EP0312843B1 - Verfahren zur Wärmeübertragung und dessen Anwendung zum temperaturkontrollierten Kühlen von Walzgut - Google Patents

Verfahren zur Wärmeübertragung und dessen Anwendung zum temperaturkontrollierten Kühlen von Walzgut Download PDF

Info

Publication number
EP0312843B1
EP0312843B1 EP88116561A EP88116561A EP0312843B1 EP 0312843 B1 EP0312843 B1 EP 0312843B1 EP 88116561 A EP88116561 A EP 88116561A EP 88116561 A EP88116561 A EP 88116561A EP 0312843 B1 EP0312843 B1 EP 0312843B1
Authority
EP
European Patent Office
Prior art keywords
tube
section
roll stock
outlet
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88116561A
Other languages
English (en)
French (fr)
Other versions
EP0312843A1 (de
Inventor
Meinert Meyer
Klaus Küppers
Hans Kirchhoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag AG
Original Assignee
SMS Schloemann Siemag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19873735789 external-priority patent/DE3735789A1/de
Priority claimed from DE19873735790 external-priority patent/DE3735790A1/de
Application filed by SMS Schloemann Siemag AG filed Critical SMS Schloemann Siemag AG
Priority to AT88116561T priority Critical patent/ATE83405T1/de
Publication of EP0312843A1 publication Critical patent/EP0312843A1/de
Application granted granted Critical
Publication of EP0312843B1 publication Critical patent/EP0312843B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5732Continuous furnaces for strip or wire with cooling of wires; of rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0224Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for wire, rods, rounds, bars

