EP0296076B1 - Préparation d'un matériau électroactivé à base de fibres conductrices et son utilisation pour réaliser des éléments cathodiques - Google Patents

Préparation d'un matériau électroactivé à base de fibres conductrices et son utilisation pour réaliser des éléments cathodiques Download PDF

Info

Publication number
EP0296076B1
EP0296076B1 EP19880420191 EP88420191A EP0296076B1 EP 0296076 B1 EP0296076 B1 EP 0296076B1 EP 19880420191 EP19880420191 EP 19880420191 EP 88420191 A EP88420191 A EP 88420191A EP 0296076 B1 EP0296076 B1 EP 0296076B1
Authority
EP
European Patent Office
Prior art keywords
sheet
chosen
agent
diaphragm
fibres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19880420191
Other languages
German (de)
English (en)
Other versions
EP0296076A1 (fr
Inventor
Jean Bachot
Jean-Maurice Perineau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chloralp SAS
Original Assignee
Rhone Poulenc Chimie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone Poulenc Chimie SA filed Critical Rhone Poulenc Chimie SA
Publication of EP0296076A1 publication Critical patent/EP0296076A1/fr
Application granted granted Critical
Publication of EP0296076B1 publication Critical patent/EP0296076B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/696Including strand or fiber material which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous compositions, water solubility, heat shrinkability, etc.]

Definitions

  • the subject of the present invention is a process for the preparation of an electroactivated material which can be used in particular for the production of the cathode element of an electrolysis cell, and in particular of an electrolysis cell of aqueous solutions of alkali halides. It also relates to the preparation of the cathode element comprising said material.
  • EP-A-0132425 a material has been proposed comprising fibers and a binder, usable in particular for producing the cathode element of an electrolysis cell, said material being characterized in that '' at least part of the free consists of electrically conductive fibers, in that the binder is chosen from fluoropolymers and in that the resistivity of said material is less than 0.4 ohm.cm and preferably less than O, 1 ohm.cm.
  • Said material may also contain one or more electrocatalytic agents capable of being in the form of powder with a particle size between 1 and 10 ⁇ m (microns).
  • electrocatalytic agents platinum, palladium, nickel-zinc, nickel-aluminum, titanium-nickel, molybdenum-nickel sulfur-nickel, nickel-phosphorus, cobalt-molybdenum, lanthanum-nickel alloys are contemplated.
  • a method of manufacturing these materials has also been proposed which consists in preparing a suspension comprising the conductive fibers and the binder, then in remove the liquid medium and dry the sheet obtained.
  • the suspension may also contain non-conductive fibers, blowing agents and / or catalytic agents.
  • An object of the present invention lies in obtaining electroactivated materials, improved in terms of their electrocatalytic performance and whose mechanical properties are maintained, or even improved, in particular by greater cohesion of the assembly.
  • Another object of the present invention lies in the preparation of electroactivated composite materials with a porous structure, improved both in terms of their electrical and catalytic performance as in that of their mechanical and / or physical properties.
  • the object of the present invention is therefore to obtain an electro-activated material comprising fibers, at least part of which is electrically conductive, and a binder, chosen from fluorinated polymers, said material having a resistivity less than 0, 4 ohm.cm, and being characterized in that it comprises at least one active electrocatalytic agent uniformly distributed in its mass, said agent being chosen from the group consisting of Raney metals and Raney alloys, the major of which has been eliminated easily removable part (s) of metal (s), and mixtures thereof.
  • the electro-activated material obtained according to the invention is in the form of a sheet, in the sense given to this term, for example in European application No. 0132425, the thickness of which is generally between 0.1 and 5 mm and advantageously , between 0.5 and 3 mm and whose surface can reach several tens of m2, the shape can be very varied.
  • the material in question comprises fibers of which at least part is electrically conductive; the choice of conductive fibers and their possible association in particular with non-conductive free materials are dictated, in particular, by the electrical and mechanical properties sought for the consolidated sheet as well as by considerations linked to the availability, cost and / or ease of Implementation.
  • electrically conductive fibers any material in the form of a filament whose diameter is generally less than 1mm and preferably between 10 ⁇ 5 and 0.1 mm and whose length is greater than 0.5 mm and preferably between 1 and 20 mm, said material having a resistivity equal to or less than 0.4 ohm.cm.
  • Such fibers may consist entirely of a material that is intrinsically electrically conductive: as examples of such materials, mention may be made of metallic fibers, and in particular those free of iron, ferrous alloys or nickel, the fibers carbon or graphite. It is also possible to use fibers originating from material which is not electrically conductive but which are made conductive by a treatment: mention may be made, for example, of asbestos fibers, made conductive by chemical or electrochemical deposition of a metal such as nickel, or the free zirconia (ZrO2), made conductive by nickel plating. In the case of fibers made conductive by treatment, this will be carried out under conditions such that the resulting fiber has the resistivity mentioned above.
  • metal fibers are relatively rare and do not always have the mechanical qualities or chemical, such as corrosion resistance, required for industrial application. Furthermore, their high density makes it difficult to control the homogeneity of a suspension and, consequently, the isotropy of the final material.
  • non-conductive fibers rendered conductive
  • the Applicant recommends the use of free carbon or graphite and more particularly to those having a monodispersed length in the sense indicated at the head of this specification.
  • the free conductors and, in particular carbon or graphite fibers can be combined with fibers that do not conduct electricity.
  • These fibers are generally in the form of filaments whose geometric characteristics are similar to those given for conductive fibers but whose resistivity will, by convention, be greater than 0.4 ohm.cm.
  • non-conductive fibers within the meaning of the invention, mention will be made in particular of mineral fibers such as asbestos fibers, glass fibers, quartz fibers, zirconia fibers, or organic fibers such as fibers polypropylene or polyethylene, optionally halogenated and in particular fluorinated, polyhalovinylidene fibers and in particular polyvinylidene fluoride or also fibers of fluoropolymers which will be discussed below in connection with the binder of the plies according to the invention.
  • mineral fibers such as asbestos fibers, glass fibers, quartz fibers, zirconia fibers
  • organic fibers such as fibers polypropylene or polyethylene, optionally halogenated and in particular fluorinated, polyhalovinylidene fibers and in particular polyvinylidene fluoride or also fibers of fluoropolymers which will be discussed below in connection with the binder of the plies according to the invention.
  • the Applicant recommends the use of asbestos fibers in particular in combination with carbon or graphite fibers.
  • the proportion of non-conductive fibers should not exceed 50% by weight and, preferably 30% by weight to ensure in particular a satisfactory consolidation of the entire material.
  • the binder of the materials in accordance with the present invention consists of a binder chosen from fluorinated polymers.
  • fluoropolymer means a homopolymer or a copolymer derived at least in part from olefinic monomers which are totally substituted with fluorine atoms or totally substituted with a combination of fluorine atoms and at least one of chlorine atoms , bromine or iodine per monomer.
  • fluorinated homo- or copolymers can be constituted by polymers and copolymers derived from tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, bromotrifluoroethylene.
  • Such fluorinated polymers can also contain up to 75 mole percent of units derived from other ethylenically unsaturated monomers containing at least as many fluorine atoms as carbon atoms, such as for example vinylidene (di) fluoride, vinyl and perfluoroalkyl esters, such as perfluoroalkoxyethylene.
  • units derived from other ethylenically unsaturated monomers containing at least as many fluorine atoms as carbon atoms such as for example vinylidene (di) fluoride, vinyl and perfluoroalkyl esters, such as perfluoroalkoxyethylene.
  • the fluoropolymer used here as a binder of a set of fibers and of electrocatalytic agent may be present in the material in question in variable quantities within wide limits, taking into account the content of fibers and of electrocatalytic agent, or even the nature of the various constituents of said material.
  • the binder will preferably represent from 20 to 50% by weight in the sub-assembly (Fibers + binder).
  • the starting alloy (or precursor) may also contain minor quantities generally not exceeding 5% by weight of the active metal (s), of one or more stabilizing or doping metals chosen from chromium , cobalt, titanium, molybdenum, tungsten, vanadium and manganese. During the alkaline leaching of such a precursor, most of the easily removable metal (s) is removed.
  • a second class of electroactivated materials according to the invention comprise an alloy of nickel and aluminum optionally doped with titanium.
  • nickel represents from 30 to 60% by weight
  • the dopant from 0 to 5% by weight
  • the complement being aluminum
  • the identified phases are mainly Ni2Al3 and NiAl3; the presence of the NiAl phase must be minimized because it is difficult to attack by alkaline solutions and leads to unsatisfactory electroactivation of the material.
  • nickel-containing materials have, on a more or less large scale, depending on their particular constitution, the additional advantage of considerably reducing the chlorate content of the soda produced by electrolysis of a sodium chloride solution when they constitute a precathode layer. of the cathode element of the electrolysis cell.
  • the electrocatalytic agent advantageously represents from 30 to 70% by weight of the whole (Fibers + binder + electrocatalytic agent) and, preferably at least 35% by weight.
  • An essential characteristic of said material resides in the homogeneous distribution in its mass of (or) electrocatalytic agent (s); this homogeneous distribution largely contributes to imparting good electrical and electrocatalytic properties to said material.
  • the materials obtained according to the present invention have been defined by their essential constituents, that is to say the fibers, the binder and the electrocatalytic agent. It goes without saying that these materials can at one or the other moment of their development or, to more particularly satisfy additional requirements linked in particular to their final destination, contain various other additives, present simultaneously or, which can succeed one another in the various stages of development of said materials.
  • materials according to the present invention can also contain hydrophilic agents.
  • hydrophilic agent contributes to improving the wettability of the sheet of fibers by somewhat counterbalancing the highly hydrophobic nature of the fluoropolymers.
  • Hydrophilic agents can be chosen from various families of products. It can generally be liquid or pulverulent products, of organic or inorganic nature. As examples of such agents, mention may be made of surfactants or surfactants, such as sodium dioctylsulfosuccinate, etc. or inorganic compounds such as asbestos in powder or short fibers, zirconia, cerium dioxide, potassium titanate, hydrated oxides and especially alumina.
  • surfactants or surfactants such as sodium dioctylsulfosuccinate, etc. or inorganic compounds such as asbestos in powder or short fibers, zirconia, cerium dioxide, potassium titanate, hydrated oxides and especially alumina.
