EP0307424A1 - Reinigungsverfahren für die indikatorelektrode eines titrators zur wasserbestimmung nach k. fischer und vorrichtung zu dessen durchführung - Google Patents

Reinigungsverfahren für die indikatorelektrode eines titrators zur wasserbestimmung nach k. fischer und vorrichtung zu dessen durchführung

Info

Publication number
EP0307424A1
EP0307424A1 EP19880902117 EP88902117A EP0307424A1 EP 0307424 A1 EP0307424 A1 EP 0307424A1 EP 19880902117 EP19880902117 EP 19880902117 EP 88902117 A EP88902117 A EP 88902117A EP 0307424 A1 EP0307424 A1 EP 0307424A1
Authority
EP
European Patent Office
Prior art keywords
electrode
voltage
cleaning method
indicator electrode
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19880902117
Other languages
English (en)
French (fr)
Inventor
Heinrich Maurer
Peter Wuhrmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tecan Schweiz AG
Original Assignee
Tecan AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tecan AG filed Critical Tecan AG
Publication of EP0307424A1 publication Critical patent/EP0307424A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/38Cleaning of electrodes

Definitions

  • the invention relates to a cleaning method for the indicator electrode of a titrator for water determination according to K. Fischer and a device for carrying it out.
  • a mechanical one Cleaning is often unavoidable, but should be carried out as rarely as possible, since the measuring cell must be opened for this purpose and air humidity automatically penetrates, which must be titrated out before the next determination.
  • the protruding platinum pins of the electrode can be bent or broken off. While the breakage of a platinum pin renders the electrode unusable, bending the platinum pin creates changed electrode parameters, which are reflected in a changed or unfavorable end point indication. As a result, the precision and correctness of the titration may deteriorate.
  • the invention seeks to remedy this.
  • the invention has for its object to provide a cleaning method and an apparatus for performing the same, which enables regular self-cleaning of the platinum electrodes.
  • the invention achieves the stated object with a cleaning method which has the features of claim 1 and a device for carrying out the cleaning method which has the features of claim 7.
  • a further improvement of the invention consists in the selection of a suitable geometry of the electrode surface, which further reduces the adhesion of dirt and which greatly facilitates the purely mechanical cleaning. Due to the extreme possibility of amplification of even the smallest measuring currents, the platinum pins of the electrode can be cut off flush with the surface of the glass tube enclosing the electrode; a protrusion of the free wires of up to 1 cm, as is the case with known devices for generating a sufficiently large measuring current, is unnecessary. This not only results in significantly reduced contamination, but also the possibility of creating eddies in the measurement sample due to the angular design of the glass surface, preferably in the vicinity of the emerging platinum pins, which results in an increased mechanical cleaning effect.
  • the bipolar platinum electrode is preferably ground and polished flat at its lower end that dips into the measurement sample. A sticking of fibers or threads from appropriate measurement samples that change or interfere with the electrode parameters is thus made impossible. In addition, mechanical cleaning is completely unproblematic because the electrode has a high mechanical stability.
  • the method according to the invention can of course be initiated automatically.
  • the electrolytic cleaning is carried out regularly, e.g. carried out after each titration, it is also possible to work with samples that are known to be difficult over a month with constant sensitivity without having to mechanically clean the electrodes.
  • Another advantage is that the reaction speeds vary only slightly between different measurement samples, which greatly simplifies the creation of work instructions.
  • FIG. 1 shows a longitudinal section through the indicator electrode as it is used to carry out the cleaning method according to the invention.
  • FIG. 2 shows a basic circuit for carrying out the cleaning method according to the invention.
  • FIG. 3 shows a basic circuit of the measuring amplifier according to FIG. 2.
  • FIG. 4 shows the circuit diagram of a device for carrying out the cleaning method according to the invention, the relay position being set to measurement.
  • FIG. 5 shows the circuit diagram of a device for carrying out the cleaning method according to the invention, the relay position being set to cleaning.
  • FIG. 6 shows the circuit diagram of a device for carrying out the cleaning method according to the invention, with an additional auxiliary electrode.