Definitions

  • the invention relates to a device for temperature-controlled cooling of rolling stock during and after the roll deformation in successively arranged, flowed through water guide tubes, which in a nozzle head adjust the water with a presettable inlet pressure from a rolling nozzle which is brought into a feed pipe and which has a changeable ring nozzle - And definable outlet cross-section is supplied, the size of the outlet cross-section and / or the inlet pressure being dimensioned such that the ring nozzle becomes effective as an injection nozzle, mixtures of the water emerging from the outlet cross-section with air sucked in from the feed pipe with correspondingly different proportions of the mixture generated, and with a downstream wiper nozzle head.
  • a mixing chamber is arranged upstream of the feed pipe for the rolling stock brought into it, into which a pipe with a conical tip provided with a central through opening for the rolling stock protrudes.
  • This conical tip forms an annular nozzle with the conical inner wall of the mixing chamber.
  • To the Mixing chamber is tangentially connected to a water supply. The water supplied passes through the annular gap of the nozzle into the passage area of the rolling stock and swirls with air flowing in through the passage opening of the rolling stock. The swirled water-air flow travels through the guide tube in the opposite direction to the conveying direction of the rolling stock.
  • This device is not only structurally very complex and in particular uneconomical for a cooling section with a plurality of guide tubes arranged one behind the other and subject to high wear due to the high rolling stock speed, the main disadvantage is that the supply of air through the passage opening of the rolling stock is dependent on the Air flow rate depends on the rolling stock cross section. In addition, this air access cross-section changes abruptly each time the rolling stock runs in and out, so that the setting and maintenance of predeterminable mixing ratios of water and air can practically not be achieved with this device.
  • the invention has for its object to improve the devices mentioned above so that this setting and control of the mixing ratio of water and air and its maintenance during the cooling process is made possible.
  • This task is accomplished by a remotely controllable actuator for setting the outlet cross-sections of the ring nozzles and an elastically supported, cross-section of the outlet, which can be arranged in and out of the cover position, behind the outlet of the rolling stock guide tube through which the water-air mixture flows and in front of the wiper nozzle head covering deflection cover released.
  • the device allows the desired heat transfer coefficients to be changed and such numbers to be reproducibly set with the rest of the essentially unchanged initial conditions, such as water inlet pressure and water inlet temperature.
  • the pressure and flow conditions within the respective rolling stock guide tube can be kept in equilibrium and stable.
  • the elastically supported deflection cover deflects the cooling water jet emerging from the outlet downwards, if no rolling stock is moved through the rolling stock guide tube during breaks.
  • the deflection cover prevents the cooling water jet from acting on the rolling stock behind the outlet of the cooling tube, the cooling water jet the opposite wiper jet of the wiper nozzle head breaks through and may cause malfunctions.
  • the respective output and input of these partial tubes would be coaxially opposite each other at the front, the input of the second partial tube in a known manner as an inlet funnel and the output of the first partial tube from a tube section which tapers conically in the flow direction and which is in a cylindrical shape Pipe section merges, are formed, the tapered pipe section and the cylindrical pipe section have longitudinal recesses open to the pipe center axis. The total cross section of these longitudinal recesses is dimensioned such that the through cross section of these two pipe sections is approximately equal to the through cross section of the first partial pipe.
  • the division of the rolling stock guide tube has the further advantage that, in the event of any malfunctions during cooling operation, the sections of the rolling stock located in the guide tubes can be more easily removed from these shorter tubes.
  • a device which consists of a fixed nozzle head connected to the water supply with a conical funnel attachment and a rolling-material inlet pipe projecting and axially displaceable into this with a tapered start, can be designed as known from DE-U-71 34 676, that the inlet pipe is connected to the nozzle head by a screw thread and carries a worm wheel outside the nozzle head, which can be driven by a worm shaft.
  • levers connected to an actuator are articulated at the end of the rolling stock inlet pipe located outside the funnel attachment of the nozzle head and are rotatably mounted about an axis running at a distance transversely to the center axis of the rolling stock inlet pipe.
  • the levers can engage as a pair of levers with a sliding cam arranged at their free end in an annular groove arranged at the end of the rolling stock inlet pipe and with their other end can be fixedly connected to the axle mounted above or below the rolling stock inlet pipe, which at one free end has one on one Piston cylinder unit carries the actuated lever.
  • a rolling stock guide tube FR consisting of partial tubes 2a and 2b is arranged in a fixed manner in the housing 1 in a housing 1.
  • the nozzle head DK is placed on the input side E of the partial tube 2a and a centering projection ZA on the output side A of the partial tube 2b, behind which a deflection cover 4 is articulated in the housing 1 outside the tube part 2b.
  • a wiping nozzle head ADK is also arranged in a fixed manner in the housing 1 at a distance behind the outlet A of the partial pipe 2b.
  • the nozzle head DK and the scraper nozzle head ADK are connected to the water supply line ZL with a distribution pipe 5.
  • a collecting trough 6, which leads to a drain 7, is arranged below the partial pipes 2a and 2b and the nozzle head DK of the centering projection ZA and the wiping nozzle head ADK.
  • the nozzle head DK forms with a conical funnel attachment 8 and a thread-guided rolling stock inlet pipe 9, the conical tip 9a of which extends into the conical funnel attachment 8, an annular nozzle whose outlet cross section extends by turning the rolling stock inlet pipe 9 in the thread 8a of the nozzle head DK is changeable.
  • the rotary drive consists of a worm wheel 10 placed on the rolling stock inlet pipe 9 and the worm shaft 11 meshing therewith, the drive of which is not shown.
  • the water is fed to the nozzle head DK in the direction of arrow R3 from the distribution pipe 5 (FIG. 1).
  • the conical funnel attachment 8 of the nozzle head DK is connected to the inlet E of the guide tube FR.
  • the deflection cover 4 is arranged behind the output A of the wire guide tube FR in a manner not shown on the housing 1 about a pivot bearing DL, which is supported elastically by springs or other elements, not shown, from the dash-dotted line Deflection position in the passage position shown in full lines is pivotable.
  • a pipe extension 14 is arranged at the outlet A of the rolling stock guide pipe, which has a pipe section 14a which tapers conically in the flow direction and a cylindrical outlet pipe section 14b adjoining it (see FIG . 4 and 5).
  • Both pipe sections 14a and 14b have longitudinal grooves 16 open towards the pipe center axis, here with a cross-section in the form of a circular section. The total passage cross section of these longitudinal grooves 16 is approximately as large as the passage cross section of the partial pipe 2a to be fed.
  • the device is operated as follows:
  • the rolling stock (the wire rod) D is brought from a feed tube, not shown, in the direction of arrow R6 (FIGS. 1 and 2) into the inlet tube of the nozzle head DK and further into the input side E of the wire guide tube FR.
  • the cooling water passed through the distribution pipe 5 into the nozzle head DK passes through the outlet cross section of the ring nozzle formed by the conical tip 9a of the rolling stock inlet pipe 9 and the inner wall of the conical funnel attachment 8 into the considerably larger cross section behind this conical funnel attachment 8 a.
  • the conical tip 9a of the rolling stock inlet pipe 9 shifted axially in the direction of entry R6 until the negative pressure generated by the entry of the water from the exit cross section of the ring nozzle into the larger cross section of the conical funnel attachment 8 from the inner tube part of the rolling stock inlet pipe 9 contains the air surrounding the wire rod D in the pre-calculated subset.
  • the resulting water-air mixture is then carried on in the rolling stock guide pipe FR, enclosing the outer circumference of the wire rod D, cools it down during the passage through the rolling stock guide pipe FR and, after leaving the rolling stock guide pipe FR in the outlet A, in a known manner through one of the direction of travel R6 inclined opposite water jet from the ring nozzle of the wiper nozzle head ADK from the peripheral surface of the wire rod D removed.
  • the baffle cover 4 is in this operating phase in the passage position shown in full lines in FIG. 3.
  • the deflecting cover 4 moves into the deflection position shown in dash-dot lines and causes the cooling water jet emerging from the output A of the rolling stock guide tube FR to be deflected downwards, while at the same time maintains or stabilizes the pressure conditions necessary for the passage of rolling stock through the rolling stock guide tube FR.
  • deflecting the cooling water jet with the aid of the deflecting cover 4 prevents the cooling water jet from breaking through the opposing water jet of the wiping nozzle head ADK and thereby causing malfunctions or making it necessary that the water jet from the wiping nozzle head ADK must be considerably strengthened. which would result in a large additional water consumption.
  • the rolling stock guide pipe FR is, as can be seen from FIG. 1, divided into two partial pipes 2a and 2b.
  • the outlet and the inlet of the two partial tubes 2a, 2b are coaxially opposite each other at the separation point at the front.
  • the inlet of the second pipe section 2b is designed in a known manner as an inlet funnel and the outlet of the first pipe section 2a (see FIGS. 4 and 5) has pipe sections 14a and 14b which taper conically or cylindrically in the flow direction for centering the rolled material strand run.
  • FIG. 6 An example of the cooling process when the wire rod passes through the rolling stock guide tube FR is indicated in a diagram in FIG. 6.
  • the diagram shows the temperature profile of the outer circumference of the wire rod with curve 1, the average with curve 2 and the core with curve 3 and shows that the wire rod has already been cooled for 8 seconds after leaving the rolling stock guide tube FR so that a the entire wire rod cross-section has been reduced to 600 ° C.
  • the required low heat transfer coefficient can only be achieved with a water-air mixture with a high proportion of air and requires a very long cooling tube that is not suitable for rolling operation.
  • the end 9b of the rolling stock inlet pipe 9 located outside the funnel neck 8 of the nozzle head DK is mounted in a longitudinally displaceable manner in the nozzle head DK and is secured against rotation by a locking bolt 17. It has an annular groove 18 into which slide cams 19 engage, which are arranged at the free ends of a pair of levers 20 which are seated on an axis 21 which is supported in bearings 22 in the housing 1 of the device.
  • the axis 21 runs below the rolling stock inlet pipe 9 transversely to its central axis.
  • a control lever 23 is fixedly connected to the axis 21 and is articulated to a piston-cylinder unit (not shown) with the aid of the longitudinal connection 25.
  • the pair of levers 20 pivots in the same sense and by the same pivot angle.
  • the rolling stock inlet pipe 9 is displaced in one direction or the other of the arrow F in the nozzle head DK via the sliding cams 19 engaging in the annular groove 18 and thus the outlet cross section of the nozzle head formed between the funnel neck 8 and the conical tip 9 of the rolling stock inlet pipe 9 DK changed.
  • corresponding lever pairs can be arranged on axis 21 in a manner not shown on this axis 21, the joint pivoting angle of which is then determined by the actuating lever 23 via the piston-cylinder unit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Articles (AREA)