  • the amount of hydrophilic agent which may be present in the sheets obviously depends on the use intended for this sheet, on the amount of hydrophobic product (essentially the fluorinated binder but also certain fibers contained in these layers) and the nature of the hydrophilic agent. On an order of magnitude, it can be indicated that the quantity of hydrophilic agent can reach 10% of the weight of the fluorinated binder and more specifically from 0.1 to 5% of the weight of said binder.
  • the materials can also contain pore-forming agents, the role of which is to regulate their porosity, porosity which in the hypothesis of an application in electrolysis, influences the flow of liquids and the evacuation of gases. It should be understood that when such pore-forming agents are used, the final material, the porosity of which, under the effect of decomposition or elimination of these agents, has been adjusted or modified, will in principle no longer contain such agents.
  • pore-forming agents mention will be made of the mineral salts which can then be removed by leaching and the salts which can be removed by chemical or thermal decomposition to which preference is given.
  • alkaline or alkaline-earth salts such as the sulphate halides, sulfinates, bisulphites, phosphates, carbonates, bicarbonates. Mention may also be made of amphoteric alumina, and especially silica, which can be eliminated in an alkaline medium.
  • Another object of the present invention is to obtain a composite material formed by the association of at least one electroactivated material previously defined and of an elementary cathode constituted by a metal surface.
  • elementary cathode is meant the metallic structure generally of iron or nickel, essentially constituted by a mesh or a piece of perforated metal and playing the role of cathode in an electrolysis cell.
  • This elementary cathode can consist of one or an assembly of flat surfaces or, in the case of electrolysis cells of the "thermowell" type, be in the form of a cylinder whose directrix is a more or less complex surface, generally substantially rectangular with rounded corners.
  • the composite material resulting from said association in fact constitutes the cathode itself of an electrolysis cell, this application to the production of cathode element of electrolysis cell constituting the privileged but not exclusive field of electroactivated materials according to the invention.
  • a membrane or a diaphragm between the anode and cathode compartments it is possible, according to a practice now common, to use in the cell a membrane or a diaphragm between the anode and cathode compartments.
  • the composite element according to the invention constitutes an excellent mechanical support and ensures a remarkable distribution of the current. This distribution of the current is naturally linked to the particular structure of the composite elements in accordance with the invention.
  • the composite material resulting from the association of an electroactivated material and an elementary cathode, which has just been described can also be associated with a diaphragm.
  • This diaphragm which can be chosen from the many diaphragms for electrolysis now known, can be manufactured separately. It can also, and this constitutes an advantageous method, be manufactured directly on the electroactivated material or on the composite electroactivated material / elementary cathode. This direct manufacture is particularly easy when the diaphragm is produced by filtration of a suspension.
  • the electroactivated materials according to the present invention can be prepared according to various known techniques, (implementation of a fluidized bed, followed by deposition on a surface and consolidation; preparation of a sheet by way stationery followed by its consolidation ...) some of them must nevertheless be adapted and this without great difficulty for a man of the art.
  • the Applicant recommends an embodiment by the wet method, a process which also constitutes an object of the present invention.
  • This type of process is more particularly suitable for the preparation of a material to be consolidated on a cathode of complex geometry used in industry.
  • the electrocatalytic agent chosen from the group of Raney metals, is used in the form of a precursor of said agent, such as Raney alloys, comprising one or more easily removable metals.
  • the suspension prepared in step (a) further comprises at least silica as a blowing agent.
  • the electrocatalytic agent is chosen from the group of Raney metals.
  • a small quantity of a thickening agent is incorporated into the aqueous medium, chosen for example from natural or synthetic polysaccharides.
  • the dispersion will contain all the essential constituents of the sheet, the electrocatalytic agent possibly being present in the dispersion in the form of a precursor alloy in the sense indicated above and, if appropriate, various additives such as non-conductive fibers. , hydrophilic agents, pore-forming agents and dispersing agents or surface-active agents, in particular anionic sulfonic surfactants, commonly used in practice.
  • the electrocatalytic agent or its precursor will be introduced in the form of a powder with a particle size generally less than 500 ⁇ m.
  • Commercial products are generally found in the form of such a powder in a liquid, generally aqueous, medium. These products can be added as is to the dispersion used to form said sheet.
  • the fluoropolymer is generally in the form of dry powder or of fibers or of aqueous dispersion (latex) the dry extract of which represents from 30 to 70%.
  • the suspension in question is generally highly diluted, the dry matter content (fibers, polymer, electrocatalytic agent and additives) represents of the order of 1 to 5% of the weight of the whole for facilitate handling on an industrial scale.
  • the sheet is then formed, by filtration under programmed vacuum, of the suspension through a material of high porosity such as metallic grids for example, of iron, or fabrics, for example asbestos, of which the mesh vacuum (or the perforations ) can be between 20 ⁇ m and 5 mm.
  • the vacuum program can be continuous and / or stepwise, from atmospheric pressure to final depression (1.5.10 ⁇ 3 to 4.10 ⁇ 4 Pa).
  • consolidation In the event that only the production of the sheet thus formed is targeted, this consolidation must be carried out and, in the event that a precursor alloy in the sense given in this specification, has been used in the preparation of said sheet, consolidation will be followed by the elimination of the metal (or metals) which can be easily eliminated by leaching out of the sheet by means of a solution which does not attack the electroactive part of the alloy.
  • the elimination of most of the aluminum contained in a nickel-based precursor alloy can advantageously be carried out by treatment at a temperature between 60 and 100 ° C. for approximately 30 min to 6 h at using an aqueous sodium hydroxide solution whose concentration will be between 100 and 180 g / l.
  • the intermediate consolidation of the sheet can become superfluous, the consolidation can then be carried out on the whole.
  • This consolidation can then be followed by an appropriate treatment to eliminate the porogen contained in the deposited diaphragm: when the sheet contains a Raney metal such as Raney nickel and when the deposited diaphragm contains silica, consolidation is carried out on the The assembly and the treatment with an aqueous sodium hydroxide solution described above is carried out on the consolidated assembly with a view to eliminating the silica contained in the diaphragm.
  • a Raney metal such as Raney nickel
  • silica silica
  • the sheet contains a precursor alloy in the sense given above, such as a nickel and aluminum alloy and, when the deposited diaphragm contains silica, consolidation can be carried out separately for the sheet and if necessary, followed by solution treatment aqueous sodium hydroxide to remove aluminum; the diaphragm will then be deposited then consolidated and treated in order to eliminate the silica; consolidation can advantageously be carried out on the whole then, followed by a single treatment with the aqueous sodium hydroxide solution to remove both the aluminum from the sheet and the silica from the diaphragm.
  • a precursor alloy such as a nickel and aluminum alloy
  • a precursor alloy such as a nickel and aluminum alloy
  • consolidation can be carried out separately for the sheet and if necessary, followed by solution treatment aqueous sodium hydroxide to remove aluminum; the diaphragm will then be deposited then consolidated and treated in order to eliminate the silica; consolidation can advantageously be carried out on the whole then, followed by a single treatment with the aqueous sodium hydrox
  • a sheet obtained by filtration and consolidated as indicated above and which contains a precursor alloy such as a nickel and aluminum alloy can advantageously be associated with a diaphragm by filtration of a suspension of the constituents of the diaphragm.
  • the binder of which is dispersible in the liquid medium capable of eliminating, for example, aluminum, without attacking the nickel in the present case, the operation of depositing the diaphragm allowing it alone to eliminate the major part of the aluminum contained in the consolidated sheet.
  • Such is, for example, the possibility offered by the deposition of a diaphragm whose essential constituents (asbestos fibers, polychlorotetrafluoroethylene powder) are dispersible in an aqueous solution of sodium hydroxide containing, if appropriate, sodium chloride.
  • the electroactivating agent or if necessary one of its precursors, the nature and quantity of which will be specified in the examples and the attached table, is added.
  • the composite thus obtained is dried for 12 h at 100 ° C and consolidated by melting the fluoropolymer at 350 ° C for 7 min.
  • the composite obtained is dried at 100 ° C for 12 h and the consolidation of the diaphragm is carried out by melting the polymer (PCTFE) at 260 ° C for 30 min.
  • PCTFE polymer
  • a precathode layer is prepared containing 3.5 g of nickel and aluminum alloy (Raney alloy 20 sold by the company PROCATALYSE, containing 50 parts by weight of nickel for 50 parts by weight of aluminum), said alloy having been added to the suspension in the form of a powder with an average particle size of 20 ⁇ m.
  • Nickel alloy 20 sold by the company PROCATALYSE, containing 50 parts by weight of nickel for 50 parts by weight of aluminum
  • This sheet is then rinsed carefully with softened water and covered with a microporous diaphragm prepared separately according to procedure B, by filtration on 1 dm2 of asbestos cloth.
  • silica is removed therefrom by alkaline attack under the conditions described above for treating the sheet.
  • Control test a Production of a composite material not in accordance with the present invention.
  • Example 1 is reproduced above, omitting the treatment of the consolidated sheet with the aqueous sodium hydroxide solution and covering it with a microporous diaphragm similar to the previous one, except that the elimination of silica by alkaline treatment, is carried out before the deposition of said diaphragm on the precathode element.
  • Control test c (Absence of precathode element)
  • a braided and rolled steel grid is covered with an asbestos / PCTFE diaphragm by preparing a suspension in which 50% of the chrysotile asbestos fibers of length 1 to 5 mm have been replaced by fibers of length between 5 and 20 mm. (This device is representative of current practices in the chlorine industry).
  • a precathode layer is prepared containing 3.5 g of nickel and aluminum alloy (Raney alloy 20 sold by the company PROCATALYSE, containing 50 parts by weight of nickel for 50 parts by weight of aluminum), said alloy having been added to the suspension in the form of a powder with an average particle size of 20 ⁇ m.
  • Nickel alloy 20 sold by the company PROCATALYSE, containing 50 parts by weight of nickel for 50 parts by weight of aluminum
  • Example 2 is reproduced above, by modifying the deposition mode of the diaphragm by the fact that it is operated under a controlled vacuum program of 1000 Pa. Min ⁇ 1 to reach a final vacuum of 80,000 Pa .
  • a precathode layer containing 2 g of Raney nickel in the form of a 10 ⁇ m powder was prepared according to the procedure (A) and consolidated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