  • FIG. 7 shows the circuit diagram of a device for carrying out the cleaning method according to the invention, with manual actuation.
  • FIG. 8 shows the circuit diagram of a device for carrying out the cleaning method according to the invention, with reversal of the polarity.
  • Figure 9 shows the diagram of the voltage curve at the indicator electrode during the cleaning process.
  • the indicator electrode 11 used in the inventive device for performing the Karl Fischer titration essentially consists of a glass tube 3 containing the two platinum pins 5, the immersion end of which has a smoothly polished, angled surface 4.
  • the two pins 5 made of pure platinum (99.99% Pt) with a diameter of 0.8 mm and a length of 10 mm, approximately 110 mm long silver wires 6 are welded, which are taken up by the connecting cable 1, which is attached to the glass tube 3 by means of the screw connection 2.
  • the platinum pins 5 are melted in the lead glass tube 3 with an outside diameter of 4.7 mm and a wall thickness of 0.7 mm parallel to the axis and flush.
  • the distance between the two platinum pins 5 is approximately 2 mm.
  • the immersion end of the indicator electrode 11 is essentially planar, but the two platinum pins 5 protrude by a few hundredths of a millimeter on the polished glass surface 4, which is not exactly planar, but is slightly spherical.
  • This shape which differs slightly from the theoretical flat surface, has great practical advantages over electrodes of conventional design.
  • the electrode 11 can be pulled vertically over a flat cloth or cleaning paper and is thereby mechanically cleaned excellently.
  • the exposed platinum surfaces, which are important for the electrode function will be wiped off with their very slightly protruding shape, while the continuous seamless platinum-glass transition completely avoids the attachment or tearing of fibers.
  • An electrode constructed in this way shows excellent operating behavior in a device according to the invention.
  • the basic circuit for the electrode cleaner according to the invention for the Karl Fischer titrator can be seen from FIG.
  • the measuring electrode 11 can be connected via the relay 10 either to the measuring amplifier 9 (measuring process) or to the rectangular generator 8 (cleaning process).
  • the basic circuit of the measuring amplifier 9 for the Karl Fischer titrator is shown in detail in FIG. 3 and consists of the constant current source (20 ⁇ A, 25 Hz), the impedance converter 13, the rectifier 14, the analog-digital converter 15 and the digital display and Calculator 16.
  • FIGS. 4 and 5 The functioning of the device according to the invention for electrolytic cleaning of the indicator electrode 11 immersed in the titration vessel 19 with the solution 20 is shown schematically in FIGS. 4 and 5.
  • the controller 7 of the relay 18 permits the alternative connection of the AC constant current source and measuring electronics 12 (position M as shown in FIG. 4) and the AC generator 17 for the cleaning process (position R as shown in FIG. 5).
  • the electrolysis products 21 are formed during the cleaning process (FIG. 5).
  • the low-frequency AC voltage can also be applied between the two individual electrodes 5 and the additional auxiliary electrode 22 instead of between the two individual electrodes 5 of the indicator electrode 11, as illustrated in FIG. 6.
  • electrolytic cleaning with polarity change is also possible without a relay and control by manually flipping switch 26, as shown in FIG.
  • the switch 26 either the DC generator 23 or the measuring arrangement 24 can be connected to the indicator electrode 11. If the switch 26 is in the R position, the cleaning process takes place, the measuring process in the M position and the cleaning process in the P position with the opposite polarity.
  • FIG. 8 shows a preferred embodiment in which the "AC voltage generator” consists of a DC voltage source 23 which is applied once in one polarity and then in the reverse polarity by means of the relay 18B.
  • This alternating voltage generator produces only one positive (R +) and one negative (R-) half-wave per cleaning cycle, that is to say an entire period (FIG. 9).
  • a purely electronic oscillator unit solid state
  • the measuring arrangement 24 (measuring process M) or the voltage source 23 (cleaning process R + / R-) is alternatively connected to the indicator electrode 11 via the relay 18A.
  • Relay control 7 and measuring arrangement 24 are connected to the computer 25.
  • the voltage curve at the indicator electrode 11 during the The cleaning process is shown diagrammatically in FIG. 9 with the associated positions P (X or Y) of the relays 18A and 18B.
  • the measuring cell 19 is emptied automatically