Description

  • Die Erfindung bezieht sich auf eine Vorrichtung zum temperaturkontrollierten Kühlen von Walzgut während und nach der Walzverformung in hintereinander angeordneten, von Wasser durchströmten Walzgutführungsrohren, denen in einem Düsenkopf das Wasser mit voreinstellbarem Zulaufdruck aus einer, das in einem Zuführrohr herangebrachte Walzgut umfassenden Ringdüse mit veränderbarem, einstell- und festlegbarem Austrittsquerschnitt zugeführt wird, wobei die Größe des Austrittsquerschnitts und/oder des Zulaufdrucks so bemessen ist, daß die Ringdüse als Injektionsdüse wirksam werdend, Mischungen des aus dem Austrittsquerschnitt austretenden Wasser mit, aus dem Zuführrohr angesaugter Luft mit entsprechend unterschiedlichen Anteilen an der Mischung erzeugt, und mit einem nachgeordneten Abstreifdüsenkopf.
  • Bei einer bekannten Vorrichtung dieser Gattung (US-A-2624178) ist dem Zuführrohr für das herangebrachte Walzgut eine Mischkammer vorgeordnet, in die ein, mit einer zentralen Durchgangsöffnung für das Walzgut versehenes Rohr mit konisch ausgebildeter Spitze ragt. Diese konisch ausgebildete Spitze bildet mit der konischen Innenwandung der Mischkammer eine ringförmige Düse. An die Mischkammer ist tangential eine Wasserzuleitung angeschlossen. Das zugeführte Wasser gelangt durch den Ringspalt der Düse in den Durchlaufbereich des Walzgutes und verwirbelt sich mit durch die Durchgangsöffnung des Walzgutes einströmender Luft. Der verwirbelte Wasser-Luftstrom wandert entgegengesetzt zur Förderrichtung des Walzgutes durch das Führungsrohr.
  • Diese Vorrichtung ist nicht nur konstruktiv sehr aufwendig und insb. bei einer Kühlstrecke mit einer Mehrzahl hintereinander angeordneter und in folge der hohen Walzgutgeschwindigkeit großem Verschleiß unterliegender Führungsrohre unwirtschaftlich, der wesentliche Nachteil besteht darin, daß die Zuführung der Luft durch die Durchlauföffnung des Walzgutes eine Abhängigkeit der Luftzutrittsmenge vom Walzgutquerschnitt bedingt. Darüberhinaus verändert sich beim Ein- und Auslaufen des Walzgutes jedesmal dieser Luftzutrittsquerschnitt schlagartig, so daß die Einstellung und Aufrechterhaltung vorbestimmbarer Mischungsverhältnisse von Wasser und Luft mit dieser Vorrichtung praktisch nicht erreichbar ist.
  • Auch ein ähnlicher Vorschlag (GB-A 2 143 452), nach dem der verwirbelte Wasser-Luftstrom nicht entgegengesetzt sondern in Förderrichtung des Walzgutes durch das Führungsrohr wandern soll brachte zwar eine Verbesserung des Aufrechterhaltens der Mischungsverhältnisse von Wasser und Luft mit sich, konnte aber ebenfalls die Einstellung und Aufrechterhaltung des Mischungsverhältnisses über den gesamten Kühlungsverlauf nicht gewährleisten. Auch ein weiterer Vorschlag (DE-A 27 14 019), das Wasserluftgemisch außerhalb der Führungsrohre zu bilden und mit Spritzrohren auf eine Öffnung der Führungsrohre zu leiten konnte sich im praktischen Betrieb nicht durchsetzen und erforderte ebenfalls einen erheblichen konstruktiven Aufwand.
  • Der Erfindung liegt die Aufgabe zugrunde die anfangs genannten Vorrichtungen so zu verbessern, daß mit diesen Einstellung und Regelung des Mischungsverhältnisses von Wasser und Luft und dessen Aufrechterhaltung während des Kühlungsverlaufs ermöglicht wird.
  • Diese Aufgabe wird durch einen fernsteuerbaren Stellantrieb für die Einstellung der Austrittsquerschnitte der Ringdüsen und einen, hinter dem Ausgang des von dem Wasser-Luft-Gemisch durchströmten Walzgutführungsrohres und vor dem Abstreifdüsenkopf angeordneten, in und außer Abdecklage bringbaren, elastisch abgestützten, den Querschnitt des Ausgangs teilweise abdeckenden Ablenkdeckel gelöst. Die Vorrichtung erlaubt es dabei die jeweils gewünschten Wärmeübergangszahlen zu verändern und bei im übrigen, im wesentlichen unveränderten Ausgangsbedingungen, wie Wassezulaufdruck und Wasserzulauftemperatur solche Zahlen reproduzierbar einzustellen. Die Druck- und Durchflußverhältnisse innerhalb des jeweiligen Walzgutführungsrohres können dabei im Gleichgewicht und stabil gehalten werden. In Verbindung mit der fernsteuerbaren Einstellung des Austrittsquerschnitts der Ringdüsen lenkt der elastisch gestützte Ablenkdeckel den aus dem Ausgang austretenden Kühlwasserstrahl nach unten ab, wenn in Pausen kein Walzgut durch das Walzgutführungsrohr bewegt wird. Der Ablenkdeckel verhindert dabei insb. bei größeren Durchmessern der Kühlrohre und des Walzgutes, daß der Kühlwasserstrahl den, hinter dem Ausgang des Kühlrohres auf das Walzgut wirkenden, dem Kühlwasserstrahl entgegengerichteten Abstreifstrahl des Abstreifdüsenkopfes durchbricht und dadurch ggfs. Betriebsstörungen hervorruft. Es besteht dabei weiter die erfindungsgemäße Möglichkeit, die Schwenkwinkelposition des Ablenkdeckels und die Umfangsposition des Walzgutes erfassende und meldende Sensoren und eine diesen nachgeschaltete Steuereinrichtung vorzusehen, die den Schwenkwinkel des Ablenkdeckels so einsteuert, daß dessen Außenkante einen festlegbaren Abstand über dem durchlaufenden Walzgut einhält. Mit dieser Maßnahme wird verhindert, daß die Kante des Ablenkdeckels auf dem Außenumfang des Walzgutes aufliegt und dabei Veränderungen bzw. Beschädigungen der Walzgutoberfläche hervorruft.