  • La présente invention a pour objet procédé de préparation d'un matériau électroactivé utilisable notamment pour la réalisation de l'élément cathodique d'une cellule d'électrolyse, et en particulier d'une cellule d'électrolyse de solutions aqueuses d'halogénures alcalins. Elle concerne également la préparation de l'élément cathodique comprenant ledit matériau.
  • Ces matériaux présentent une surtension faible vis à vis de la réaction de dégagement d'hydrogène à la cathode et, de ce fait permettent des gains énergétiques appréciables. D'autres avantages présentés par lesdits matériaux apparaîtront à la lecture de ce qui suit.
  • Dans la demande de brevet européen EP-A-0132425, il a été proposé un matériau comprenant des fibres et un liant, utilisable notamment pour la réalisation de l'élément cathodique d'une cellule d'électrolyse, ledit matériau étant caractérisé en ce qu'une partie au moins des libres est constituée de fibres conductrices de l'électricité, en ce que le liant est choisi parmi les polymères fluorés et en ce que la résistivité dudit matériau est inférieure à 0,4 ohm.cm et de préférence inféreure à O,1 ohm.cm.
  • Les fibres conductrices peuvent être des fibres de carbone et, des fibres non conductrices, telles des fibres d'amiante peuvent être présentes parmi les fibres constituant le matériau en cause.
  • Ledit matériau peut renfermer en outre un ou plusieurs agents électrocatalytiques susceptibles de se présenter sous forme de poudre de granulomètrie comprise entre 1 et 10 µm (microns). Parmi les agents électrocatalytiques sont envisagés le platine, le palladium, les alliages et couples nickel-zinc, nickel-aluminium, titane-nickel, molybdène-nickel soufre-nickel, nickel-phosphore, cobalt-molybdène, lanthane-nickel.
  • Dans cette demande, la quantité d'agent électrocatalytique pourrait représenter jusqu'à 50 % du poids de la nappe liée, une teneur comprise entre 1 et 30 % dudit poids étant préconisée.
  • Toutefois l'ensemble des matériaux susceptibles d'être préparés selon l'enseignement de cette demande européenne, pour autant qu'ils soient électroactivés présentent au moins l'un des inconvénients ci-après :
    • le recours à des fibres non conductrices rendues conductrices par métallisation , telles des fibres d'amiante nickelées, ou à des libres de carbone nickelées est non seulement coûteux, ce qui limite le développement à l'échelle industrielle, mais ne saurait remplacer l'agent électrocatalytique sur le strict plan de l'efficacité ; par ailleurs ces fibres peuvent être altérées par les traitements thermiques.
    • le recours au dépôt électrochimique d'un alliage Ni,Zn par exemple, sur une nappe précathodique (c'est-à-cire une nappe de fibres, composite et déposée sur une cathode élémentaire, cette nappe remplissant notamment la fonction usuelle d'une cathode) présente le défaut majeur de n'activer la nappe qu'en surface, le coeur n'en étant pas touché, ce qui diminue notablement les avantages escomptés d'une électrode volumique ; en outre l'électroactivateur étant situé à l'interface diaphragme/précathode, la majeure partie du dégagement d'hydrogène se déroule à cette interface et contribue à la désolidarisation de l'ensemble. Au surplus, une telle nappe ne peut que difficilement être couplée à un diaphragme, en raison de la couche métallique formée à sa surface,
    • l'incorporation du composé Ni-Al sous forme de poudre dans ce type de matériaux pour réaliser des éléments cathodiques, ne permet pas d'augmenter leurs performances de manière satisfaisante comme le montre la comparaison des valeurs de la tension (aux bornes de l'électrolyseur) d'extrapolation à intensité nulle (ΔUI->o), respectivement obtenues sans activation et avec activation rappelées dans le dernier tableau de la demande européenne en cause.
  • Dans cette même demande de brevet, il a également été proposé un procédé de fabrication de ces matériaux qui consiste à préparer une suspension comprenant les fibres conductrices et le liant, puis à éliminer le milieu liquide et à sècher la nappe obtenue. La suspension peut également renfermer des fibres non-conductrices, des agents porogènes et/ou des agents catalytiques.
  • La nappe peut être formée par filtration de la suspension à travers un matériau fortement poreux, sous vide programmé, puis séchée pendant de 1 à 24 h à une température comprise entre 70 et 120°C, puis liée par chauffage à une température de 5 à 50°C supérieure au point de fusion ou de ramollissement du polymère fluoré pendant une durée pouvant aller de 2 à 60 mn.
  • Pour finir, il a également été proposé dans cette demande européenne l'application des matériaux dont il vient d'être question à la réalisation de matériaux composites par association desdits matériaux avec une cathode élémentaire constituée par une surface métallique et l'application selon laquelle ladite association est réalisée par filtration de la suspension contenant les fibres et le polymère fluoré directement au travers de ladite cathode élémentaire, suivie de la fusion du liant.
  • Par ailleurs, dans la demande de brevet européen n° 86/420184.3 il a été montré l'importance, tant sur le plan de la qualité des matériaux microporeux renfermant des fibres conductrices de l'électricité telles des fibres de carbone ou de graphite, que sur le plan de la réalisation à l'échelle industrielle de tels matériaux par filtration sous vide d'une suspension de fibres et de liant, du caractère monodispersé des longueurs des fibres utilisées.
  • Par distribution monodisperse, on entend une distribution des longueurs telles que la longueur d'au moins 80 %, et avantageusement 90 % des fibres correspond à la longueur moyenne des fibres à ± 20 % près et, avantageusement à ± 10 % près.
  • Selon un mode opératoire avantageux la longueur moyenne des fibres est, au plus, égale au diamètre des perforations du substrat rigide perforé sur lequel est déposée la nappe fibreuse.
  • Il a également été montré dans la demande de brevet européen n° 86/420237.9 l'importance, tant sur le plan de la microporosité que sur celui de la consolidation des matériaux microporeux, du recours à certains dérivés a base de silice, comme agent de formation du réseau de liant à base de latex d'un polymère fluoré et plus particulièrement lorsque des fibres de carbone ou de graphite sont amenées à être liées par un latex de polytétrafluoroéthylène.
  • L'ensemble des travaux antérieurs rappelés ci-avant témoigne de l'importance des divers perfectionnements apportés à la technique de base et des difficultés technologiques rencontrées lors du développement à l'échelle industrielle d'une technique dont l'intérêt de principe n'est pas contesté.
  • Un but de la présente invention réside dans l'obtention de matériaux électroactivés, améliorés sur la plan de leurs performances électrocatalytiques et dont les propriétés mécaniques sont maintenues, voire améliorées, notamment par une plus grande cohésion de l'ensemble.
  • Un autre but de la présente invention réside dans la préparation de matériaux composites électroactivés de structure poreuse, améliorés tant sur le plan de leurs performances électriques et catalytiques que sur celui de leurs propriétés mécaniques et/ou physiques.
  • La présente invention a donc pour objet l'obtention d'un matériau électroactivé comprenant des fibres, dont une partie au moins est conductrice de l'électricité, et un liant, choisi parmi les polymères fluorés, ledit matériau présentant une résistivité inférieure à O,4 ohm.cm, et étant caractérisé en ce qu'il comprend au moins un agent électrocatalytique actif uniformément réparti dans sa masse, ledit agent étant choisi dans le groupe constitué par les métaux de Raney et les alliages de Raney dont on a éliminé la majeure partie du (des) métal (métaux) facilement éliminable(s), et leurs mélanges.
  • Les matériaux préférés obtenus selon l'invention sont ceux dans lesquels ledit agent représente de 30 à 70 % du poids de l'ensemble (fibres + liant + agent électrocatalytique).
  • Elle a également pour objet, la préparation d'un matériau composite formé par l'association d'un matériau électroactivé défini ci-avant et d'une cathode élémentaire constituée d'une surface métallique et, la préparation d'un matériau composite formé par l'assemblage d'un matériau électroactivé, d'une cathode élémentaire, tous deux définis ci-avant et d'un diaphragme.
  • Le matériau électroactivé obtenu selon l'invention se présente sous forme d'une nappe, au sens donné à ce terme, par exemple dans la demande européenne n° 0132425, dont l'épaisseur est généralement comprise entre 0,1 et 5 mm et avantageusement, entre O,5 et 3 mm et dont la surface peut atteindre plusieurs dizaines de m², la forme pouvant en être très variée.
  • Le matériau en cause comprend des fibres dont une partie au moins est conductrice de l'électricité ; le choix des fibres conductrices et leur éventuelle association notamment avec des libres non conductrices sont dictés, notamment, par les propriétés électriques et mécaniques recherchées pour la nappe consolidée ainsi que par des considérations liées à la disponibilité, au coût et/ou à la facilité de mise en oeuvre.
  • On désignera présentement par fibres conductrices de l'électricité tout matériau sous forme de filament dont le diamètre est généralement inférieur à 1mm et de préférence compris entre 10⁻⁵ et 0,1 mm et dont la longueur est supérieure à O,5 mm et de préférence comprise entre 1 et 20 mm, ledit matériau présentant une résistivité égale ou inférieure à O,4 ohm.cm.
  • De telles fibres peuvent être entièrement constituées par un matériau intrinsèquement conducteur de l'électricité : à titre d'exemples de tels matériaux on peut citer les fibres métalliques, et en particulier les libres de fer, d'alliages ferreux ou de nickel, les fibres de carbone ou de graphite. On peut également utiliser des fibres issues de matériau non conducteur de l'électricité mais rendues conductrices par un traitement : on peut à titre d'exemple citer les fibres d'amiante, rendues conductrices par dépôt chimique ou électrochimique d'un métal tel que le nickel, ou les libres de zircone (ZrO₂), rendues conductrices par nickelage. Dans le cas de fibres rendues conductrices par traitement, on effectuera celui-ci dans des conditions telles que la fibre en résultant présente la résistivité mentionnée ci-avant.
  • Il est néanmoins à noter que les fibres métalliques sont relativement rares et ne présentent pas toujours les qualités mécaniques ou chimiques , telle la résistance à la corrosion, requises pour une application industrielle. Par ailleurs leur densité élevée rend difficile le contrôle de l'homogénéïté d'une suspension et, par suite, de l'isotropie du matériau final.
  • Par ailleurs, les fibres non conductrices, rendues conductrices peuvent être altérées par les traitements thermiques et la corrosion et de ce fait s'avèrent présenter les mêmes défauts que les fibres métalliques dont il vient d'être question.
  • Parmi les libres conductrices, la Demanderesse préconise le recours aux libres de carbone ou de graphite et plus particulièrement à celles présentant une longueur monodispersée au sens indiqué en tête du présent mémoire.
  • Sous réserve de respecter les valeurs maximales de résistivité indiquées ci-avant, les libres conductrices et, en particulier les fibres de carbone ou de graphite, peuvent être associées à des fibres non conductrices de l'électricité. Ces fibres se présentent généralement sous forme de filaments dont les caractéristiques géométriques sont analogues à celles données pour les fibres conductrices mais dont la résistivité sera, par convention, supérieure à 0,4 ohm.cm.
  • L'emploi de fibres non conductrices peut satisfaire diverses contraintes tant mécaniques qu'économiques fixées pour la nappe consolidée et/ou faciliter la mise en oeuvre de leur procédé de fabrication.
  • A titre d'illustration de fibres non conductrices au sens de l'invention , on mentionnera notamment les libres minérales telles que les fibres d'amiante, libres de verre, fibres de quartz, fibres de zircone, ou les fibres organiques telles que les fibres de polypropylène ou de polyéthylène, éventuellement halogéné et notamment fluoré, les fibres de polyhalogénovinylidène et notamment de polyfluorure de vinylidène ou encore les fibres des polymères fluorés dont il sera question plus loin à propos du liant des nappes conformes à l'invention.
  • La Demanderesse préconise l'emploi de fibres d'amiante en particulier en association avec des fibres de carbone ou de graphite.
  • Dans une association (fibres conductrices - fibres non conductrices) la proportion de fibres non conductrices ne devrait pas dépasser 50 % en poids et, de préférence 30 % en poids pour assurer notamment une consolidation satisfaisante de l'ensemble du matériau.
  • Le liant des matériaux conformes à la présente invention est constitué par un liant choisi parmi les polymères fluorés. Par polymère fluoré on entend un homopolymère ou un copolymère dérivé(s) au moins en partie de monomères oléfiniques totalement substitués avec des atomes de fluor ou totalement substitués avec une combinaison d'atomes de fluor et de l'un au moins des atomes de chlore, brome ou iode par monomère.
  • Des exemples d'homo- ou copolymères fluorés peuvent être constitués par les polymères et copolymères dérivés de tétrafluoroéthylène, hexafluoropropylène, chlorotrifluoroéthylène, bromotrifluoroéthylène.
  • De tels polymères fluorés peuvent aussi contenir jusqu'a 75 moles pour cent de motifs dérivés d'autres monomères éthyléniquement insaturés contenant au moins autant d'atomes de fluor que d'atomes de carbone, comme par exemple le (di)fluorure de vinylidène, les esters de vinyle et de perfluoroalkyle, tel que le perfluoroalcoxyéthylène.