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

Reinigungsverfahren für die Indikatorelektrode eines Titrators zur Wasserbestimmung nach K.Fischer und Vorrichtung zu dessen Durchführung
Die Erfindung bezieht sich auf ein Reinigungsverfahren für die Indikatorelektrode eines Titrators zur Wasserbestimmung nach K.Fischer und eine Vorrichtung zu dessen Durchführung.
Bei der Wasserbestimmung nach K.Fischer handelt es sich um ein bewährtes analytisches Verfahren, das beispielsweise in der Monographie "Wasserbestimmung durch Karl-Fischer-Titration" Theorie und Praxis, von G.Wieland erschienen bei GIT VERLAG GMBH, Darmstadt beschrieben ist.
Sowohl bei der bivoltametrischen (potentiometrische Titration bei konstanter Stromstärke mit zwei Indikatorelektroden) als auch bei der biamperometrisehen (Amperometrie mit zwei Indikatorelektroden) Endpunktsbestimmung der Karl Fischer Titration fliessen kleine Ströme zwischen den zwei Platinelektroden. Dies führt bekanntermassen zur Ablagerung geladener Teilchen an den Elektrodenoberflächen und nachfolgend zur Bildung schwerlöslicher, katalytischer Reaktionsprodukte. Bei sehr vielen Proben, insbesondere bei der Wasserbestimmung in Lebensmitteln liegen Substanzen in der Titrationslösung vor die ebenfalls zur Verunreinigung der Elektroden beitragen, wie Proteine, Fette, Zucker, Partikel, Fasern u.s.w.
Beide Arten von Verunreinigungen führen zu verfälschten Resultaten, sei es durch Beeinflussung der Empfindlichkeit oder der Ansprechgeschwindigkeit der Elektrode. Eine mechanische Reinigung ist zwar oft nicht zu vermeiden, sollte aber möglichst selten vorgenommen werden, da hierzu die Messzelle geöffnet werden muss und dabei automatisch Luftfeuchtigkeit eindringt, welche vor der nächsten Bestimmung austitriert werden muss.
Bei der Reinigung können die vorstehenden Platinstifte der Elektrode verbogen oder abgebrochen werden. Während der Bruch eines Platinstiftes die Elektrode unbenutzbar macht, erzeugt ein Verbiegen des Platinstiftes veränderte Elektrodenparameter, welche sich in veränderter oder ungünstiger Endpunktsindikation niederschlagen. Dadurch können sich Präzision und Richtigkeit der Titration verschlechtern.
Hier will die Erfindung Abhilfe schaffen. Der Erfindung liegt die Aufgabe zugrunde, ein Reinigungsverfahren und ein Gerät zur Durchführung desselben zu schaffen, welches eine regelmässige Selbstreinigung der Platinelektroden ermöglicht.
Die Erfindung löst die gestellte Aufgabe mit einem Reinigungsverfahren, welches die Merkmale des Anspruchs 1 aufweist, sowie einer Vorrichtung zur Durchführung des Reinigungsverfahrens, welches die Merkmale des Anspruchs 7 aufweist.
Die durch die Erfindung erreichten Vorteile sind im wesentlichen darin zu sehen, dass dank des erfindungsgemässen Verfahrens das Haften von Schmutz an der Elektrodenoberfläche weitgehend vermieden werden kann. Durch Anlegen einer Spannung wird elektrolytisch an der einen Elektrode Wasserstoff, respektive Jod an der anderen Elektrode erzeugt. Sowohl die oxidierende Wirkung des Jodes als auch die Blasenbildung beim Entstehen des Wasserstoffes haben einen stark oberflächenaktiven Effekt. Die Reinigungswirkung wird (noch zusätzlich) erhöht, wenn die Polarität des Elektrodenstromes ein- oder mehrmals gewechselt wird, so dass an jeder Einzelelektrode sowohl Jod als auch Wasserstoff gebildet wird.