  • Schließlich besteht in vorteilhafter Weiterbildung noch die Möglichkeit, das Walzgutführungsrohr in zwei Teilrohre aufzuteilen, wenn die rechnerisch erforderliche Länge eines einzigen Rohres einen zu großen Druckabfall im Rohr zur Folge haben würde. In diesem Fall würde bei diesen Teilrohren deren jeweiliger Ausgang und Eingang sich koaxial stirnseitig mit Abstand einander gegenüberliegen, wobei der Eingang des zweiten Teilrohres in bekannter Weise als Einlauftrichter und der Ausgang des ersten Teilrohres aus einem sich in Strömungsrichtung konisch verjüngenden Rohrabschnitt, der in einen zylindrischen Rohrabschnitt übergeht, ausgebildet sind, der sich konisch verjüngende Rohrabschnitt und der zylindrische Rohrabschnitt zur Rohrmittenachse hin offene Längsausnehmungen aufweisen. Der Gesamtquerschnitt dieser Längsausnehmungen wird dabei so bemessen, daß der Durchgangsquerschnitt dieser beiden Rohrabschnitte etwa gleich dem Durchgangsquerschnitt des ersten Teilrohres ist.
  • Die Aufteilung des Walzgutführungsrohres bringt den weiteren Vorteil mit sich, daß bei etwaigen Störungen während des Kühlbetriebes die in den Führungsrohren befindlichen Walzgutabschnitte einfacher aus diesen kürzeren Rohren ausgebracht werden können.
  • Eine Vorrichtung gemäß der Erfindung, die aus einem ortsfesten, mit der Wasserzufuhr verbundenen Düsenkopf mit konischem Trichteransatz und einem mit konisch angespitztem Anfang in diesen ragenden und axial verschiebbaren Walzguteinlaufrohr besteht, kann wie aus DE-U-71 34 676 bekannt, so ausgebildet sein, daß das Einlaufrohr mit dem Düsenkopf durch ein Schraubgewinde verbunden ist und außerhalb des Düsenkopfes ein Schneckenrad trägt, das von einer Schneckenwelle antreibbar ist. Es besteht auch die Möglichkeit, die Vorrichtung so auszubilden, daß an dem außerhalb des Trichteransatzes des Düsenkopfes befindlichen Ende des Walzguteinlaufrohres mit einem Stellantrieb verbundene Hebel angelenkt und um eine mit Abstand quer zur Mittenachse des Walzguteinlaufrohres verlaufende Achse drehgelagert sind. Die Hebel können dabei als Hebelpaar mit einem an ihrem freien Ende angeordneten Gleitnocken in eine am Ende des Walzguteinlaufrohres angeordnete Ringnut eingreifen und mit ihrem anderen Ende mit der ober- oder unterhalb des Walzguteinlaufrohres gelagerten Achse fest verbunden sein, die an einem freien Ende einen an einem Kolbenzylinderaggregat angelenkten Stellhebel trägt. Es besteht weiterhin die Möglichkeit, die Einlaufrohre einer Mehrzahl parallel nebeneinander angeordneter Düsenköpfe über um eine gemeinsame Achse drehgelagerte Hebel mit dem Stellantrieb zu verbinden.
  • Die letztgenannten Ausbildungformen vermeiden, den bei der Verwendung von Schneckenrädern möglichen Nachteil, daß sich Schraubgewinde und Schneckenrad durch Selbsthemmung festsetzen, und die Einstellung mehrerer parallel nebeneinander angeordneter Düsenköpfe läßt sich über einen einzigen Antrieb synchronisieren.
  • Die Erfindung wird anhand dem in der Zeichnung dargestellten Ausführungsbeispieles näher erläutert. In der Zeichnung zeigen
  • Figur 1
    die Gesamtvorrichtung von der Seite gesehen im Axialschnitt,
    Figur 2 u. 3
    Einzelheiten aus Fig. 1 ebenfalls im Axialschnitt in vergrößertem Maßstab,
    Figur 4 u. 5
    eine weitere Einzelheit aus Fig. 1 im Axial-und im Radialschnitt im vergrößertem Maßstab,
    Figur 6 u. 7
    Temperaturdiagramme von Abläufen der Arbeitsverfahren,
    Figur 8
    eine andere Ausbildungsform der Vorrichtung im Axialschnitt und
    Figur 9
    einen Schnitt nach der Linie A-A durch Fig. 8.
  • Wie aus den Fig. 1 bis 3 zu ersehen ist in einem Gehäuse 1 ein aus Teilrohren 2a und 2b bestehendes Walzgutführungsrohr FR ortsfest im Gehäuse 1 angeordnet. Auf die Eingangsseite E des Teilrohres 2a ist der Düsenkopf DK aufgesetzt und auf die Ausgangsseite A des Teilrohres 2b ein Zentrieransatz ZA, hinter dem außerhalb des Rohrteils 2b ein Ablenkdeckel 4 im Gehäuse 1 angelenkt ist. Mit Abstand hinter dem Ausgang A des Teilrohres 2b ist ein Abstreifdüsenkopf ADK ebenfalls ortsfest im Gehäuse 1 angeordnet. Düsenkopf DK und Abstreifdüsenkopf ADK sind mit einem Verteilrohr 5 an die Wasserzuleitung ZL angeschlossen. Unterhalb der Teilrohre 2a und 2b sowie des Düsenkopfes DK des Zentrieransatzes ZA und des Abstreifdüsenkopfes ADK ist eine Sammelwanne 6 angeordnet, die zu einem Abfluß 7 führt.