  • On peut naturellement utiliser dans l'invention plusieurs homo- ou copolymères fluorés tels que définis ci-avant. Il va sans dire qu'on ne sortirait pas du cadre de l'invention en associant à ces polymères fluorés une faible quantité, par exemple jusqu'à 10 ou 15 % en poids de polymères dont la molécule ne renferme pas d'atomes de fluor, comme par exemple du polypropylène.
  • Le polymère fluoré utilise ici comme liant d'un ensemble de fibres et d'agent d'électrocatalytique peut être présent dans le matériau en cause dans des quantités variables dans de larges limites, compte-tenu de la teneur en fibres et en agent électrocatalytique, voire de la nature des divers constituants dudit matériau.
  • Toutefois pour assurer une bonne consolidation de l'ensemble, le liant représentera de préférence de 20 à 50 % en poids dans le sous-ensemble (Fibres + liant).
  • Le matériau électroactivé, obtenu selon l'invention, comprend également un agent électrocatalytique actif uniformément réparti dans sa masse, ledit agent étant choisi dans le groupe constitué par les métaux de Raney et les alliages de Raney dont on a éliminé la majeure partie du (des) métal (métaux) facilement éliminable(s), et leurs mélanges.
  • Par métal de Raney (ou du type de Raney) on entend essentiellement des formes catalytiques particulières de grande surface des métaux suivants : le nickel, le cobalt, le fer et le cuivre, éventuellement dopés ou stabilisés par au moins un métal choisi dans le groupe constitué par : le chrome, le cobalt, le titane, le molybdène, le tungstène, le vanadium et le manganèse.
  • Toutefois, sans pour autant vouloir être limitée par ses explications, la Demanderesse a constaté, dans le cadre de ses travaux que cet agent, désigné ci-avant par le vocable de métal de Raney, est susceptible de se transformer tant sur le plan chimique que physique par suite des traitements subis lors de la préparation du matériau et/ou lors de son utilisation.
  • Ces formes catalytiques particulières de grande surface sont généralement obtenues, de manière en soi connue, à partir d'un alliage contenant un ou plusieurs de ces métaux catalytiquement actifs et un ou plusieurs métaux facilement éliminables tels que l'aluminium, le silicium, le magnésium et le zinc ; ledit métal catalytiquement actif étant présent à l'état "dissout" dans le métal facilement éliminable. L'alliage de départ (ou précurseur) peut aussi renfermer des quantités mineures n'excèdant généralement pas 5 % en poids du(des) métal (métaux) actif(s), d'un ou plusieurs métaux stabilisants ou dopants choisis parmi le chrome, le cobalt, le titane, le molybdène, le tungstène, le vanadium et le manganèse. Lors du lessivage alcalin d'un tel précurseur, la majeure partie du (des) métal (métaux) facilement éliminable(s) est éliminée. Il doit être précisé ici que par l'expression "alliages de Raney, dont on a éliminé la majeure partie du (des) métal (métaux) facilement éliminable(s)", on entend, dans le cadre de la présente invention, des alliages "précurseurs" dont il vient d'être question, mais qui ont été traités en vue d'en éliminer la plus grande partie du métal (ou des métaux) facilement éliminable(s). Ces alliages peuvent renfermer néanmoins, après traitement, jusqu'à 20 % en poids de ces métaux facilement éliminables.
  • Les références ci-après sont citées à titre représentatif des connaissances générales en la matière et notamment à propos des diverses préparations :
    • Chemical Technology Review n° 94, "Hydrogenation catalysts"R.J. PETERSON/NOYES DATA Corp. 1977, "Preparation of Nickel Hydrogenation catalyst", pages 3-10.
    • R.L. AUGUSTINE "Catalytic Hydrogenation", Marcel Dekker Inc. NY 1965, pages 26-32, et annexes pages 147-149.
  • Une première classe de matériaux électroactivés selon l'invention, préférés, comprennent du nickel de Raney.
  • Une seconde classe de matériaux électroactivés selon l'invention, préférés, comprennent un alliage de nickel et d'aluminium éventuellement dopé au titane. Dans les alliages précurseurs, le nickel représente de 30 à 60 % en poids, le dopant de 0 à 5 % en poids, le complément étant l'aluminium, les phases identifiées sont principalement Ni₂Al₃ et NiAl₃ ; la présence de la phase NiAl doit être minimisée car elle est difficilement attaquable par les solution alcalines et conduit à une électroactivation non satisfaisante du matériau.
  • Ces matériaux renfermant du nickel présentent à une échelle plus ou moins importante selon leur constitution particulière l'avantage supplémentaire de réduire très notablement la teneur en chlorates de la soude produite par électrolyse d'une solution de chlorure de sodium lorqu'ils constituent une couche précathodique de l'élément cathodique de la cellule d'électrolyse.
  • Comme cela a déjà été indiqué en tête du présent mémoire l'agent électrocatalytique représente avantageusement de 30 à 70 % en poids de l'ensemble (Fibres + liant + agent électrocatalytique) et, de préférence au moins 35 % en poids.
  • Une caractéristique essentielle dudit matériau réside dans la répartition homogène dans sa masse du (ou des) agent(s) électrocatalytique(s) ; cette répartition homogène contribue pour une large part à conférer de bonnes propriétés électriques et électrocatalytiques au dit matériau.
  • Cette répartition homogène peut être assurée par diverses techniques parmi lesquelles on citera :
    • le recours à des agents électrocatalytiques ou à leurs précurseurs, se présentant sous forme de poudres de granulométrie appropriée,
    • dispersion préalable des divers constituants du matériau en milieu gazeux en lit fluidisé, suivie du dépôt sur une surface,
    • dispersion de l'ensemble des constituants en milieu liquide en présence d'agents de contrôle de la viscosité et/ou de la densité du milieu, pour obtenir une dispersion régulière et stable dans le temps et un dépôt homogène par diverses techniques telle la filtration.
  • Les matériaux obtenus selon la présente invention ont été définis par leurs constituants essentiels, c'est à dire les fibres, le liant et l'agent électrocatalytique. Il va de soi que ces matériaux peuvent à l'un ou l'autre moment de leur élaboration ou, pour satisfaire plus partculièrement des exigences supplémentaires liées notamment à leur destination finale, renfermer divers autres additifs, présents simultanément ou, pouvant se succéder dans les diverses phases d'élaboration desdits matériaux.
  • Ainsi les matériaux selon la présente invention peuvent également renfermer des agents hydrophiles.
  • L'utilisation de tels agents est notamment recommandée lorsque la nappe sera utillisée en milieu aqueux comme par exemple dans un procédé d'électrolyse de solutions aqueuses de chlorure de sodium. L'agent hydrophile contribue a améliorer la mouillabilité de la nappe de fibres en contrebalançant en quelque sorte le caractère fortement hydrophobe des polymères fluorés.
  • Les agents hydrophiles peuvent être choisis dans diverses familles de produits. Il peut d'une manière générale s'agir de produits liquides ou pulvérulents, de nature organique ou inorganique. A titre d'exemples de tels agents, on peut citer les agents tensio-actifs ou surfactifs, tels que le dioctylsulfosuccinate de sodium,... ou des composés minéraux tels que l'amiante en poudre ou en courtes fibres, la zircone, le dioxyde de cérium, le titanate de potassium, les oxydes hydratés et notamment l'alumine.
  • La quantité d'agent hydrophile pouvant être présente dans les nappes dépend bien évidemment de l'utilisation prévue pour cette nappe, de la quantité de produit hydrophobe (essentiellement le liant fluoré mais aussi certaines fibres contenues dans ces nappes) et de la nature de l'agent hydrophile. A tire d'ordre de grandeur, on peut indiquer que la quantité d'agent hydrophile peut atteindre 10 % du poids du liant fluoré et plus spécifiquement de 0,1 à 5 % du poids dudit liant.
  • Les matériaux peuvent encore renfermer des agents porogènes, dont le rôle est de règler leur porosité, porosité qui dans l'hypothése d'une application dans l'électrolyse, influence l'écoulement des liquides et l'évacuation des gaz. Il doit être entendu que lorsqu'il est fait appel à de tels agents porogènes, le matériau final dont la porosité aura, sous l'effet de décomposition ou d'élimination de ces agents, été réglée ou modifiée, ne renfermera en principe plus de tels agents. A titre d'illustration des agents porogènes on mentionnera les sels minéraux, qu'on pourra ensuite éliminer par lixivation et les sels éliminables par décomposition chimique ou thermique auxquels on donne la préférence.
  • Ces divers produits peuvent être notamment choisis parmi les sels alcalins ou alcalino-terreux, tels que les halogénures sulfates, sulfinates, bisulfites, phosphates, carbonates, bicarbonates. On peut également citer l'alumine amphotère, et surtout la silice, qu'on pourra éliminer en milieu alcalin.
  • Il va sans dire que la quantité et la granulométrie des agents porogènes- lorsqu'on utilise de tels agents- est étroitement liée à l'application à laquelle les matériaux sont destinés. A titre simplement d'ordre de grandeur, on précisera que la granulométrie des agents porogènes varie le plus souvent entre 1 et 50 µm, et que la quantité est choisie en fonction de la porosité désirée, cette porosité pouvant atteindre jusqu'à 90 % , voire davantage (selon la norme ASTM D 276-72)
  • La présente invention a également pour objet l'obtention d'un matériau composite formé par l'association d'au moins un matériau électroactivé précédemment défini et d'une cathode élémentaire constituée par une surface métallique. Par cathode éléméntaire on entend la structure métallique généralement en fer ou en nickel, essentiellement constituée par un grillage ou une pièce de métal perforé et jouant le rôle de cathode dans une cellule d'électrolyse. Cette cathode élémentaire peut se composer d'une ou d'un assemblage de surfaces planes ou, dans le cas de cellules d'électrolyse du type "doigt de gant" se présenter sous forme de cylindre dont la directrice est une surface plus ou moins complexe, en général sensiblement rectangulaire aux angles arrondis.
  • L'association d'un tel matériau et d'une cathode élémentaire peut être réalisée par diverses techniques qui apparaîtront à la lecture de ce qui suit.
  • Le matérieau composite résultant de ladite association constitue en fait la cathode elle-même d'une cellule d'électrolyse, cette application à la réalisation d'élément cathodique de cellule d'électrolyse constituant le domaine privilégié mais non exclusif des matériaux électroactivés selon l'invention. Dans l'hypothèse d'une telle application, on peut, selon une pratique maintenant courante, utiliser dans la cellule une membrane ou un diaphragme entre les compartiments anodique et cathodique. Dans le cas d'une membrane, laquelle peut être choisie parmi les nombreuses membranes d'électrolyse décrites dans la littérature, l'élément composite selon l'invention constitue un excellent support mécanique et assure une remarquable répartition du courant. Cette répartition du courant est naturellement liée à la structure particulière des éléments composites conformes à l'invention.
  • Nonobstant le gain de tension déjà observable par la présente de fibres conductrices, un gain supplémentaire de tension est obtenu par la présence au sein du matériau des agents électrocatalytiques particuliers et répartis de manière homogène dans la masse dudit matériau.
  • Le matériau composite, résultant de l'association d'un matériau électroactivé et d'une cathode élémentaire, qui vient d'être décrit peut être aussi associé à un diaphragme.
  • Ce diaphragme, qui peut être choisi parmi les nombreux diaphragmes pour electrolyse maintenant connus, peut être fabriqué séparément. Il peut aussi, et ceci constitue une modalité avantageuse , être fabriqué directement sur le matériau électroactivé ou sur le composite matériau électroactivé/cathode élémentaire. Cette fabrication directe est particulièrement aisée lorsque le diaphragme est fabriqué par filtration d'une suspension. Ces techniques de fabrication de membranes ou diaphragmes poreux et microporeux sont décrites par exemple dans les brevets français n° 2. 229.739, 2.280.435 ou 2.280.609 et les demandes de brevet français n° 81.9688 et 85.14327 le contenu de ces brevets et demande de brevet étant incorporé ici par référence.
  • Les matériaux composites, constitués par un assemblage comprenant, d'une face vers l'autre, la cathode élémentaire, le matériau électroactivé lié par le polymère fluoré et la membrane ou diaphragme poreux ou microporeux constituent des ensembles cohérents, bénéficiant de tous les avantages propres au matériau électroactivé et au composite matériau électroactivé/cathode élémentaire, auxquels s'ajoute l'avantage considérable représenté par la suppression de l'interface traditionnel diaphragme/cathode et de ses effets néfastes, à savoir une chute ohmique parasite dans l'émulsion gaz-liquide proche du substrat cathodique.
  • Comme cela a été indiqué précédement, les matériaux électroactivés selon la présente invention peuvent être préparés selon diverses techniques connues, (mise en oeuvre d'un lit fluidisé, suivie du dépôt sur une surface et de la consolidation ; préparation d'une nappe par voie papetière suivie de sa consolidation...) certaines d'entre elles devant néanmoins être adaptées et cela sans grandes difficultés pour un homme de l'art.
  • Toutefois la Demanderesse préconise un mode de réalisation par voie humide, procédé qui constitue également un objet de la présente invention. Ce type de procédé, est plus particulièrement approprié à la préparation d'un matériau à consolider sur une cathode de géométrie complexe utilisée dans l'industrie.
  • Ainsi, le procédé selon l'invention de fabrication d'un matériau électroactivé comprend les étapes suivantes :