Eine weitere Verbesserung der Erfindung besteht in der Wahl einer geeigneten Geometrie der Elektrodenoberfläche, welche das Haften von Schmutz weiter verringert und welche die rein mechanische Reinigung stark erleichtert. Durch die heute mögliche, extreme Verstärkungsmöglichkeit auch kleinster Messströme, können die Platinstifte der Elektrode mit der Oberfläche des die Elektrode umschliessenden Glasrohres bündig abgeschnitten werden; ein Vorstehen der freien Drähte von bis zu 1 cm, wie dies bei bekannten Geräten zur Erzeugung eines genügend grossen Messstromes der Fall ist erübrigt sich. Damit ergibt sich nicht nur eine erheblich verringerte Verschmutzung, sondern auch die Möglichkeit durch kantige Ausgestaltung der Glasoberfläche, vorzugsweise in der Nachbarschaft der austretenden Platinstifte, starke Wirbel in der Messprobe zu erzeugen, welche einen erhöhten mechanischen Reinigungseffekt zur Folge haben. Zu diesem Zwecke wird die bipolare Platinelektrode an ihrem unteren in die Messprobe eintauchenden Ende vorzugsweise plan geschliffen und poliert. Ein Hängenbleiben von Fasern oder Fäden aus entsprechenden Messproben, welche die Elektrodenparameter verändern oder stören, wird damit verunmöglicht. Ausserdem ist die mechanische Reinigung völlig problemlos, da die Elektrode eine hohe mechanische Stabilität besitzt.
Erfolgt die Titration rechner-gesteuert, so kann das erfindungsgemässe Verfahren selbstverständlich automatisch eingeleitet werden.
Wird die elektrolytische Reinigung nach dem erfindungsgemässen Verfahren regelmässig, z.B. nach jeder Titration durchgeführt, kann auch mit bekannterweise schwierigen Proben über einen Monat bei gleich bleibender Empfindlichkeit gearbeitet werden ohne die Elektroden mechanisch reinigen zu müssen. Ein weiterer Vortoil liegt darin, dass die Reaktionsgeschwindigkeiten zwischen verschiedenen Messproben nur wenig variieren, was die Erstellung von Arbeitsvorschriften stark vereinfacht.
Ein Ausführungsbeispiel der Erfindung, welches zugleich das Funktionsprinzip erläutert, ist in der Zeichnung dargestellt und wird im folgenden näher beschrieben.
Figur 1 stellt einen Längsschnitt durch die Indikatorelektrode dar, wie sie zur Durchführung des erfindungsgemässen Reinigungsverfahrens verwendet wird.
Figur 2 stellt eine Prinzipschaltung zur Durchführung des erfindungsgemässen Reinigungsverfahrens dar.
Figur 3 stellt eine Prinzipschaltung des Messverstärkers gemäss Figur 2 dar. Figur 4 stellt das Schaltbild einer Vorrichtung zur Durchführung des erfindungsgemässen Reinigungsverfahrens dar, wobei die Relaisposition auf Messung steht.
Figur 5 stellt das Schaltbild einer Vorrichtung zur Durchführung des erfindungsgemässen Reinigungsverfahrens dar, wobei die Relaisposition auf Reinigung steht.