  • Wie aus Fig. 2 ersichtlich bildet der Düsenkopf DK mit einem konischen Trichter-Ansatz 8 und einem gewindegeführten Walzgut-Einlaufrohr 9, dessen konische Spitze 9a in den konischen Trichter-Ansatz 8 ragt eine Ringdüse deren Austrittsquerschnitt durch Drehen des Walzgut-Einlaufrohres 9 im Gewinde 8a des Düsenkopfes DK veränderbar ist. Der Drehantrieb besteht aus einem auf das Walzgut-Einlaufrohr 9 aufgesetzten Schneckenrad 10 und der mit diesem kämmenden Schneckenwelle 11, deren Antrieb nicht dargestellt ist. Das Wasser wird dem Düsenkopf DK in Richtung des Pfeils R3 von dem Verteilrohr 5 (Fig. 1) zugeführt. Der konische Trichter-Ansatz 8 des Düsenkopfes DK ist mit dem Eingang E des Führungsrohres FR verbunden.
  • Wie Fig. 3 zeigt ist hinter dem Ausgang A des Drahtführungsrohres FR auf nicht dargestellte Weise am Gehäuse 1 um ein Drehlager DL schwenkbar der Ablenkdeckel 4 angeordnet, der durch nicht dargestellte Federn oder andere Elemente elastisch abgestützt aus der strichpunktiert wiedergegebenen Ablenkstellung in die in vollen Linien wiedergegebene Durchgangsstellung schwenkbar ist. Der in der mit R6 angedeuteten Durchlaufrichtung hinter diesem Ablenkdeckel 4 angeordnete Abstreifdüsenkopf ADK bildet wie der Düsenkopf DK mit einem konischen Trichter-Ansatz 12 und einem Einlaufrohr 13 eine Ringdüse deren Austrittsquerschnitt der Durchlaufrichtung R6 entgegengerichtet ist.
  • In Durchflußrichtung R6 vor dem Ablenkdeckel 4 (Fig. 4) ist am Ausgang A des Walzgutführungsrohres, wie bekannt, ein Rohransatz 14 angeordnet der einen sich in Durchflußrichtung konisch verjüngenden Rohrabschnitt 14a und einen sich daran anschließenden zylindrischen Austritts-Rohrabschnitt 14b aufweist (vgl. Fig. 4 und 5). Beide Rohrabschnitte 14a und 14b weisen zur Rohrmittenachse hin offene Längsausnuten 16, hier mit kreisabschnittsförmigem Querschnitt auf. Der Gesamtdurchgangsquerschnitt dieser Längsnuten 16 ist etwa so groß wie der Durchgangsquerschnitt des zuführenden Teilrohres 2a.
  • Die Vorrichtung wird erfindungsgemäß wie folgt betrieben:
    Das Walzgut (der Walzdraht) D wird von einem nicht dargestellten Zuführungsrohr in Richtung des Pfeils R6 (Fig. 1 und Fig. 2) herangebracht in das Einlaufrohr des Düsenkopfes DK ein- und weiter in die Eingangsseite E des Drahtführungsrohres FR geführt. Das über das Verteilrohr 5 in den Düsenkopf DK geleitete Kühlwasser tritt durch den von der konischen Spitze 9a des Walzgut-Einlaufrohres 9 und der Innenwand des konischen Trichter-Ansatzes 8 gebildeten Austrittsquerschnitt der Ringdüse in den dahinterliegenden, erheblich größeren Querschnitt dieses konischen Trichter-Ansatzes 8 ein. Durch Drehen des Walzgut-Einlaufrohres 9 im Gewinde 8a des Düsenkopfes DK wird die konische Spitze 9a des Walzgut-Einlaufrohres 9 axial in Einlaufrichtung R6 so lange verschoben, bis der durch den Eintritt des Wassers aus dem Austrittsquerschnitt der Ringdüse in den größeren Querschnitt des konischen Trichter-Ansatzes 8 erzeugte Unterdruck aus dem inneren Rohrteil des Walzgut-Einlaufrohres 9 die den Walzdraht D umgebende Luft in der vorberechneten Teilmenge ansaugt. Die entstandene Wasser-Luft-Mischung wird dann in dem Walzgutführungsrohr FR, den Außenumfang des Walzdrahtes D umschließend, weitergeführt, kühlt diesen während des Durchgangs durch das Walzgutführungsrohr FR ab und wird nach Verlassen des Walzgutführungsrohres FR im Ausgang A in bekannter Weise durch einen der Durchlaufrichtung R6 geneigt entgegengerichteten Wasserstrahl aus der Ringdüse des Abstreifdüsenkopfes ADK von der Umfangsfläche des Walzdrahtes D entfernt. Der Ablenkdeckel 4 befindet sich in dieser Betriebsphase in der in Fig. 3 in vollen Linien wiedergegebenen Durchgangsstellung. Wenn der durchlaufende Walzdraht D den Ausgang A des Walzgutführungsrohres FR verlassen hat und kein weiterer Walzdraht folgt, bewegt sich der Ablenkdeckel 4 in die in strichpunktiert wiedergegebene Ablenkstellung und bewirkt ein Ablenken des aus dem Ausgang A des Walzgutführungsrohres FR austretenden Kühlwasserstrahls nach unten, wobei er gleichzeitig die für den Walzgutdurchgang durch das Walzgutführungsrohr FR notwendigen Druckverhältnisse in diesem aufrechterhält bzw. stabilisiert. Durch das Ablenken des Kühlwasserstrahls mit Hilfe des Ablenkdeckels 4 wird, wie bereits erläutert, verhindert, daß der Kühlwasserstrahl den entgegengerichteten Wasserstrahl des Abstreifdüsenkopfes ADK durchbricht und dadurch Betriebsstörungen hervorruft bzw. es erforderlich macht, daß der Wasserstrahl aus dem Abstreifdüsenkopf ADK erheblich verstärkt werden muß, was einen großen zusätzlichen Wasserverbrauch zur Folge haben würde.
