine naturelle comme notamment les amidons cationiques, les guars cationiques
7. Elément cathodique selon l'une quelconque des revendications précédentes, caractérisé en ce que le polymère cationique est choisi parmi les polymères inorganiques comme les argiles, les bentonites, le sulfate d'aluminium, le polychlorure d'aluminium.
8. Elément cathodique selon l'une quelconque des revendications précédentes, caractérisé en ce que la suspension comprend en outre un matériau fibreux choisi parmi les fibres à base de cellulose, les fibres à base de cellulose auxquelles on a donné une charge ionique positive, les fibres de verre ou encore les fibres de silicate de calcium.
9. Elément cathodique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est associé à un diaphragme.
10. Elément cathodique selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il est associé à une membrane.
11. Procédé de préparation d'un élément cathodique selon l'une quelconque des revendications 1 à 8, consistant à mettre en oeuvre les étapes suivantes : [a] on prépare une suspension aqueuse comprenant des fibres conductrices de l'électricité, au moins un polymère cationique, au moins un agent électrocatalytique, au moins un liant choisi parmi les polymères fluorés, au moins un agent porogène ;
[b] on dépose par filtration sous vide programmé ladite suspension sur un support poreux ; [c] on essore et on sèche éventuellement la nappe ainsi obtenue ;
[d] on fritte l'ensemble résultant à une température supérieure ou égale à la température de fusion ou de ramollissement du liant ;
[e] on élimine si nécessaire l'agent porogène par un traitement effectué avant l'utilisation de l'élément cathodique ou lors de son utilisation.
12. Procédé selon la revendication 11, caractérisé en ce que la suspension aqueuse comprend 20 à 100 parties en poids de fibres conductrices de l'électricité.
13. Procédé selon l'une quelconque des revendications 11 et 12, caractérisé en ce que la suspension aqueuse comprend 10 à 60 parties en poids de liant.
14. Procédé selon l'une quelconque des revendications 11 à 13, caractérisé en ce que la suspension aqueuse comprend 30 à 200 parties en poids d'agent porogène si celui-ci est éliminable par un traitement chimique, ou 10 à 200 parties en poids d'agent porogène si celui-ci est éliminable thermiquement, ou 30 à 200 si l'agent porogène est un mélange d'agents éliminables chimiquement et thermiquement.
15. Procédé selon l'une quelconque des revendications 11 à 14, caractérisé en ce que la suspension aqueuse comprend 20 à 200 parties en poids d'agent électrocatalytique.
16. Procédé selon l'une quelconque des revendications 11 à 15, caractérisé en ce que la suspension aqueuse comprend au moins un polymère cationique dans une quantité telle que la mesure de la turbidité du liquide surnageant après décantation de la suspension est supérieure ou égale à 50 ; la même mesure effectuée avec de l'eau pure donnant une valeur de 100.
17. Procédé selon l'une quelconque des revendications 11 à 16, caractérisé en ce que la suspension aqueuse comprend au plus 60 parties en poids sec de fibres à base de cellulose, chargées ou non positivement, et plus particulièrement 10 à 40 parties en poids de telles fibres.
PCT/FR1996/002091 1995-12-29 1996-12-27 Element cathodique exempt d'amiante utilisable pour l'electrolyse de solution de chlorure de sodium WO1997024474A1 (fr)

Priority Applications (13)

Application Number Priority Date Filing Date Title
BR9612313-3A BR9612313A (pt) 1995-12-29 1996-12-27 Componente catódico isento de fibras de amianto, e, processo para sua preparação.
EA199800613A EA000808B1 (ru) 1995-12-29 1996-12-27 Безасбестовый компонент катода, используемый для электролиза раствора хлорида натрия
EP96944091A EP0870077B1 (fr) 1995-12-29 1996-12-27 Element cathodique exempt d'amiante utilisable pour l'electrolyse de solution de chlorure de sodium
UA98063370A UA47449C2 (uk) 1995-12-29 1996-12-27 Безазбестовий компонент катода, що використовують для електролізу розчину хлориду натрію, та спосіб його одержання
US09/101,010 US6099704A (en) 1995-12-29 1996-12-27 Asbestos-free cathodic element suitable for electrolysis of sodium chloride solution
AU13810/97A AU1381097A (en) 1995-12-29 1996-12-27 Asbestos-free cathodic element suitable for electrolysis of sodium chloride solution
DE69603092T DE69603092T2 (de) 1995-12-29 1996-12-27 Asbestfreies kathodenelement für die elektrolyse von natriumchlorid-lösungen
JP9524075A JP2000502753A (ja) 1995-12-29 1996-12-27 塩化ナトリウム溶液の電解のために使用されうるアスベストを含まないカソード部品
CA002241230A CA2241230C (fr) 1995-12-29 1996-12-27 Element cathodique exempt d'amiante utilisable pour l'electrolyse de solution de chlorure de sodium
MXPA98005187A MXPA98005187A (es) 1995-12-29 1996-12-27 Elemento catodico, exento de asbesto, adecuado para la electrolisis de una solucion de cloruro de sodio.
PL96327570A PL327570A1 (en) 1995-12-29 1996-12-27 Asbestos-free cathode component for use in sodium chloride electrolysis processes
BG102564A BG62785B1 (bg) 1995-12-29 1998-06-19 Катоден елемент за електролиза на натриев хлорид
NO983011A NO983011L (no) 1995-12-29 1998-06-26 Asbestfritt katodeelement egnet for elektrolyse av natriumkloridopplösning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9515712A FR2743090B1 (fr) 1995-12-29 1995-12-29 Element cathodique exempt d'amiante utilisable pour l'electrolyse de solution de chlorure de sodium
FR95/15712 1995-12-29