Figur 6 stellt das Schaltbild einer Vorrichtung zur Durchführung des erfindungsgemässen Reinigungsverfahrens dar, mit einer zusätzlichen Hilfselektrode.
Figur 7 stellt das Schaltbild einer Vorrichtung zur Durchführung des erfindungsgemässen Reinigungsverfahrens dar, mit manueller Betätigung.
Figur 8 stellt das Schaltbild einer Vorrichtung zur Durchführung des erfindungsgemässen Reinigungsverfahrens dar, mit Umkehrung der Polarität.
Figur 9 stellt im Diagramm den Spannungsverlauf an der Indikatorelektrode während des Reinigungsvorgangs dar.
Wie in Figur 1 dargestellt besteht die in erfindungsgemässen Vorrichtung zur Durchführung der Karl Fischer Titration verwendete Indikatorelektrode 11 im wesentlichen aus einem die beiden Platinstifte 5 enthaltenden Glasrohr 3, dessen Eintauchende eine glatt polierte, abgewinkelte Oberfläche 4 aufweist. An die beiden aus Reinplatin (99,99 % Pt ) bestehenden Stifte 5 mit einem Durchmesser von 0,8 mm und einer Länge von 10 mm sind ca. 110 mm lange Silberdrähte 6 angeschweisst, welche vom Anschlusskabel 1 aufgenommen werden, das mittels der Verschraubung 2 am Glasrohr 3 befestigt ist. Die Platinstifte 5 sind im Bleiglasrohr 3 vom Aussendurchmesser 4,7mm und der Wandstärke 0,7 mm achsenparallel und bündig eingeschmolzen. Der Abstand der beiden Platinstifte 5 beträgt ca. 2 mm. Das Eintauchende der Indikatorelektrode 11 ist wie bereits erwähnt im wesentlichen planar, doch stehen die beiden Platinstifte 5 um einige Hunderstelmillimeter auf der polierten Glasfläche 4 vor, welche nicht exakt planar, sondern leicht sphärisch ist. Diese von der theoretischen planen Fläche leicht abweichenden Form weist gegenüber Elektroden üblicher Bauform grosse praktische Vorteile auf. Die Elektrode 11 kann senkrecht über ein flach liegendes Tuch oder Reinigungspapier gezogen werden und wird dadurch vorzüglich mechanisch gereinigt. Die für die Elektrodenfunktion wichtigen exponierten Platinoberflächen werden durch ihre ganz leicht vorstehende Form mit Sicherheit abgewischt, während der kontinuierliche nahtlose Platin-Glas-Üebergang das Anhängen oder Losreissen von Fasern völlig vermeidet. Eine solchermassen konstruierte Elektrode zeigt in einer erfindungsgemässen Vorrichtung ein vorzügliches Betriebsverhalten. Es konnten mehr als 500 Karl-Fischer-Titrationen mit "schwierigen" Proben bestehend aus Naturstoffgemischen (z.B. Schokolade) ausgeführt werden, ohne dass sich eine merkliche Veränderung in der Elektrodencharakteristik und somit der Endpunktsindikation ergab. Aus Figur 2 ist die Prinzipschaltung für den erfindungsgemässen Elektrodenreiniger für den Karl-Fischer- Titrator ersichtlich. Durch die Relaissteuerung 7 kann die Messelektrode 11 über das Relais 10 entweder an den Messverstärker 9 (Messvorgang) oder an den Rechteckgenerator 8 (Reinigungsvorgang) angeschlossen werden.