  • Das Walzgutführungsrohr FR ist, wie aus Fig. 1 zu ersehen, in zwei Teilrohre 2a und 2b aufgeteilt. Der Ausgang und der Eingang beider Teilrohre 2a, 2b liegen sich an der Trennstelle koaxial stirnseitig mit Abstand gegenüber. Der Eingang des zweiten Teilrohres 2b ist in bekannter Weise als Einlauftrichter ausgebildet und der Ausgang des ersten Teilrohres 2a (vgl. Fig. 4 und 5) weist Rohrabschnitte 14a bzw. 14b auf, die zur Zentrierung des durchgeführten Walzgutstranges in Strömungsrichtung konisch verjüngt bzw. zylindrisch verlaufen. Um sicherzustellen, daß das Walzgut D beim Durchgang durch diese beiden Rohrabschnitte 14a und 14b von einem noch ausreichenden Mantel des Wasser-Luft-Gemisches umgeben sind, dessen Kühlwirkung ja geringer ist als die eines nur aus Wasser bestehenden Wassermantels, ist der Durchgangsquerschnitt durch diese beiden Rohrabschnitte 14a und 14b des Rohransatzes 14 durch Längsnuten 16 vergrößert worden.
  • Ein Beispiel des Kühlungsverlaufs beim Durchgang des Walzdrahtes durch das Walzgutführungsrohr FR ist in Fig. 6 in einem Diagramm angedeutet. Das Diagramm gibt den Temperaturverlauf des Außenumfangs des Walzdrahtes mit der Kurve 1, des Durchschnitts mit der Kurve 2 und des Kerns mit der Kurve 3 wieder und zeigt, daß der Walzdraht nach Verlassen des Walzgutführungsrohres FR während 8 sec bereits so gekühlt worden ist, daß eine den gesamten Walzdrahtquerschnitt umfassende Absenkung der Temperatur auf 600°C erzielt worden ist. Die hierbei erforderliche niedrige Wärmeübergangszahl ist jedoch nur bei einem Wasser-Luft-Gemisch mit hohem Luftanteil erreichbar und erfordert ein sehr langes, für den Walzbetrieb nicht geeignetes Kühlrohr.
  • Aus dem Diagramm nach Fig. 7 geht hervor, daß ein ähnliches Ergebnis mit hintereinander angeordneten Walzgutführungsrohren erreicht werden kann, deren Gesamtlänge nur halb so groß ist wie die des Walzgutführungsrohres nach Fig. 6 (Abkühlung in 4 sec). Hierbei werden durch unterschiedliche Bemessung der Anteile von Luft und Wasser in dem Wasser-Luft-Gemisch unterschiedliche Wärmeübergangszahlen eingestellt, so daß eine Unterschreitung der Oberflächentemperatur unter eine werkstoffabhängige Oberflächentemperatur vermieden wird.
  • Bei der Ausbildung nach den Fig. 8 und 9 ist das außerhalb des Trichteransatzes 8 des Düsenkopfes DK befindliche Ende 9b des Walzgut-Einlaufrohres 9 längsverschiebbar im Düsenkopf DK gelagert und durch einen Sperrbolzen 17 drehgesichert. Es weist eine Ringnut 18 auf, in die Gleitnocken 19 eingreifen, die an den freien Enden eines Hebelpaares 20 angeordnet sind, das auf einer Achse 21 sitzt, die im Gehäuse 1 der Vorrichtung in Lagern 22 lagert. Die Achse 21 verläuft unterhalb des Walzgut-Einlaufrohres 9 quer zu dessen Mittenachse. Mit der Achse 21 ist ein Stellhebel 23 fest verbunden, der an ein nicht dargestelltes Kolben-Zylinder-Aggregat mit Hilfe der Längsverbindung 25 angelenkt ist.
  • Bei Betätigung des Kolben-Zylinder-Aggregates und die dabei herbeigeführte Schwenkbewegung des Stellhebels 23 schwenkt das Hebelpaar 20 im gleichen Sinne und um den gleichen Schwenkwinkel. Dabei wird das Walzgut-Einlaufrohr 9 in der einen oder anderen Richtung des Pfeils F im Düsenkopf DK über die in die Ringnut 18 eingreifenden Gleitnocken 19 verschoben und damit der zwischen dem Trichteransatz 8 und der konischen Spitze 9 des Walzgut-Einlaufrohres 9 gebildeter Austrittsquerschnitt des Düsenkopfes DK verändert.
  • Bei Anordnung mehrerer Düsenköpfe parallel nebeneinander können auf nicht dargestellte Weise auf der Achse 21 entsprechende Hebelpaare auf dieser Achse 21 nebeneinander angeordnet werden, deren gemeinsamer Schwenkwinkel dann über das Kolben-Zylinder-Aggregat durch den Stellhebel 23 bestimmt wird.
  • Liste der Bezugszeichen
  • 1
    Gehäuse
    2a
    Teilrohr
    2b
    Teilrohr
    3
    Tragwinkel
    4
    Ablenkwinkel
    5
    Verteilrohr
    6
    Sammelwanne
    7
    Abfluß
    8a
    Gewinde
    8
    Trichter-Ansatz
    9
    Walzgut-Einlaufrohr
    9b
    Ende (des Walzgut-Einlaufrohres 9)
    9a
    konische Spitze
    10
    Schneckenrad
    11
    Schneckenwelle
    12
    Trichter-Ansatz
    13
    Einlaufrohr
    14a
    konisch verjüngter Rohrabschnitt
    14
    Rohransatz
    14b
    Zylindrischer Austrittsrohrabschnitt
    15
    16
    Längsnuten
    17
    Sperrbolzen
    18
    Ringnut
    19
    Gleitnocken
    20
    Hebelpaar
    21
    Achse
    22
    Lager
    23
    Stellhebel
    24
    25
    Lenkverbindung
    E
    Eingang / Eingangsseite
    DK
    Düsekopf
    FR
    Walzgutführungsrohr
    A
    Ausgang / Ausgangsseite
    ZA
    Zentrieransatz
    ADK
    Abstreifdüsenkopf
    ZL
    Wasserzuleitung