Publications (1)

Publication Number Publication Date
WO1997024474A1 true WO1997024474A1 (fr) 1997-07-10

Family

ID=9486124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1996/002091 WO1997024474A1 (fr) 1995-12-29 1996-12-27 Element cathodique exempt d'amiante utilisable pour l'electrolyse de solution de chlorure de sodium

Country Status (17)

Country Link
US (1) US6099704A (fr)
EP (1) EP0870077B1 (fr)
JP (1) JP2000502753A (fr)
KR (1) KR19990076911A (fr)
CN (1) CN1163636C (fr)
AU (1) AU1381097A (fr)
BG (1) BG62785B1 (fr)
BR (1) BR9612313A (fr)
CA (1) CA2241230C (fr)
DE (1) DE69603092T2 (fr)
EA (1) EA000808B1 (fr)
FR (1) FR2743090B1 (fr)
MX (1) MXPA98005187A (fr)
NO (1) NO983011L (fr)
PL (1) PL327570A1 (fr)
UA (1) UA47449C2 (fr)
WO (1) WO1997024474A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001065617A2 (fr) * 2000-02-11 2001-09-07 The Texas A & M University System Electrode de diffusion gazeuse a pores de taille nanometrique et procede pour la fabrication d'une telle electrode
US6656624B1 (en) 2000-09-26 2003-12-02 Reliant Energy Power Systems, Inc. Polarized gas separator and liquid coalescer for fuel cell stack assemblies
US6770394B2 (en) 2000-02-11 2004-08-03 The Texas A&M University System Fuel cell with monolithic flow field-bipolar plate assembly and method for making and cooling a fuel cell stack
US6828054B2 (en) 2000-02-11 2004-12-07 The Texas A&M University System Electronically conducting fuel cell component with directly bonded layers and method for making the same
US7001687B1 (en) 2002-10-04 2006-02-21 The Texas A&M University System Unitized MEA assemblies and methods for making same
US7005209B1 (en) 2002-10-04 2006-02-28 The Texas A&M University System Fuel cell stack assembly

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2803309B1 (fr) * 1999-12-30 2002-05-03 Chloralp Diaphragme exempt d'amiante, comprenant des particules minerales non fibreuses, association le comprenant, son obtention et son utilisation
US6660828B2 (en) 2001-05-14 2003-12-09 Omnova Solutions Inc. Fluorinated short carbon atom side chain and polar group containing polymer, and flow, or leveling, or wetting agents thereof
CA2447132C (fr) * 2001-05-14 2008-10-07 Omnova Solutions Inc. Surfactants polymeres derives de monomeres cycliques possedant des groupes lateraux de carbone fluore
US8216437B2 (en) * 2003-10-10 2012-07-10 Ohio University Electrochemical cell for oxidation of ammonia and ethanol
CA2542313C (fr) * 2003-10-10 2012-12-04 Ohio University Electrocatalyseurs d'oxydation de l'ammoniac dans des milieux alcalins
US20090081500A1 (en) * 2003-10-10 2009-03-26 Ohio University Fuel cell utilizing ammonia, ethanol or combinations thereof
US8216956B2 (en) 2003-10-10 2012-07-10 Ohio University Layered electrocatalyst for oxidation of ammonia and ethanol
US8221610B2 (en) * 2003-10-10 2012-07-17 Ohio University Electrochemical method for providing hydrogen using ammonia and ethanol
JP2009515036A (ja) * 2005-10-14 2009-04-09 オハイオ ユニバーシティ アルカリ媒体中におけるアンモニア及びエタノールを酸化するためのカーボンファイバー電極触媒、ならびに水素生成、燃料電池および精製プロセスへのその適用
CN101224678B (zh) 2007-01-17 2012-06-06 山东新北洋信息技术股份有限公司 一种打印机及打印控制方法
US8889257B2 (en) * 2007-10-05 2014-11-18 The United States Of America, As Represented By The Secretary Of The Navy RuO2-coated fibrous insulator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0630870A1 (fr) * 1993-06-25 1994-12-28 Rhone-Poulenc Chimie Elément cathodique dépourvu de fibres d'amiante