Die Prinzipschaltung des Messverstärkers 9 für den Karl-Fischer Titrator ist in Figur 3 im Detail dargestellt und besteht aus der Konstantstromquelle (20 μA, 25 Hz), dem Impedanzwandler 13, dem Gleichrichter 14, dem Analog-Digital-Wandler 15 und der Digitalanzeige und Rechner 16.
Die Funktionsweise der erfindungsgemässen Vorrichtung zur elektrolytischen Reinigung der in das Titrationsgefäss 19 mit der Lösung 20 eintauchenden Indikatorelektrode 11 ist in den Figuren 4 und 5 schematisch dargestellt. Die Steuerung 7 des Relais 18 erlaubt den alternativen Anschluss der AC-Konstantstromquelle und Messelektronik 12 (Stellung M wie in Figur 4 dargestellt) und dem AC-Generator 17 für den Reinigungsvorgang (Stellung R wie in Figur 5 dargestellt). Beim Reinigungsvorgang (Figur 5) entstehen die Elektrolysenprodukte 21 (Jod und Wasserstoff).
Die niederfrequente Wechselspannung kann statt zwischen den beiden Einzelelektroden 5 der Indikatorelektrode 11 auch zwischen den beiden Einzelelektroden 5 und der zusätzlichen Hilfselektrode 22 angelegt werden, wie in Figur 6 illustriert. Bei einfachen Titrations-Geräten ist die elektrolytische Reinigung mit Polaritätswechsel auch ohne Relais und Steuerung durch manuelles Umlegen des Schalters 26 möglich, wie in Figur 7 dargestellt. Durch Betätigung des Schalters 26 kann wahlweise der DC-Generator 23 oder die Messanordnung 24 an die Indikatorelektrode 11 angeschlossen werden. Befindet sich der Schalter 26 in der Stellung R so erfolgt der Reinigungsvorgang, in Stellung M der Messvorgang und in Stellung P der Reinigungsvorgang mit umgekehrter Polarität.
In Figur 8 ist eine bevorzugte Ausführungsform dargestellt bei welcher der "Wechselspannungsgenerator" aus einer Gleichspannungsquelle 23 besteht, die mittels des Relais 18B einmal in der einen und dann in der umgekehrten Polarität angelegt wird. Pro Reinigungszyklus produziert dieser Wechselspannungsgenerator nur eine positive (R+) und eine negative (R-) Halbwelle, zusammen also eine ganze Periode (Figur 9). Anstelle des "Wechselspannungsgenerators" bestehend aus Gleichspannungsquelle 23 und Relais 18B kann auch eine rein elektronische Oszillatoreinheit (solid state) verwendet werden. Ueber das Relais 18A wird wie in den vorhergehend beschriebenen Ausführungsformen alternativ die Messanordnung 24 (Messvorgang M) oder die Spannungsquelle 23 (Reinigungsvorgang R+/R-) an die Indikatorelektrode 11 angeschlossen. Relaissteuerung 7 und Messanordnung 24 sind mit dem Rechner 25 verbunden. Der Spannungsverlauf an der Indikatorelektrode 11 während des Reinigungsvorgangs ist in Figur 9 diagrammatisch mit den dazugehörenden Positionen P (X oder Y) der Relais 18A und 18B dargestellt.
Die Durchführung der Karl-Fischer-Titration mit der erfindungsgemässen Vorrichtung kann weitgehend automatisiert werden und verläuft nach folgendem Schema:
- Probe und Lösungsmittel 20 werden automatisch in die Messzelle 19 gegeben
- die Titration wird gestartet und dauert ca. 1 bis 3 Minuten
- ein Reinigungszyklus von 2 Sekunden wird gestartet
- die Messzelle 19 wird automatisch entleert
- der Ablauf kann von neuem beginnen.