    • (a) préparation en milieu aqueux d'une dispersion comprenant des fibres dont une partie au moins est conductrice de l'électricité, un liant choisi parmi les polymères fluorés, choisis parmi un homopolymère ou un copolymère dérivé(s) au moins en partie de monomères oléfiniques totalement substitués avec des atomes de fluor et l'un au moins des atomes de chlore, de brome ou d'iode par monomère, au moins un agent électrocatalytique, choisi dans le groupe des métaux de Raney,
    • (b) dépôt d'une nappe par filtration sous vide programmé de ladite suspension à travers un matériau de porosité élevée,
    • (c) élimination du milieu liquide et séchage de la nappe ainsi formée,
    • (d) frittage de ladite nappe,
    • (e) lessivage de la nappe au moyen d'une solution qui n'attaque pas la partie électrocatalytique dudit précurseur.
  • Selon une première variante, l'agent électrocatalytique, choisi dans le groupe des métaux de Raney, est utilisé sous la forme d'un précurseur dudit agent, comme les alliages de Raney, comprenant un ou plusieurs métaux facilement éliminables. Selon cette variante, la suspension préparée dans l'étape (a) comprend en outre au moins la silice en tant qu'agent porogène.
  • Selon une seconde variante, l'agent électrocatalytique est choisi dans le groupe des métaux de Raney.
  • D'une manière avantageuse, on incorpore dans le milieu aqueux une faible quantité d'un agent épaississant choisi par exemple parmi les polysaccharides naturels ou synthétiques.
  • Bien entendu la dispersion renfermera tous les constituants essentiels de la nappe, l'agent électrocatalytique pouvant être présent dans la dispersion sous forme d'un alliage précurseur au sens indiqué ci-avant et, le cas échéant, divers additifs tels que des fibres non conductrices, des agents hydrophiles, des agents porogènes et des agents dispersants ou des agent tensio-actifs, notamment des surfactifs anioniques sulfonique, couramment utilisés en pratique.
  • L'agent électrocatalytique ou son précurseur sera introduit sous forme d'une poudre de granulométrie généralement inférieure à 500 µm. Les produits du commerce se trouvent généralement sous forme d'une telle poudre dans un milieu liquide, généralement aqueux. Ces produits peuvent être ajoutés en l'état à la dispersion servant à former ladite nappe.
  • Dans l'hypothèse où l'on utilise des produits de granulométrie beaucoup plus grossière, il sera nécessaire de les broyer au préalable.
  • Le polymère fluoré se présente généralement sous forme de poudre sèche ou de fibres ou de dispersion aqueuse (latex) dont l'extrait sec représente de 30 à 70 %.
  • Comme cela est bien connu des spécialistes, la suspension en cause est en général fortement diluée, la teneur en matières sèches (fibres, polymère, agent électrocatalytique et additifs) représente de l'ordre de 1 à 5 % du poids de l'ensemble pour en faciliter la manipulation a l'échelle industrielle.
  • La nappe est alors formée, par filtration sous vide programmé, de la suspension à travers un matériau de porosité élevée telles des grilles métalliques par exemple, en fer, ou des toiles, par exemple en amiante, dont le vide de maille (ou les perforations) peut être compris entre 20 µm et 5 mm. Le programme de vide peut être continu et/ou par paliers, de la pression atmosphérique à la dépression finale (1,5.10⁻³ à 4.10⁻⁴ Pa).
  • La nappe ainsi formée, peut être séchée de manière en soi connue, et le cas échéant consolidée par chauffage en soi connu à une température supérieure au point de fusion ou de ramollissement du polymère fluoré.
  • Dans l'hypothèse où seule l'obtention de la nappe ainsi formée est visée, cette consolidation devra être réalisée et, dans l'hypothèse où un alliage précurseur au sens donné dans le présent mémoire, a été utilisé dans la confection de ladite nappe, la consolidation sera suivie de l'élimination du métal (ou des métaux) facilement éliminable(s) par lessivage de la nappe au moyen d'une solution qui n'attaque pas la partie électroactive de l'alliage. Ainsi, par exemple, l'élimination de la majeure partie de l'aluminium contenu dans un alliage précurseur à base de nickel, pourra être réalisée avantageusement par traitement à une température comprise entre 60 et 100°C pendant environ 30 mn à 6 h à l'aide d'une solution aqueuse d'hydroxyde de sodium dont la concentration sera comprise entre 100 et 180 g/l.
  • Dans la mesure où l'association de la nappe formée par filtration comme indiqué ci-avant et d'un diaphragme est visée, la Demanderesse préconise de réaliser ladite association par filtration sur La nappe éventuellement consolidée d'une suspension des constituants nécessaires à la fabrication du diaphragme dans un milieu liquide approprié, suivie de la consolidation du diaphragme ou de l'ensemble.
  • Ainsi, selon un premier mode de réalisation, on effectue les étapes suivantes :
    • (a) préparation en milieu aqueux d'une dispersion comprenant des fibres dont une partie au moins est conductrice de l'électricité, un liant choisi parmi les polymères fluorés, choisis parmi un homopolymère ou un copolymère dérivé(s) au moins en partie de monomères oléfiniques totalement substitués avec des atomes de fluor et l'un au moins des atomes de chlore, de brome ou d'iode par monomère (dans la suite on n'utilisera la dénomination : polymères fluorés), au moins un agent électrocatalytique, choisi dans le groupe des métaux de Raney, sous la forme d'un précurseur dudit agent, comme les alliages de Raney, comprenant un ou plusieurs métaux facilement éliminables (par la suite désigné par les termes : précurseur), et au moins la silice en tant qu'agent porogène,
    • (b) dépôt d'une nappe par filtration sous vide programmé de ladite suspension à travers une cathode élémentaire constituée d'une surface métallique présentant un vide de maille ou des perforations compris entre 20 µm et 5 mm,
    • (c) élimination du milieu liquide et séchage de la nappe ainsi formée,
    • (d) frittage de ladite nappe, à une température supérieure ou égale au point de fusion ou de ramollissement du polymère fluoré,
    • (e) lessivage de la nappe au moyen d'une solution qui n'attaque pas la partie électrocatalytique dudit précurseur,
    • (f) filtration, sur la nappe ainsi obtenue, d'une dispersion aqueuse comprenant au moins des fibres, un liant,
    • (g) élimination du milieu liquide et séchage du diaphragme ainsi formé,
    • (h) frittage dudit diaphragme, à une température supérieure ou égale au point de fusion ou de ramollissement du polymère fluoré.
  • Selon un second mode de réalisation de l'invention, on effectue les étapes suivantes:
    • (a) préparation en milieu aqueux d'une dispersion comprenant au moins des fibres dont une partie au moins est conductrice de l'électricité, un liant choisi parmi les polymères fluorés, au moins un agent électrocatalytique, choisi dans le groupe des métaux de Raney, sous la forme d'un précurseur dudit agent, et au moins la silice en tant qu'agent porogène,
    • (b) dépôt d'une nappe par filtration sous vide programmé de ladite suspension à travers une cathode élémentaire telle que définie ci avant,
    • (c) élimination du milieu liquide et séchage de la nappe ainsi formée,
    • (d) éventuellement, frittage de ladite nappe, à une température supérieure ou égale au point de fusion ou de ramollissement du polymère fluoré,
    • (e) filtration, sur la nappe ainsi obtenue, d'une dispersion aqueuse comprenant au moins des fibres, un liant,
    • (f) élimination du milieu liquide et séchage du diaphragme ainsi formé,
    • (g) frittage dudit diaphragme, à une température supérieure ou égale au point de fusion ou de ramollissement du polymère fluoré,
    • (h) lessivage au moyen d'une solution qui n'attaque pas la partie électrocatalytique dudit précurseur, réalisé en maintenant la face où la cathode élémentaire est apparente, en dépression par rapport à la face du diaphragme.
  • Un troisième mode de réalisation de l'invention, consiste à effectuer les étapes suivantes :
    • (a) préparation en milieu aqueux d'une dispersion comprenant au moins des fibres dont une partie au moins est conductrice de l'électricité, un liant choisi parmi les polymères fluorés, au moins un agent électrocatalytique choisi dans le groupe des métaux de Raney, sous la forme d'un précurseur dudit agent ou du métal de Raney,
    • (b) dépôt d'une nappe par filtration sous vide programmé de ladite suspension à travers une cathode élémentaire telle que définie précédemment,
    • (c) élimination du milieu liquide et séchage de la nappe ainsi formée,
    • (d) éventuellement, frittage de ladite nappe, à une température supérieure ou égale au point de fusion ou de ramollissement du polymère fluoré, et, dans le cas où l'agent électrocatalytique est utilisé sous la forme d'un précurseur, lessivage au moyen d'une solution qui n'attaque pas la partie électrocatalytique dudit précurseur,
    • (e) filtration, sur la nappe ainsi obtenue, d'une dispersion aqueuse comprenant au moins des fibres, un liant,
    • (f) élimination du milieu liquide et séchage du diaphragme ainsi formé,
    • (g) frittage dudit diaphragme, à une température supérieure ou égale au point de fusion ou de ramollissement du polymère fluoré.
  • Lorsque le liant du diaphragme est de même nature que le liant de la nappe, la consolidation intermédiaire de la nappe peut devenir surperflue, la consolidation peut être alors réalisée sur l'ensemble.
  • Cette consolidation peut alors être suivie d'un traitement approprié pour éliminer le porogène contenu dans le diaphragme déposé : lorsque la nappe renferme un métal de Raney tel du nickel de Raney et lorsque le diaphragme déposé renferme de la silice, la consolidation est réalisée sur l'ensemble et le traitement par une solution aqueuse d'hydroxyde de sodium décrit ci-avant est mis en oeuvre sur l'ensemble consolidé en vue d'éliminer la silice contenue dans le diaphragme. Lorsque la nappe renferme un alliage précurseur au sens donné ci-avant, tel un alliage de nickel et d'aluminium et, lorsque le diaphragme déposé renferme de la silice, la consolidation peut être réalisée séparément pour la nappe et le cas échéant, suivie du traitement par une solution aqueuse d'hydroxyde de sodium en vue d'éliminer l'aluminium ; le diaphragme sera alors déposé puis consolidé et traité en vu d'éliminer la silice ; la consolidation pourra avantageusement être réalisée sur l'ensemble puis, suivie d'un seul traitement par la solution aqueuse d'hydroxyde de sodium pour éliminer à la fois l'aluminium de la nappe et la silice du diaphragme.
  • Lorsque le liant du diaphragme est de nature distincte de celui de la nappe, il est nécessaire de consolider chaque membre de l'association séparément et de procéder, si besoin est à l'éliminaiton du métal (ou des métaux) facilement éliminable(s), après consolidation de la nappe que le diaphragme soit ou non déposé préalablement.
  • Il est à noter qu'une nappe obtenue par filtration et consolidée comme indiqué ci-avant et qui renferme un alliage précurseur tel un alliage de nickel et d'aluminium peut avantageusement être associée à un diaphragme par filtration d'une suspension des constituants du diaphragme dont le liant est dispersible dans le milieu liquide capable d'éliminer, par exemple, l'aluminium, sans attaquer le nickel dans le cas présent, l'opération de dépôt du diaphragme permettant à elle seule d'éliminer la majeure partie de l'aluminium contenu dans la nappe consolidée.
  • Telle est, par exemple, la possibilité offerte par le dépôt d'un diaphragme dont les constituants essentiels (fibres d'amiante, poudre de polychlorotétrafluoroéthylène) sont dispersibles dans une solution aqueuse d'hydroxyde de sodium renfermant le cas échéant du chlorure de sodium.
  • Ainsi, selon une première variante de ce mode de réalisation particulier, on effectue les étapes suivantes :
    • (a) préparation en milieu aqueux d'une dispersion comprenant au moins des fibres dont une partie au moins est conductrice de l'électricité, un liant choisi parmi les polymères fluorés, au moins un agent électrocatalytique, choisi dans le groupe des métaux de Raney, sous la forme d'un précurseur dudit agent, et au moins la silice en tant qu'agent porogène,
    • (b) dépôt d'une nappe par filtration sous vide programmé de ladite suspension à travers une cathode élémentaire telle que définie précédemment,
    • (c) élimination du milieu liquide et séchage de la nappe ainsi formée,
    • (d) éventuellement frittage de ladite nappe, à une température supérieure ou égale au point de fusion ou de ramollissement du polymère fluoré,
    • (e) filtration, sur la nappe ainsi obtenue, d'une dispersion dans une solution aqueuse d'hydroxyde de sodium, comprenant au moins des fibres, un liant, choisi parmi les polymères fluorés dispersibles dans une telle solution,
    • (f) élimination du milieu liquide et séchage du diaphragme ainsi formé,
    • (g) frittage dudit diaphragme, à une température supérieure ou égale au point de fusion ou de ramollissement du polymère fluoré.
  • Une seconde variante de ce mode de réalisation particulier de l'invention comprend les étapes suivantes :
    • (a) préparation en milieu aqueux d'une dispersion comprenant au moins des fibres dont une partie au moins est conductrice de l'électricité, un liant choisi parmi les polymères fluorés, au moins un agent électrocatalytique choisi dans le groupe des métaux de Raney,
    • (b) dépôt d'une nappe par filtration sous vide programmé de ladite suspension à travers une cathode élémentaire telle que définie précédemment
    • (c) élimination du milieu liquide et séchage de la nappe ainsi formée,
    • (d) éventuellement, frittage de ladite nappe, à une température supérieure ou égale au point de fusion ou de ramollissement du polymère fluoré,
