EP0307076B1 - Méthode de contrôle de l'épaisseur d'un matériel en forme de bande - Google Patents

Méthode de contrôle de l'épaisseur d'un matériel en forme de bande Download PDF

Info

Publication number
EP0307076B1
EP0307076B1 EP88306507A EP88306507A EP0307076B1 EP 0307076 B1 EP0307076 B1 EP 0307076B1 EP 88306507 A EP88306507 A EP 88306507A EP 88306507 A EP88306507 A EP 88306507A EP 0307076 B1 EP0307076 B1 EP 0307076B1
Authority
EP
European Patent Office
Prior art keywords
sheet material
thickness
sheet
adjusting means
thickness distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88306507A
Other languages
German (de)
English (en)
Other versions
EP0307076A2 (fr
EP0307076A3 (en
Inventor
Shinichiro Hayashida
Shunichi Yorozu
Hidetoshi Okashiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of EP0307076A2 publication Critical patent/EP0307076A2/fr
Publication of EP0307076A3 publication Critical patent/EP0307076A3/en
Application granted granted Critical
Publication of EP0307076B1 publication Critical patent/EP0307076B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D5/00Control of dimensions of material
    • G05D5/02Control of dimensions of material of thickness, e.g. of rolled material
    • G05D5/03Control of dimensions of material of thickness, e.g. of rolled material characterised by the use of electric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • B29C48/31Extrusion nozzles or dies having a wide opening, e.g. for forming sheets being adjustable, i.e. having adjustable exit sections
    • B29C48/313Extrusion nozzles or dies having a wide opening, e.g. for forming sheets being adjustable, i.e. having adjustable exit sections by positioning the die lips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92076Position, e.g. linear or angular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92152Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92571Position, e.g. linear or angular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92647Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone