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0630870A1 (fr) * 1993-06-25 1994-12-28 Rhone-Poulenc Chimie Elément cathodique dépourvu de fibres d'amiante

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001065617A2 (fr) * 2000-02-11 2001-09-07 The Texas A & M University System Electrode de diffusion gazeuse a pores de taille nanometrique et procede pour la fabrication d'une telle electrode
WO2001065617A3 (fr) * 2000-02-11 2002-06-13 Texas A & M Univ Sys Electrode de diffusion gazeuse a pores de taille nanometrique et procede pour la fabrication d'une telle electrode
US6649299B2 (en) 2000-02-11 2003-11-18 The Texas A&M University System Gas diffusion electrode with nanosized pores and method for making same
US6770394B2 (en) 2000-02-11 2004-08-03 The Texas A&M University System Fuel cell with monolithic flow field-bipolar plate assembly and method for making and cooling a fuel cell stack
US6828054B2 (en) 2000-02-11 2004-12-07 The Texas A&M University System Electronically conducting fuel cell component with directly bonded layers and method for making the same
US6656624B1 (en) 2000-09-26 2003-12-02 Reliant Energy Power Systems, Inc. Polarized gas separator and liquid coalescer for fuel cell stack assemblies
US6951698B2 (en) 2000-09-26 2005-10-04 The Texas A&M University System Fuel cell stack assembly
US7005210B2 (en) 2000-09-26 2006-02-28 The Texas A&M University System Flow fields for fuel cells
US7001687B1 (en) 2002-10-04 2006-02-21 The Texas A&M University System Unitized MEA assemblies and methods for making same
US7005209B1 (en) 2002-10-04 2006-02-28 The Texas A&M University System Fuel cell stack assembly

Also Published As

Publication number Publication date
US6099704A (en) 2000-08-08
FR2743090A1 (fr) 1997-07-04
EP0870077A1 (fr) 1998-10-14
EP0870077B1 (fr) 1999-06-30
NO983011D0 (no) 1998-06-26
EA199800613A1 (ru) 1998-12-24
CN1208443A (zh) 1999-02-17
UA47449C2 (uk) 2002-07-15
MXPA98005187A (es) 2005-04-28
BG62785B1 (bg) 2000-07-31
BG102564A (en) 1999-01-29
CN1163636C (zh) 2004-08-25
JP2000502753A (ja) 2000-03-07
AU1381097A (en) 1997-07-28
KR19990076911A (ko) 1999-10-25
PL327570A1 (en) 1998-12-21
NO983011L (no) 1998-08-31
BR9612313A (pt) 1999-12-28
FR2743090B1 (fr) 1998-02-06
CA2241230A1 (fr) 1997-07-10
DE69603092D1 (de) 1999-08-05
EA000808B1 (ru) 2000-04-24
DE69603092T2 (de) 1999-11-18
CA2241230C (fr) 2004-02-03

Similar Documents

Publication Publication Date Title
EP0870077B1 (fr) Element cathodique exempt d'amiante utilisable pour l'electrolyse de solution de chlorure de sodium
CA2023032C (fr) Diaphragme, association d'un tel diaphragme a un element cathodique et leur procede d'obtention
EP0630870A1 (fr) Elément cathodique dépourvu de fibres d'amiante
CA1340341C (fr) Procede de fabrication de materiau electroactive a base de fibres conductrices et utilisation de ce materiau pour realiser des elements cathodiques
EP0745150B1 (fr) Materiau electroactive, sa preparation et son utilisation pour l'obtention d'elements cathodiques
EP0222671B1 (fr) Matériau microporeux, procédé pour son obtention, et applications notamment à la réalisation d'éléments cathodiques
EP0412916B1 (fr) Diaphragme comprenant des fibres d'amiante, association d'un tel diaphragme à un élément cathodique et procédé d'obtention
EP0793620A1 (fr) Procede d'elimination d'impuretes metalliques par voie electrochimique
EP0642602A1 (fr) Procede de preparation de diaphragme microporeux
CH621583A5 (fr)
EP1242655A1 (fr) Diaphragme exempt d'amiante, comprenant des particules minerales non fibreuses, association le comprenant, son obtention et son utilisation
FR2727133A1 (fr) Procede de recuperation de metaux par voie electrochimique
WO2009034116A2 (fr) Association d'un element cathodique et d'un diaphragme

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96199803.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BA BB BG BR CA CN CU CZ EE GE HU IL IS JP KP KR LC LK LR LT LV MG MK MN MX NO NZ PL RO SG SI SK TR TT UA US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996944091

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2241230

Country of ref document: CA

Ref document number: 2241230

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/A/1998/005187

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1019980705039

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 199800613

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 09101010

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996944091

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996944091

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980705039

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1019980705039

Country of ref document: KR