    • (e) filtration, sur la nappe ainsi obtenue, d'une dispersion dans une solution aqueuse d'hydroxyde de sodium, comprenant au moins des fibres, un liant, choisi parmi les polymères fluorés dispersibles dans une telle solution,
    • (f) élimination du milieu liquide et séchage du diaphragme ainsi formé,
    • (g) frittage dudit diaphragme, à une température supérieure ou égale au point de fusion ou de ramollissement du polymère fluoré.
  • Les exemples ci-après illustrent la présente invention.
  • EXEMPLES Préparation A : Préparation de matériaux, le cas échéant électroactivés, utilisés comme nappes précathodiques.
  • On prépare une suspension à partir de :
    • 932 g d'eau adoucie,
    • 4 g de fibres d'amiante chrysotile dont la longueur moyenne est de 1 à 5 mm et dont le diamètre est de 20 nm (200 Angström) environ,
    • 0,13g de dioctylsulfosuccinate de sodium.
  • Après agitation rotative de 30 mn, on ajoute :
    • 4,7g de polytétrafluoroéthylène sous forme de latex à 60 % en poids d'extrait sec,
    • 13,4g de silice précipitée sous forme de particules de granulomètrie moyenne de 3 µm et dont la surface B.E.T. est de 250 m².g⁻¹,
    • 9,4g de fibres de graphite dont le diamètre est d'environ 10 µm et dont la longueur moyenne est de 1,5 mm.
  • Après agitation rotative de 30 mm, on ajoute l'agent électroactivateur, ou le cas échéant l'un de ses précurseurs, dont la nature et la quantité seront précisées dans les exemples et le tableau annexé.
  • L'ensemble est alors agité puis, on dépose par filtration 110 g du mélange ainsi obtenu sur un élément de cathode de 1 dm² constitué par une grille de fer tressé et laminé dont l'ouverture est de 2 mm et le diamètre des fils de 2 mm.
  • La filtration est conduite sous vide programmé comme suit :
    • 1000 Pa. min⁻¹ pendant 10 mn,
    • 5000 Pa. min⁻¹ pour atteindre une dépression finale de 25 000 Pa.
  • L'ensemble est alors sèché 12 h à 100°C puis le cas échéant consolidé par fusion du polymère fluoré à 350°C pendant 7 mn. (Cette consolidation séparée préalable n'est pas nécessaire dans l'hypothèse où l'élément précathodique est associé à un diaphragme dont le liant est le même que celui de la nappe.)
  • Préparation B : Préparation d'une dispersion aqueuse de fibres pour la réalisation d'un diaphragme microporeux et réalisation d'un matériau composite comprenant une nappe précathodique et un tel diaphragme
  • On prépare une suspension à partir de :
    • 953g d'eau adoucie,
    • 14,5g de fibres d'amiante chrysotile de diamètre 20 nm (200 Å) et de moins d'1 mm de longueur,
    • 14,5g de fibres d'amiante chrysotile de diamètre 20 nm (200 Å) et de longueur moyenne comprise entre 1 et 5 mm .
    • 0,29g de dioctylsulfosuccinate de sodium.
  • Après agitation rotative de 30 mn on ajoute :
    • 5,8g de polytétrafluoroéthylène sous forme d'un latex à 60 % en poids d'extrait sec,
    • 7,25g de silice précipité sous forme de particules de granulométrie moyenne de 3 µm et dont la surface B.E.T. est de 250 m². g⁻¹.
  • L'ensemble est alors agité pendant 30 mn, puis après un repos de 48 h, la suspension est de nouveau agitée et 350 g de ce mélange sont filtrés sur 1 dm² de nappe précathodique séchée mais non consolidée ou sur 1 dm² de toile d'amiante. La filtration est conduite sous vide programmé de 5000 Pa. mn⁻¹ pour atteindre 80 000 Pa.
  • Le composite ainsi obtenu est séché 12 h à 100 °C et consolidé par fusion du polymère fluoré à 350°C pendant 7 mn.
  • Préparation C : Préparation d'une dispersion aqueuse de fibres d'amiante pour la réalisation d'un diaphragme et réalisation d'un matériau composite formé d'une nappe précathodique et d'un diaphragme
  • On prépare une suspension à partir de :
    • 978g d'une solution aqueuse renfermant 140 g.l⁻¹ de soude et 160 g.l⁻¹ de chlorure de sodium,
    • 20g de fibres d'amiante chrysotile de diamètre 200 Å et de 1 à 5 mm de longueur moyenne,
    • O,11g d'isooctylphénoxypolyéthoxyéthanol,
    • 1,6g de polychlorotrifluoroéthylène sous forme de poudre de granulométrie moyenne de 50 µm (PCTFE).
  • Le mélange est agité par injection d'air pendant 30 mn. 500g de cette suspension sont filtrés sur 1 dm² de nappe précathodique préalablement consolidée.
  • Le composite obtenu est séché à 100°C pendant 12 h et la consolidation du diaphragme est réalisée par fusion du polymère (PCTFE) à 260°C pendant 30 mn.
  • Exemple 1 : Réalisation d'un matériau composite comprenant une nappe précathodique électroactivée par du nickel de Raney et un diaphragme microporeux.
  • Selon le mode opératoire A, décrit ci-avant, on prépare une nappe précathodique renfermant 3,5 g d'alliage de nickel et d'aluminium (Alliage de Raney 20 commercialisé par la société PROCATALYSE, renfermant 50 parties en poids de nickel pour 50 parties en poids d'aluminium), ledit alliage ayant été ajouté à la suspension sous forme d'une poudre dont la granulométrie moyenne est de 20 µm.
  • La nappe ainsi préparée et consolidée est alors traitée pendant 4 h à 80°C par une solution aqueuse renfermant 140 g.l⁻¹ d'hydroxyde de sodium , opération conduite dans le but d'éliminer l'aluminium.
  • Cette nappe est ensuite rincée soigneusement à l'eau adoucie et recouverte d'un diaphragme microporeux préparé séparément selon le mode opératoire B, par filtration sur 1 dm² de toile d'amiante.
  • On en élimine la majeure partie de la silice par attaque alcaline dans les conditions précédemment décrites pour le traitement de la nappe.
  • Essai témoin a: Réalisation d'un matériau composite non conforme à la présente invention.
  • On reproduit l'exemple 1, ci-avant en omettant le traitement de la nappe consolidée par la solution aqueuse d'hydroxyde de sodium et en la recouvrant d'un diaphragme microporeux analogue au précédent, à ceci près que l'élimination de la silice par traitement alcalin, est réalisée avant le dépôt dudit diaphragme sur l'élément précathodique.
  • Essai témoin b:
  • Une nappe précathodique dépourvue d'électroactivateur est préparée selon (A) puis recouverte d'un diaphragme amiante/PCTFE obtenu selon (C).
  • Essai témoin c: (Absence d'élément précathodique)
  • Une grille d'acier tressé et laminé est recouverte d'un diaphragme amiante/PCTFE en préparant une suspension dans laquelle 50 % des fibres d'amiante chrysotile de longueur de 1 à 5 mm ont été remplacées par des fibres de longueur comprise entre 5 et 20 mm. (Ce dispositif est représentatif des pratiques courantes dans l'industrie du chlore).
  • Exemple 2 :
  • Réalisation d'un matériau composite comprenant une nappe précathodique ladite nappe renfermant un alliage Raney à base de nickel et d'aluminium, et un diaphragme à base de fibres d'amiante et de PCTFE, l'élimination de la majeure partie de l'aluminium étant réalisée lors du dépôt du diaphragme.
  • Selon le mode opératoire A, décrit ci-avant, on prépare une nappe précathodique renfermant 3,5 g d'alliage de nickel et d'aluminium (Alliage de Raney 20 commercialisé par la société PROCATALYSE, renfermant 50 parties en poids de nickel pour 50 parties en poids d'aluminium), ledit alliage ayant été ajouté à la suspension sous forme d'une poudre dont la granulométrie moyenne est de 20 µm.
  • La nappe ainsi préparée est consolidée. On filtre alors 500 g de la suspension préparée selon le mode opératoire C, ci-avant, sur 1 dm² de cette nappe. On sèche alors le composite et consolide le diaphragme comme cela est indiqué dans la préparation C.
  • Exemple 3 :
  • On reproduit l'exemple 2, ci-avant, en modifiant le mode de dépôt du diaphragme par le fait qu'on opère celui-ci sous programme de vide contrôlé de 1000 Pa. min⁻¹ pour atteindre un vide final de 80 000 Pa.
  • Exemple 4 :
  • Réalisation d'un matériau composite comprenant une nappe précathodique électroactivée par du nickel de Raney et un diaphragme à base de fibres d'amiante et de PCTFE.
  • Une nappe précathodique contenant 2 g de nickel de Raney sous forme de poudre de 10 µm (Ni 20 commercialisé par PROCATALYSE, sous forme d'une poudre stockée dans l'eau) a été préparée suivant le mode opératoire (A) et consolidée.
  • Elle est recouverte d'un diaphragme amiante/PTCFE tel que celui préparé en C.
  • Exemple 5 :
  • Réalisation d'un matériau composite comprenant une nappe précathodique ladite nappe renfermant un alliage Raney à base de nickel et d'aluminium, et un diaphragme à base de libres d'amiante et de PTFE, le frittage et la consolidation de l'ensemble étant réalisés en une opération, l'élimination de l'aluminium de la nappe et de la silice du diaphragme étant réalisée en une opération d'attaque alcaline.
  • La nappe précathodique contenant 3,5 g de l'alliage précité est préparée selon le mode opératoire A ; après séchage, elle est recouverte d'un diaphragme tel que décrit en B. L'ensemble est consolidé puis soumis à une attaque alcaline par une solution aqueuse d'hydroxyde de sodium à 140 g.l⁻¹ à 60°C pendant 4 h. La face, où la grille d'acier est apparente, est maintenue en dépression (entre 400 et 20 000 Pa) par rapport à la face du diaphragme. L'opération est réalisée sur 1 dm² de composite.
  • Durant l'opération, la perméabilité augmente régulièrement.
  • Exemples 6 à 8 :
  • Réalisation de matériaux composites comprenant une nappe précathodique électroactivée par du nickel de Raney et un diaphragme Amiante/PTFE
  • Pour chaque exemple, on prépare une nappe contenant du nickel de Raney pyrophorique sous forme de poudre de 10 µm (Ni 20 de Procatalyse) selon le mode opératoire A, puis on le recouvre d'un diaphragme tel que celui décrit en B. On consolide l'ensemble et on élimine la silice par attaque alcaline.
  • Exemples 9 à 11 :
  • Ces exemples sont analogues respectivement aux exemples 6 à 8 ci-avant, à ceci près, que l'on utilise du nickel de Raney éteint, sous forme de poudre 50 µm (NiPS2 de DODUCO commercialisé par PROCATALYSE).
  • Exemples 12 à 14 :
  • Ces exemples sont analogues respectivement aux exemples 6 à 8 ci-avant, à ceci près, que l'on a utilisé du nickel de Raney dopé au titane, cet agent étant préparé à partir d'un alliage de nickel, aluminium et titane par attaque alcaline, comme cela est décrit dans J.of the Electrochemical Society "Electrochemical Science and Technology" Vol 124 n°1, p.1 - ( 1977). Cet alliage renferme 5 % en poids de titane et des quantités équipondérales d'aluminium et de nickel. Après broyage on en élimine l'aluminium puis on l'utilise dans la fabrication de nappes selon le mode opératoire A.
  • On a alors évalué les performances des divers matériaux composites, dont la fabrication vient d'être décrite, dans une cellule d'électrolyse qui présente les caractéristiques suivantes et dont les conditions de fonctionnement sont indiquées ci-après :
    • Anode en titane déployé, laminé, revêtu de TiO₂-RuO₂.
    • Elément cathodique en acier doux tressé et laminé ; fils de 2 mm, maille de 2 mm ou ledit élément recouvert de la nappe.
    • Distance anode-élément cathodique : 6 mm.
    • Surface active de l'électrolyseur : O,5 dm².
    • Cellule assemblée selon le type filtre-presse.
    • Densité de courant : 25 A dm⁻².
    • Température : 85°C.
    • Fonctionnement à chlorure anodique constant : 4,8 mole.l⁻¹.
    • Titre de la soude électrolytique : 180 g.l⁻¹.
  • Les conditions particulières et les résultats obtenus sont rassemblés dans le tableau (I) ci-après dans lequel les conventions suivantes sont utilisées :
    • ΔUi->o : tension d'extrapolation à intensité nulle (par tracé de la courbe ΔU = f(I)
      Figure imgb0001
      ).
    • ΔU₂₅ : tension aux bornes de l'électrolyseur à 25 A dm⁻².
    • RF : rendement Faraday.
    • CE : consommation énergétique du système en kilowattheure par tonne de chlore produit.
    • (ClO - 3
      Figure imgb0002
      )a : concentration en ClO - 3
      Figure imgb0003
      dans l'anolyte (mole. 1⁻¹).
    • (ClO - 3
      Figure imgb0004
      )c : concentration en ClO - 3
      Figure imgb0005
      dans la soude électrolytique.
    • T.R.(%) : taux de réduction des chlorates, anodiques, soit le rapport
      Figure imgb0006
    • M : Masse déposée en g.dm⁻².
  • Par nature de l'agent mis en oeuvre dans la préparation de la nappe, on entend le métal de Raney ou l'alliage précurseur mis dans la suspension et par la quantité précise, celle mise dans la suspension lors de la préparation selon (A).
  • Par nature du diaphragme, on entend le type de préparation B ou C de celui-ci.
  • Les résultats figurant au tableau (I) annexé montrent qu'à concentration en soude identique et pour un poids de diaphragme déposé équivalent, les rendements Faraday ne présentent pas de différences significatives.
  • Ils montrent également que le matériau composite résultant de l'association par dépôt direct d'un diaphragme sur une nappe précathodique électroactivée selon l'invention, offre des performances améliorées dans le domaine de l'électrolyse et notamment une moindre consommation énergétique et une diminution de la teneur en chlorate.
  • Les tensions d'extrapolation à intensité nulle mettent en évidence notamment l'importance de l'élimination de l'aluminium lorsque l'on met en oeuvre un alliage précurseur.
  • Par ailleurs, les performances indiquées sont maintenues après 3000 heures de fonctionnement.
  • Exemples 15 et 16, Essai témoin d :
  • On a évalué les performances des matériaux composites dont la préparation a été respectivement décrite dans les exemples 5 et 7 et dans l'essai témoin b ci-avant dans une cellule d'électrolyse analogue à celle précédemment décrite, à ceci près que l'anode en est constituée par du titane déployé, laminé et revêtu d'une couche de 0,7 µm d'épaisseur composée de 75 % en poids de platine et de 25 % en poids d'iridium.
  • Les conditions de l'électrolyse sont, par ailleurs, inchangées. Les résultats obtenus sont rassemblés dans le tableau (II) ci-après.
    Figure imgb0007
    Figure imgb0008
    Figure imgb0009