Claims (6)

  1. Vorrichtung zum temperaturkontrollierten Kühlen von Walzgut während und nach der Walzverformung in hintereinander angeordneten, von Wasser durchströmten Walzgutführungsrohren (FR), denen in einem Düsenkopf (DK) das Wasser mit voreinstellbarem Zulaufdruck aus einer, das in einem Zuführrohr herangebrachte Walzgut umfassenden Ringdüse (8, 9a) mit veränderbarem, einstell- und festlegbarem Austrittsquerschnitt zugeführt wird, wobei die Größe des Austrittsquerschnitts und/oder des Zulaufdrucks so bemessen ist, daß die Ringdüse (8, 9a) als Injektionsdüse wirksam werdend, Mischungen des aus dem Austrittsquerschnitt austretenden Wassers mit, aus dem Zuführrohr angesaugter Luft mit entsprechend unterschiedlichen Anteilen an der Mischung erzeugt, und mit einem nachgeordneten Abstreifdüsenkopf (ADK),
    gekennzeichnet durch,
    einen fernsteuerbaren Stellantrieb (8a, 10, 11) für die Einstellung des Austrittsquerschnitts der Ringdüsen (8, 9a) und einen, hinter dem Ausgang (A) des von dem Wasser-Luftgemisch durchströmten Walzgutführungsrohr (FR) und vor dem Abstreifdüsenkopf angeordneten, in und außer Abdecklage bringbaren, elastisch abgestützten, den Querschnitt des Ausgangs (A) teilweise abdeckenden Ablenkdeckel (4).
  2. Vorrichtung nach Anspruch 1,
    gekennzeichnet durch,
    die Winkelposition des Ablenkdeckels (4) und die Umfangsposition des Walzgutes erfassende und meldende Sensoren, und eine diesen nachgeschaltete Steuereinheit, die den Schwenkwinkel des Ablenkdeckels (4) so einsteuert, daß dessen Außenkante einen festlegbaren Abstand über dem durchlaufenden Walzgut (D) einhält.
  3. Vorrichtung nach Anspruch 1,
    gekennzeichnet durch,
    an das außerhalb des Trichteransatzes (8) des Düsenkopfes (DK) befindlichen Ende (9b) des Walzguteinlaufrohres (9) angelenkte, um eine mit Abstand quer zu dessen Mittenachse verlaufende Achse drehgelagerte, mit einem Stellantrieb verbundene Hebel (20).
  4. Vorrichtung nach Anspruch 3,
    dadurch gekennzeichnet,
    daß die Hebel (20) als Hebelpaar mit an ihrem freien Ende angeordneten Gleitnocken (19) in einer am Ende des Walzguteinlaufrohres (9) angeordnete Ringnut (18) eingreifen und mit ihren anderen Enden mit der ober- oder unterhalb des Walzgut-Einlaufrohres (9) gelagerten Achse (21) fest verbunden sind, die an einem freien Ende einen an ein Kolben-Zylinder-Aggregat angelenkten Stellhebel (23) trägt.
  5. Vorrichtung nach Ansprüchen 3 und/oder 4,
    gekennzeichnet durch
    eine Mehrzahl von parallel nebeneinander angeordneten Düsenköpfen (DK), deren Walzgut-Einlaufrohre (9) über um eine gemeinsame Achse (21) drehgelagerte Hebel (20) mit dem Stellantrieb verbunden sind.
  6. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    daß das Walzgutführungsrohr (FR) in zwei Teilrohre (2a, 2b) aufgeteilt ist, deren jeweiliger Ausgang und Eingang sich koaxial stirnseitig mit Abstand einander gegenüberliegen, wobei der Eingang des zweiten Teilrohres (2b) in bekannter Weise als Einlauftrichter und der Ausgang des ersten Teilrohres (2a) aus einem sich in Strömungsrichtung konisch verjüngenden Rohrabschnitt (14a) besteht, der in einen zylindrischen Rohrabschnitt (14e) übergeht, und dabei beide Rohrabschnitte (14a, 14b) zur Rohrmittenachse hin offene nutenförmige Längsausnehmungen (16) aufweisen, deren Gesamtquerschnitt so bemessen ist, daß der Durchgangsquerschnitt dieser beiden Rohrabschnitte (14a, 14b) etwa gleich dem Durchgangsquerschnitt des ersten Teilrohres (2a) ist.
EP88116561A 1987-10-22 1988-10-06 Verfahren zur Wärmeübertragung und dessen Anwendung zum temperaturkontrollierten Kühlen von Walzgut Expired - Lifetime EP0312843B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88116561T ATE83405T1 (de) 1987-10-22 1988-10-06 Verfahren zur waermeuebertragung und dessen anwendung zum temperaturkontrollierten kuehlen von walzgut.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19873735789 DE3735789A1 (de) 1987-10-22 1987-10-22 Verfahren zur waermeuebertragung
DE3735790 1987-10-22
DE3735789 1987-10-22
DE19873735790 DE3735790A1 (de) 1987-10-22 1987-10-22 Arbeitsverfahren und vorrichtungen zum temperaturkontrollierten kuehlen von walzgut

Publications (2)

Publication Number Publication Date
EP0312843A1 EP0312843A1 (de) 1989-04-26
EP0312843B1 true EP0312843B1 (de) 1992-12-16

Family

ID=25861010

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88116561A Expired - Lifetime EP0312843B1 (de) 1987-10-22 1988-10-06 Verfahren zur Wärmeübertragung und dessen Anwendung zum temperaturkontrollierten Kühlen von Walzgut

Country Status (3)