Claims

Patentansprüche
1. Reinigungsverfahren für die Indikatorelektrode (11) eines Titrators zur Wasserbestimmung nach K.Fischer, dadurch gekennzeichnet, dass eine niederfrequente Wechselspannung an die beiden Einzelelektroden (5) der in die Messlösung (20) tauchenden Indikatorelektrode (11) angelegt wird, welche mindestens so hoch ist, dass eine Elektrolyse an den beiden Einzelelektroden (5) auftritt.
2. Reinigungsverfahren nach Anspruch 1, dadurch gekennzeichnet, dass die niederfrequente Wechselspannung eine beliebige Wellenform der Frequenz 0,01 bis 100 Hz, vorzugsweise von 1 bis 10 Hz aufweist.
3. Reinigungsverfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dαss die niederfrequente Wechselspannung eine Rechteckspannung ist.
4. Reinigungsverfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die niederfrequente Wechselspannung eine Spannung im Bereich von 5 bis 30 V, vorzugsweise im Bereich von 8 bis 12 V ist.
5. Reinigungsverfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in unmittelbarer Nähe der Indikatorelektrodenoberfläche (4) Wirbelströmungen in der Messprobe (20) erzeugt werden.
6. Reinigungsverfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die niederfrequente Wechselspannung zwischen den beiden Einzelelektroden (5) der Indikatorelektrode (11) einerseits und mindestens einer zusätzlichen Hilfselektrode (22) anderseits angelegt wird.
7. Vorrichtung zur Durchführung des Reinigungsverfahrens nach einem der Ansprüche 1 bis 6, gekennzeichnet durch einen, vorzugsweise über ein Relais (10; 18), an die zur Bestimmung des Endpunktes der Titration verwendete Indikatorelektrode (11) anschliessbaren Spannungsgenerators { 8 ; 17 ; 23 ) .
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Indikatorelektrode (11) derart ausgebildet ist, dass die beiden Platinstifte (5) direkt an der Oberfläche des die Elektrode (11) umschliessenden Glasrchrs (3) enden und vorzugsweise mit dieser eine im wesentlichen plan geschliffene Fläche (4) bilden.
9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass der in die Messprobe (20) eintauchende Teil der Indikatorelektrode (11) scharfe Kanten aufweist, vorzugsweise in der Nachbarschaft der nach aussen austretenden Einzelelektroden (5).
10. Vorrichtung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die polierte Oberfläche (4) leicht sphärisch ausgebildet ist und die Einzelelektroden (5) geringfügig über die Oberfläche (4) hervorragen.
EP19880902117 1987-03-14 1988-03-10 Reinigungsverfahren für die indikatorelektrode eines titrators zur wasserbestimmung nach k. fischer und vorrichtung zu dessen durchführung Withdrawn EP0307424A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH94587A CH672845A5 (de) 1987-03-14 1987-03-14
CH945/87 1987-03-14

Publications (1)

Publication Number Publication Date
EP0307424A1 true EP0307424A1 (de) 1989-03-22

Family

ID=4198823

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19880902117 Withdrawn EP0307424A1 (de) 1987-03-14 1988-03-10 Reinigungsverfahren für die indikatorelektrode eines titrators zur wasserbestimmung nach k. fischer und vorrichtung zu dessen durchführung

Country Status (4)

Country Link
EP (1) EP0307424A1 (de)
JP (1) JPH01502695A (de)
CH (1) CH672845A5 (de)
WO (1) WO1988007194A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210496A (en) * 1988-04-13 1993-05-11 Endress & Hauser Flowtec Ag Method and circuit arrangement for intermittent application of a voltage to an electrode
DE10309022A1 (de) * 2003-03-01 2004-09-09 Dr. A. Kuntze Gmbh Verfahren zum Reinigen von Elektrodenoberflächen sowie Vorrichtung zur Durchführung des Verfahrens
JP2004333413A (ja) * 2003-05-12 2004-11-25 Dia Instr:Kk 水分測定方法および水分測定装置
CN102213690A (zh) * 2011-05-20 2011-10-12 长沙瑞翔科技有限公司 电解池电极自动清洁装置
DE102011120819A1 (de) 2011-12-13 2013-06-13 Dinotec Gmbh Wassertechnologie Und Schwimmbadtechnik Verfahren zum Reinigen von Elektrodenoberflächen
DE102018004450A1 (de) 2018-06-05 2019-12-05 Ecm Gmbh Verfahren zur Aktivhaltung und Reaktivierung von elektrochemischen Sensoren und eine Vorrichtung zur Durchführung des Verfahrens
DE102018113640A1 (de) 2018-06-07 2019-12-12 Prominent Gmbh Verfahren zur Reinigung, Konditionierung, Kalibration und/oder Justage eines amperometrischen Sensors
DE102021116153A1 (de) 2021-06-22 2022-12-22 Prominent Gmbh Verfahren zur optischen Aktivierung der Sensoroberfläche, insbesondere bei Nullchlorsensoren