Claims (12)

  1. Procédé de fabrication d'un matériau électroactivé comprenant au moins un agent électrocatalytique actif uniformément réparti dans sa masse et présentant une résistivité inférieure à 0,4 Ω.cm, comprenant les étapes suivantes :
    (a) préparation en milieu aqueux d'une dispersion comprenant des fibres dont une partie au moins est conductrice de l'électricité, un liant choisi parmi les polymères fluorés, choisis parmi un homopolymère ou un copolymère dérivé(s) au moins en partie de monomères oléfiniques totalement substitués avec des atomes de fluor et l'un au moins des atomes de chlore, de brome ou d'iode par monomère, au moins un agent électrocatalytique, choisi dans le groupe des métaux de Raney, sous la forme d'un précurseur dudit agent, comme les alliages de Raney, comprenant un ou plusieurs métaux facilement éliminables, et au moins la silice en tant qu'agent porogène,
    (b) dépôt d'une nappe par filtration sous vide programmé de ladite suspension à travers un matériau de porosité élevée,
    (c) élimination du milieu liquide et séchage de la nappe ainsi formée,
    (d) frittage de ladite nappe,
    (e) lessivage de la nappe au moyen d'une solution qui n'attaque pas la partie électrocatalytique dudit précurseur.
  2. Procédé de fabrication d'un matériau composite à base d'un matériau électroactivé comprenant au moins un agent électrocatalytique actif uniformément réparti dans sa masse et présentant une résistivité inférieure à 0,4 Ω.cm, comprenant les étapes suivantes :
    (a) préparation en milieu aqueux d'une dispersion comprenant des fibres dont une partie au moins est conductrice de l'électricité, un liant choisi parmi les polymères fluorés, choisis parmi un homopolymère ou un copolymère dérivé(s) au moins en partie de monomères oléfiniques totalement substitués avec des atomes de fluor et l'un au moins des atomes de chlore, de brome ou d'iode par monomère, au moins un agent électrocatalytique, choisi dans le groupe des métaux de Raney, sous la forme d'un précurseur dudit agent, comme les alliages de Raney, comprenant un ou plusieurs métaux facilement éliminables, et au moins la silice en tant qu'agent porogène,
    (b) dépôt d'une nappe par filtration sous vide programmé de ladite suspension à travers une cathode élémentaire constituée d'une surface métallique présentant un vide de maille ou des perforations compris entre 20 µm et 5 mm,
    (c) élimination du milieu liquide et séchage de la nappe ainsi formée,
    (d) frittage de ladite nappe, à une température supérieure ou égale au point de fusion ou de ramollissement du polymère fluoré,
    (e) lessivage de la nappe au moyen d'une solution qui n'attaque pas la partie électrocatalytique dudit précurseur,
    (f) filtration, sur la nappe ainsi obtenue, d'une dispersion aqueuse comprenant au moins des fibres, un liant,
    (g) élimination du milieu liquide et séchage du diaphragme ainsi formé,
    (h) frittage dudit diaphragme, à une température supérieure ou égale au point de fusion ou de ramollissement du polymère fluoré.
  3. Procédé de fabrication d'un matériau composite à base d'un matériau électroactivé comprenant au moins un agent électrocatalytique actif uniformément réparti dans sa masse et présentant une résistivité inférieure à 0,4 Ω.cm, comprenant les étapes suivantes :
    (a) préparation en milieu aqueux d'une dispersion comprenant au moins des fibres dort une partie au moins est conductrice de l'électricité, un liant choisi parmi les polymères fluorés, choisis parmi un homopolymère ou un copolymère dérivé(s) au moins en partie de monomères oléfiniques totalement substitués avec des atomes de fluor et l'un au moins des atomes de chlore, de brome ou d'iode par monomère, au moins un agent électrocatalytique, choisi dans le groupe des métaux de Raney, sous la forme d'un précurseur dudit agent, comme les alliages de Raney, comprenant un ou plusieurs métaux facilement éliminables, et au moins la silice en tant qu'agent porogène,
    (b) dépôt d'une nappe par filtration sous vide programmé de ladite suspension à travers une cathode élémentaire constituée d'une surface métallique présentant un vide de malle ou des perforations compris entre 20 µm et 5 mm,
    (c) élimination du milieu liquide et séchage de la nappe ainsi formée,
    (d) éventuellement, frittage de ladite nappe, à une température supérieure ou égale au point de fusion ou de ramollissement du polymère fluoré,
    (e) filtration, sur la nappe ainsi obtenue, d'une dispersion aqueuse comprenant au moins des fibres, un liant,
    (f) élimination du milieu liquide et séchage du diaphragme ainsi formé,
    (g) frittage dudit diaphragme, à une température supérieure ou égale au point de fusion ou de ramollissement du polymère fluoré,
    (h) lessivage au moyen d'une solution qui n'attaque pas la partie électrocatalytique dudit précurseur, réalisé en maintenant la face où la cathode élémentaire est apparente, en dépression par rapport à la face du diaphragme.
  4. Procédé de fabrication d'un matériau composite à base d'un matériau électroactivé comprenant au moins un agent électrocatalytique actif uniformément réparti dans sa masse et présentant une résistivité inférieure à 0,4 Ω.cm, comprenant les étapes suivantes :
    (a) préparation en milieu aqueux d'une dispersion comprenant au moins des fibres dont une partie au moins est conductrice de l'électricité, un liant choisi parmi les polymères fluorés, choisis parmi un homopolymère ou un copolymère dérivé(s) au moins en partie de monomères oléfiniques totalement substitués avec des atomes de fluor et l'un au moins des atomes de chlore, de brome ou d'iode par monomère, au moins un agent électrocatalytique, choisi dans le groupe des métaux de Raney, sous la forme d'un précurseur dudit agent, comme les alliages de Raney (comprenant un ou plusieurs métaux facilement éliminables) et au moins la silice en tant qu'agent porogène,
    (b) dépôt d'une nappe par filtration sous vide programmé de ladite suspension à travers une cathode élémentaire constituée d'une surface métallique présentant un vide de maille ou des perforations compris entre 20 µm et 5 mm,
    (c) élimination du milieu liquide et séchage de la nappe ainsi formée,
    (d) éventuellement frittage de ladite nappe, à une température supérieure ou égale au point de fusion ou de ramollissement du polymère fluoré,
    (e) filtration, sur la nappe ainsi obtenue, d'une dispersion dans une solution aqueuse d'hydroxyde de sodium, comprenant au moins des fibres, un liant, choisi parmi les polymères fluorés dispersibles dans une telle solution,
    (f) élimination du milieu liquide et séchage du diaphragme ainsi formé,
    (g) frittage dudit diaphragme, à une température supérieure ou égale au point de fusion ou de ramollissement du polymère fluoré.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'on effectue les étapes de lessivage au moyen d'une solution aqueuse d'hydroxyde de sodium.
  6. Procédé de fabrication d'un matériau électroactivé comprenant au moins un agent électrocatalytique actif uniformément réparti dans sa masse et présentant une résistivité inférieure à 0,4 Ω.cm, comprenant les étapes suivantes :
    (a) préparation en milieu aqueux d'une dispersion comprenant des fibres dont une partie au moins est conductrice de l'électricité, un liant choisi parmi les polymères fluorés, choisis parmi un homopolymère ou un copolymère dérivé(s) au moins en partie de monomères oléfiniques totalement substitués avec des atomes de fluor et l'un au moins des atomes de chlore, de brome ou d'iode par monomère, au moins un agent électrocatalytique choisi dans le groupe des métaux de Raney,
    (b) dépôt d'une nappe par filtration sous vide programmé de ladite suspension à travers un matériau de porosité élevée,
    (c) élimination du milieu liquide et séchage de la nappe ainsi formée,
    (d) frittage de ladite nappe, à une température supérieure ou égale au point de fusion ou de ramollissement du polymère fluoré.
  7. Procédé de fabrication d'un matériau composite à base d'un matériau électroactivé comprenant au moins un agent électrocatalytique actif uniformément réparti dans sa masse et présentant une résistivité inférieure à 0,4 Ω.cm, comprenant les étapes suivantes :
    (a) préparation en milieu aqueux d'une dispersion comprenant au moins des fibres dont une partie au moins est conductrice de l'électricité, un liant choisi parmi les polymères fluorés, choisis parmi un homopolymère ou un copolymère dérivé(s) au moins en partie de monomères oléfiniques totalement substitués avec des atomes de fluor et l'un au moins des atomes de chlore, de brome ou d'iode par monomère, au moins un agent électrocatalytique choisi dans le groupe des métaux de Raney, sous la forme d'un précurseur dudit agent, comme les alliages de Raney, comprenant un ou plusieurs métaux facilement éliminables, ou du métal de Raney,
    (b) dépôt d'une nappe par filtration sous vide programmé de ladite suspension à travers une cathode élémentaire constituée d'une surface métallique présentant un vide de maille ou des perforations compris entre 20 µm et 5 mm,
    (c) élimination du milieu liquide et séchage de la nappe ainsi formée,
    (d) éventuellement, frittage de ladite nappe, à une température supérieure ou égale au point de fusion ou de ramollissement du polymère fluoré, et, dans le cas où l'agent électrocatalytique est utilisé sous la forme d'un précurseur, lessivage au moyen d'une solution qui n'attaque pas la partie électrocatalytique dudit précurseur,
    (e) filtration, sur la nappe ainsi obtenue, d'une dispersion aqueuse comprenant au moins des fibres, un liant,
    (f) élimination du milieu liquide et séchage du diaphragme ainsi formé,
    (g) frittage dudit diaphragme, à une température supérieure ou égale au point de fusion ou de ramollissement du polymère fluoré.
  8. Procédé de fabrication d'un matériau composite à base d'un matériau électroactivé comprenant au moins un agent électrocatalytique actif uniformément réparti dans sa masse et présentant une résistivité inférieure à 0,4 Ω.cm, comprenant les étapes suivantes :
    (a) préparation en milieu aqueux d'une dispersion comprenant au moins des fibres dont une partie au moins est conductrice de l'électricité, un liant choisi parmi les polymères fluorés, choisis parmi un homopolymère ou un copolymère dérivé(s) au moins en partie de monomères oléfiniques totalement substitués avec des atomes de fluor et l'un au moins des atomes de chlore, de brome ou d'iode par monomère, au moins un agent électrocatalytique choisi dans le groupe des métaux de Raney,
    (b) dépôt d'une nappe par filtration sous vide programmé de ladite suspension à travers une cathode élémentaire constituée d'une surface métallique présentant un vide de maille ou des perforations compris entre 20 µm et 5 mm,
    (c) élimination du milieu liquide et séchage de la nappe ainsi formée,
    (d) éventuellement, frittage de ladite nappe, à une température supérieure ou égale au point de fusion ou de ramollissement du polymère fluoré,
    (e) filtration, sur la nappe ainsi obtenue, d'une dispersion dans une solution aqueuse d'hydroxyde de sodium, comprenant au moins des fibres, un liant, choisi parmi les polymères fluorés dispersibles dans une telle solution,
    (f) élimination du milieu liquide et séchage du diaphragme ainsi formé,
    (g) frittage dudit diaphragme, à une température supérieure ou égale au point de fusion ou de ramollissement du polymère fluoré.
  9. Procédé selon l'une quelconque des revendications 3, 4, 7 ou 8, caractérisé en ce que l'on effectue une étape (d) de frittage dans le cas où les liants des dispersions des étapes (a) et (e) sont différents.
  10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on utilise des fibres conductrices de l'électricité choisies parmi les fibres de carbone ou de graphite, de préférence monodisperses dans leur longueur.
  11. Procédé selon l'une quelconque des revendications 2 à 4 et 7 à 10, caractérisé en ce que l'on utilise essentiellement des fibres d'amiante dans la dispersion de l'étape (e).
  12. Procédé selon l'une quelconque des revendications 2 ou 7, caractérisé en ce que l'on effectue une étape d'élimination du porogène si la dispersion de l'étape (e) en comprend par traitement alcalin.
EP19880420191 1987-06-19 1988-06-13 Préparation d'un matériau électroactivé à base de fibres conductrices et son utilisation pour réaliser des éléments cathodiques Expired - Lifetime EP0296076B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8708842A FR2616809B1 (fr) 1987-06-19 1987-06-19 Materiau electroactive a base de fibres conductrices, sa fabrication et son utilisation pour realiser des elements cathodiques
FR8708842 1987-06-19