Country Link
EP (1) EP0312843B1 (de)
JP (1) JPH01138012A (de)
DE (1) DE3876747D1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1280156B1 (it) * 1995-04-12 1998-01-05 Danieli Off Mecc Camera di raffreddamento di un prodotto laminato
IT1295566B1 (it) * 1997-06-05 1999-05-13 Danieli Off Mecc Procedimento di trattamento termico per laminati
CN101947564B (zh) * 2010-09-01 2012-11-21 山东钢铁股份有限公司 一种组合式穿水冷却器
CN103252366A (zh) * 2013-05-07 2013-08-21 攀钢集团江油长城特殊钢有限公司 一种冷却喷嘴及穿水冷却装置
CN113070354A (zh) * 2021-03-11 2021-07-06 青岛雷霆重工股份有限公司 一种线材轧制的冷却设备的反扑装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2624178A (en) * 1948-06-07 1953-01-06 Blaw Knox Co Cooling of the rod in rod rolling mills
US3323586A (en) * 1964-10-14 1967-06-06 Olin Mathieson Concentric tube heat exchanger with sintered metal matrix
DE1279605B (de) * 1964-12-21 1968-10-10 Roechlingsche Eisen & Stahl Mittel und Vorrichtung zum Kuehlen von zu Ringen gehaspeltem Walzdraht
DE1777343A1 (de) * 1967-02-08 1972-08-31 Schloemann Ag Einrichtung zum Entfernen von Kuehlwasser in einer Wasserkuehleinrichtung fuer schnellaufenden Walzdraht
DE7134676U (de) * 1971-09-11 1973-09-13 Kueppers K Einrichtung zum Entfernen von Kühl wasser in einer Wasserkuhleinrichtung für schnellaufenden Walzdraht
BE807882A (fr) * 1973-09-27 1974-05-27 Centre Rech Metallurgique Dispositif de refroidissement
BE807884A (fr) * 1973-11-27 1974-05-27 Centre Rech Metallurgique Dispositif pour refroidir des produits en acier lamines
SE405259B (sv) * 1975-03-25 1978-11-27 Wennberg Ab C J Sett vid avstrykning, tvettning i motstrom och torkning av i nagot medium ytbehandlade foremal av material i langa lengder samt anordning for genomforande av forfarandet
DE2714019C3 (de) * 1977-03-30 1980-08-07 Schloemann-Siemag Ag, 4000 Duesseldorf Vorrichtung zum Abkühlen von mit hoher Geschwindigkeit durch Führungsrohre laufenden Walzdraht
DE3309171A1 (de) * 1983-03-15 1984-09-20 Mannesmann AG, 4000 Düsseldorf Wasserkuehlstrecke fuer walzwarmes walzgut
LU84922A1 (fr) * 1983-07-18 1985-04-17 Centre Rech Metallurgique Procede et dispositifs de fabrication d'armatures a beton en acier sur train a fil a grande vitesse

Also Published As

Publication number Publication date
DE3876747D1 (de) 1993-01-28
EP0312843A1 (de) 1989-04-26
JPH01138012A (ja) 1989-05-30

Similar Documents

Publication Publication Date Title
DE2839552C3 (de) Düsenkopf zum Herstellen von Kunststoffgranulat
DE2500814B2 (de) Drosselvorrichtung für eine Druckgasleitung
EP0001391A1 (de) Vorrichtung in Form eines doppelwandigen Rohres zum Kühlen von Endlosprofilen
EP0805741B1 (de) Vorrichtung zum abkühlen und granulieren von kunststoff-strängen
DE3490020C1 (de) Venturiwascher fuer staubbeladene Gase
EP0312843B1 (de) Verfahren zur Wärmeübertragung und dessen Anwendung zum temperaturkontrollierten Kühlen von Walzgut
EP0931600B1 (de) Vorrichtung zum Entzundern von Walzgut
WO1987005992A1 (en) Device for selective insertion of cleaning elements into heat exchanger tubes
DE2602984A1 (de) Vorrichtung zum behandeln, insbesondere abschrecken und/oder beizen, eines sich bewegenden strangs, insbesondere eines gegossenen, metallischen strangs, mit einem stroemungsfaehigen medium
EP0144029B1 (de) Kühlrohr für eine Kühlstrecke zum schnellen Abkühlen von Walzdraht- oder Stabmaterial
AT523701B1 (de) Zweistoff-Schaftdüse mit verringerter Verstopfungsneigung
DE2822582C3 (de) Kühlmittelleit- und Walzgutführungseinrichtung für die intermittierende Kühlung von Walzgut, insbesondere von Draht, Feineisen o.dgl.
EP0250881B1 (de) Verfahren zum Aufbringen eines fliessfähigen Stoffes auf die Innenfläche eines Hohlkörpers und Einrichtung zur Durchführung des Verfahrens
DD283834A5 (de) Vorrichtung fuer die vergasung von feinkoernigen bis staubfoermigen brennstoffen
DE3735790A1 (de) Arbeitsverfahren und vorrichtungen zum temperaturkontrollierten kuehlen von walzgut
DE3145394C2 (de)
EP0724917A1 (de) Vorrichtung zum Reinigen der Innenwandung eines Weinfasses
CH677694A5 (de)
DE3018729A1 (de) Vorrichtung zum gleichzeitigen und kontinuierlichen zufuehren von pulverfoermigen feststoffen und fluessigkeiten in behandlungsmaschinen
CH654492A5 (de) Kuehleinrichtung fuer hohlwalzen.
DD159610A1 (de) Kuehlrohr in walzwerken
DE2604595C3 (de) Kühlrohr zum Kühlen von Walzdraht
DE2558832C2 (de) Vorrichtung für die Behandlung von Walzstahlerzeugnissen
DE10295852B4 (de) Vorrichtung zur regelbaren Kühlung von Walzgut
DE10295854B4 (de) Vorrichtung zur Wärmebehandlung und hydraulischen Förderung von Walzgut

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19881031

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE IT SE

17Q First examination report despatched

Effective date: 19901031

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE IT SE

REF Corresponds to:

Ref document number: 83405

Country of ref document: AT

Date of ref document: 19930115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3876747

Country of ref document: DE

Date of ref document: 19930128

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88116561.7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010925

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20011001

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011005

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030501

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051006