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH469981A (de) * 1968-03-14 1969-03-15 Foerderung Forschung Gmbh Einrichtung zur elektrochemischen Ermittlung des Sauerstoffgehaltes einer Flüssigkeit
US4004331A (en) * 1974-03-15 1977-01-25 Avl Ag Method of manufacturing multi-wire oxygen electrode
GB1494576A (en) * 1974-09-06 1977-12-07 Meidensha Electric Mfg Co Ltd Apparatus for determining amounts of matter in a liquid to be examined
JPS55158554A (en) * 1979-05-28 1980-12-10 Nissan Eng Kk Apparatus for measuring concentration of oxidating and reducing substance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8807194A1 *

Also Published As

Publication number Publication date
CH672845A5 (de) 1989-12-29
JPH01502695A (ja) 1989-09-14
WO1988007194A1 (en) 1988-09-22

Similar Documents

Publication Publication Date Title
DE3822911C2 (de) Elektrodenauffrischanordnung für einen Biosensor
DE3228767C2 (de) Vorrichtung zur Bestimmung der Grenzfläche zwischen Blutplasma und einer Blutkörperchen-Suspension
DE2711529A1 (de) Verfahren und vorrichtung fuer die stroemungskompensierte amperometrische messung einer stroemung
DE69433350T2 (de) Verfahren zur Überwachung des Säuregehaltes in Plattierungsbädern
DE2300793C2 (de) Verfahren zur automatischen Titration sowie Vorrichtung zur Durchführung des Verfahrens
EP0307424A1 (de) Reinigungsverfahren für die indikatorelektrode eines titrators zur wasserbestimmung nach k. fischer und vorrichtung zu dessen durchführung
DE2711989B1 (de) Elektrochemische Bestimmung von Schwermetallen in Wasser
DE824410C (de) Bezugselektrode, insbesondere Kalomelelektrode fuer die Messung des p-Wertes, und damit hergestelltes p- Messgeraet
EP0097827B1 (de) Reinheitskontrolle durch Messung der elektrischen Leitfähigkeit
DE3103792C2 (de)
EP0201712B1 (de) Verfahren zur Messung der Potentialdifferenz zwischen einer Probenflüssigkeit und einem Referenzelektrolyten sowie Vorrichtung zur Messung der Ionenkonzentration in der Probenflüssigkeit
DE2726533C3 (de) Temperaturkompensations-Verfahren und Temperaturkompensator für Lösungskonzentrations-Ultraschallmesser
DE2914290C2 (de) Verfahren zur kontrollierten chemischen Ausfällung von Fremdstoffen aus einem Strom wässriger Flüssigkeit und Vorrichtung zur Durchführung des Verfahrens
DE2462281C3 (de)
EP0834739A2 (de) Verfahren und Vorrichtung zur Bestimmung der Oxidierbarkeit von Abwasserinhaltsstoffen
DE3220327A1 (de) Verfahren zum messen der ionenkonzentration einer probe
DE2915956A1 (de) Verfahren und vorrichtung zum messen der oberflaechenspannung elektrisch leitender fluessigkeiten
DE2647308A1 (de) Verfahren und vorrichtung zur fortlaufenden konzentrationsmessung
DE3219867C2 (de)
DE19835288B4 (de) Sprühnebelkammer und Sprühnebel-Prüfverfahren
DE1066318B (de)
DE2034408A1 (de) Elektrode
DE19956729C1 (de) Elektrochemischer Detektor und diesbezügliches Auswertegerät
DE1918661A1 (de) Vorrichtung und Verfahren zur Feststellung von lebenden Bakterien
DE1648936A1 (de) Verfahren und Geraet zur automatischen elektrochemischen Analyse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19881103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19900423

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19920225