Publications (2)

Publication Number Publication Date
EP0296076A1 EP0296076A1 (fr) 1988-12-21
EP0296076B1 true EP0296076B1 (fr) 1995-09-20

Family

ID=9352428

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19880420191 Expired - Lifetime EP0296076B1 (fr) 1987-06-19 1988-06-13 Préparation d'un matériau électroactivé à base de fibres conductrices et son utilisation pour réaliser des éléments cathodiques

Country Status (8)

Country Link
US (1) US4940524A (fr)
EP (1) EP0296076B1 (fr)
JP (2) JPH0745719B2 (fr)
AT (1) ATE128194T1 (fr)
CA (1) CA1340341C (fr)
DE (1) DE3854487T2 (fr)
ES (1) ES2077565T3 (fr)
FR (1) FR2616809B1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2616809B1 (fr) * 1987-06-19 1991-06-14 Rhone Poulenc Chimie Materiau electroactive a base de fibres conductrices, sa fabrication et son utilisation pour realiser des elements cathodiques
CN1048892A (zh) * 1989-05-24 1991-01-30 奥本大学 混合纤维复合材料结构及其制法和用途
FR2650842B1 (fr) * 1989-08-10 1992-01-17 Rhone Poulenc Chimie Perfectionnement d'un diaphragme comprenant des fibres d'amiante, association d'un tel diaphragme a un element cathodique et leur procede d'obtention
FR2650843B1 (fr) * 1989-08-10 1992-01-17 Rhone Poulenc Chimie Diaphragme, association d'un tel diaphragme a un element cathodique et leur procede d'obtention
DE4141416A1 (de) * 1991-12-11 1993-06-17 Schering Ag Verfahren zur beschichtung von oberflaechen mit feinteiligen feststoff-partikeln
JP2948393B2 (ja) * 1991-12-10 1999-09-13 日東電工株式会社 摺動材およびその成形に使用できる組成物
FR2706912B1 (fr) * 1993-06-25 1995-09-15 Rhone Poulenc Chimie Element cathodique depourvu de fibres d'amiante
US6180163B1 (en) 1993-11-22 2001-01-30 E. I. Du Pont De Nemours And Company Method of making a membrane-electrode assembly
FR2716207B1 (fr) * 1994-02-15 1996-05-31 Rhone Poulenc Chimie Matériau électroactive, sa préparation et son utilisation pour l'obtention d'éléments cathodiques.
US5525423A (en) * 1994-06-06 1996-06-11 Memtec America Corporation Method of making multiple diameter metallic tow material
US5584109A (en) * 1994-06-22 1996-12-17 Memtec America Corp. Method of making a battery plate
US6194099B1 (en) 1997-12-19 2001-02-27 Moltech Corporation Electrochemical cells with carbon nanofibers and electroactive sulfur compounds
US20030120116A1 (en) * 1999-07-08 2003-06-26 Daniel Ostgard Fixed-bed Raney-type catalysts
JP2001118570A (ja) * 1999-10-19 2001-04-27 Nec Corp ポリマー二次電池用電極の製造方法
FR2921073B1 (fr) * 2007-09-14 2009-12-04 Rhodia Operations Association d'un element cathodique et d'un diaphragme

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118294A (en) * 1977-09-19 1978-10-03 Diamond Shamrock Technologies S. A. Novel cathode and bipolar electrode incorporating the same
FR2404312A1 (fr) * 1977-09-27 1979-04-20 Anvar Electrode a gaz pour pile a combustible
DE2835506C2 (de) * 1978-08-12 1981-11-19 Deutsche Automobilgesellschaft Mbh, 3000 Hannover Biporöse Raney-Nickel-Elektrode und Verfahren zu deren Herstellung
CH656402A5 (de) * 1983-05-06 1986-06-30 Bbc Brown Boveri & Cie Kathodischer stromkollektor.
DE3486268T2 (de) * 1983-06-22 1994-07-07 Atochem Elf Sa Werkstoff auf Basis von stromleitfähigen Fasern, seine Herstellung und seine Anwendung, insbesondere zur Herstellung von katodischen Elementen.
DE3342969A1 (de) * 1983-11-28 1985-06-05 Varta Batterie Ag, 3000 Hannover Poroese gaselektrode
GB8509957D0 (en) * 1985-04-18 1985-05-30 Ici Plc Electrode
FR2616809B1 (fr) * 1987-06-19 1991-06-14 Rhone Poulenc Chimie Materiau electroactive a base de fibres conductrices, sa fabrication et son utilisation pour realiser des elements cathodiques

Also Published As

Publication number Publication date
JPH06322574A (ja) 1994-11-22
ATE128194T1 (de) 1995-10-15
CA1340341C (fr) 1999-01-26
EP0296076A1 (fr) 1988-12-21
JP2569267B2 (ja) 1997-01-08
US4940524A (en) 1990-07-10
FR2616809B1 (fr) 1991-06-14
FR2616809A1 (fr) 1988-12-23
JPS6415387A (en) 1989-01-19
DE3854487D1 (de) 1995-10-26
JPH0745719B2 (ja) 1995-05-17
ES2077565T3 (es) 1995-12-01
DE3854487T2 (de) 1996-05-09

Similar Documents

Publication Publication Date Title
EP0296076B1 (fr) Préparation d'un matériau électroactivé à base de fibres conductrices et son utilisation pour réaliser des éléments cathodiques
CA1236048A (fr) Materiau a base de fibres conductrices, sa fabrication et son utilisation notamment pour la realisation d'elements cathodiques
EP0412917B1 (fr) Diaphragme, association d'un tel diaphragme à un élément cathodique et leur procédé d'obtention
EP0630870A1 (fr) Elément cathodique dépourvu de fibres d'amiante
EP0870077B1 (fr) Element cathodique exempt d'amiante utilisable pour l'electrolyse de solution de chlorure de sodium
CA2183104C (fr) Materiau electroactive, sa preparation et son utilisation pour l'obtention d'elements cathodiques
EP0412916B1 (fr) Diaphragme comprenant des fibres d'amiante, association d'un tel diaphragme à un élément cathodique et procédé d'obtention
FR2519030A1 (fr) Procede de production de produit caustique, ensemble unitaire membrane-electrode et structure d'electrodes multicouches
EP0222671A1 (fr) Matériau microporeux, procédé pour son obtention, et applications notamment à la réalisation d'éléments cathodiques
EP0131978A1 (fr) Procédé de fabrication d'une électrode pour procédés électrochimiques et cathode pour la production électrolytique d'hydrogène
CA1095457A (fr) Diaphragmes permeables pour cellules d'electrolyse de solutions aqueuses d'halogenures de metaux alcalins
EP0319517B1 (fr) Matériau à base de fibres conductrices, sa fabrication et son utilisation notamment pour la réalisation d'éléments cathodiques
EP0037140B1 (fr) Procédé d'électrolyse de solutions aqueuses d'halogénure de métal alcalin, dans lequel on met en oeuvre un diaphragme perméable en matière polymérique organique hydrophobe
EP0007674A1 (fr) Procédé d'électrolyse d'une solution aqueuse de chlorure de métal alcalin dans une cellule à diaphragme
EP0642602A1 (fr) Procede de preparation de diaphragme microporeux
FR2727102A1 (fr) Procede d'elimination d'impuretes metalliques par voie electrochimique
BE872632A (fr) Electrocatalyseur et electrode a base d'oxydes de metaux du groupe du platine, reduits et thermiquement stabilises.
FR2803309A1 (fr) Diaphragme exempt d'amiante, comprenant des particules minerales non fibreuses, association le comprenant, son obtention et son utilisation
FR2921073A1 (fr) Association d'un element cathodique et d'un diaphragme

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19890412

17Q First examination report despatched

Effective date: 19910308

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950920

REF Corresponds to:

Ref document number: 128194

Country of ref document: AT

Date of ref document: 19951015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3854487

Country of ref document: DE

Date of ref document: 19951026

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951020

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2077565

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970616

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970620

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970711

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980630

NLS Nl: assignments of ep-patents

Owner name: CHLORALP

BERE Be: lapsed

Owner name: RHONE-POULENC CHIMIE

Effective date: 19980630

EUG Se: european patent has lapsed

Ref document number: 88420191.4

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000403

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010605

Year of fee payment: 14

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: GC

REG Reference to a national code

Ref country code: FR

Ref legal event code: GC

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020613

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050613

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070612

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20070618

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070628

Year of fee payment: 20

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20080613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080613