Definitions

  • the present invention relates to a method for controlling the thickness of a sheet material and a method for monitoring a correspondence relationship between the thickness distribution across a sheet material and means for adjusting the thickness of the sheet material. More particularly the present invention relates to a thickness control method which can provide a sheet material to a target thickness and thickness distribution with high accuracy and can compensate for any variation in a sheet forming process, by obtaining an accurate correspondence relationship between a plurality of adjusting means disposed on a die and the thickness distribution of a formed sheet material, and to a monitoring method wherein feedback information useful for a sheet forming process can be obtained.
  • molten material for example, a molten resin
  • a sheet forming process for example, a stretching process.
  • the thickness of, and the thickness distribution across (i.e. in the width direction), the sheet material after formation thereof by the sheet forming process is measured by a thickness gauge, and a plurality of adjusting means arranged on the die in the width direction of the web of molten material are controlled so that the thickness distribution of the sheet material to be measured can approach a pre-determined target distribution.
  • Such thickness control methods are disclosed in JP-A-52-36154, JP-A-52-36165, JP-A-56-120318 (EP-A-0-035-356), JP-A-56-133135 (EP-A-0-035-356), JP-A-58-78726 (US-A-4-514-348), JP-A-60-132727 and JP-A-60-225730, mainly in processes for producing resin films. All these methods are based on the premise that a correspondence relationship between the position of the adjusting means on the die and the position in the width direction of the formed sheet material at which position the thickness of the sheet is varied by the adjustment of the adjusting means is fully determined prior to commencement of the sheet forming process.
  • FIG. 13 a conventional sheet forming system for producing a biaxially oriented plastics film as a sheet material is schematically shown in FIG. 13.
  • a web of molten resin 2 delivered from a die 1 is stretched biaxially by an apparatus 3 for longitudinally stretching the material and an apparatus 4 for transversely stretching the material so that a biaxially oriented plastics film 5 having a certain thickness is formed after passing through the system.
  • the thickness distribution of the film 5 is measured, for example, by a scanning type thickness gauge 6.
  • measuring positions of the thickness gauge 6 are provided, for example, at 300 points in the width direction of the film and a plurality of adjusting means disposed on the die 1, for example, adjusting bolts 7 for adjusting a gap provided by a slit of the die, are provided, there being for example, 100 in number.
  • the positions of the adjusting bolts 7 and the positions of the film 5 are merely allocated in the width direction of the film under the premise that the central position of the film in the width direction corresponds to the position of a center bolt of a plurality of bolts and/or under the premise that the positions of both edge portions of the film in the width direction correspond to the respective positions of both end bolts of the plurality of bolts.
  • Each of these methods of mere allocation carries with it the assumption that the pitch (i.e. width) of each portion of the film the thickness of which is adjusted by a given respective bolt is the same for each portion.
  • this variation in thickness across the film may be used as a refinement enabling a more accurate allocation of the positions of the bolts by the abovementioned methods.
  • the bolts 7 are often inadequately adjusted in response to the feedback signals of thickness distribution of the film 5 from the thickness gauge 6, even if accurate measurement can be performed by the thickness gauge. As a result, there is inevitably a certain limit to the extent to which the accuracy of the thickness control of the film 5 can be improved.
  • the degree of adjustment to be made to the adjusting bolts 7 Even if the variation in thickness of the film 5 at a particular position in the width direction where the thickness is to be altered by the deliberate adjustment of the bolt 7 (for example, a 20% adjustment) can be measured, the entire relationship between the degree of adjustment of the bolt and the remitting thickness variation of the film cannot be precisely obtained.
  • the degree of adjustment of the bolt 7 to be made in the actual production of a useful film 5 is very small, for example, 0.1 - 0.5%, and the actual amount of variation of the thickness of the film due to such a small adjustment of the bolt does not always become equal to a value calculated proportionally from the above relationship derived from the above test in which the bolts are actively adjusted.
  • the thicknesses of both respective portions at either side of the above position of the film 5 in the width direction vary as shown by thickness profiles 11a and 11b, in a thickness direction opposite to the thickness direction of the portion of the thickness profile 10.
  • This pattern results from the fact that when a portion of the molten resin in the die 1 is locally thickened, the molten resin in both side portions of the above central portion in the width direction of the film is drawn toward the central portion due to the flow of the molten resin at the central portion, and the influence of this variation at the die is revealed in the thickness profile of the film 5 after formation.
  • the central portion having the thickness profile 10 and the two side portions having the thickness profiles 11a and 11b of the film 5 vary by the unit amount of adjustment of the adjusting bolt 7 in respective directions opposite to each other, if the correspondence relationship between the positions of the adjusting bolts and the positions of the film is not determined accurately as aforementioned, the portion to be adjusted so as to increase the thickness of the film may often be thinned or the portion to be adjusted so as to decrease the thickness may often be thickened. Thus, for this reason also, there exists an unsatisfactory limit to the accuracy of the thickness control of the sheet material which can be achieved by conventional methods.
  • the present invention provides a method for controlling the thickness of a sheet material wherein a correspondence relationship between positions and adjustment amounts of adjusting means on a die and positions and amounts of variation in thickness of the sheet material after formation can be determined with very high accuracy without performing a separate preliminary test involving independent actuation of the adjusting means and wherein the accuracy of thickness control of the sheet material can be greatly improved by controlling the positions and adjustment amounts of the adjusting means according to the determined correspondence relationship.
  • the present invention provides, according to a first aspect, a thickness control method in a process for producing a sheet material which can automatically follow any variation of the conditions of a sheet forming process and can maintain a high accuracy of the thickness control by such following.
  • a second aspect of the present invention it is possible to obtain feedback information for a sheet material forming process effective in providing a sheet material of uniform quality in the width direction, which feedback information is obtained from data derived from the thickness control utilizing at least some of the steps of the above thickness control method.
  • the present invention provides, according to the first aspect, a method for controlling the thickness of a sheet of material formed by delivering a web of molten material from a die and subjecting the web of molten material to a sheet forming process, which method includes the steps of
  • the Kalman filter was published by R.E. Kalman in 1960, and is referred to, for example, in "Estimation and Control of Systems", by T.F. Elbert, Van Nostrand Reinhold company,1984, chapters 1 and 7.
  • the multidimensional variation factors are sequentially estimated and sequentially amended using actual data (observed values) sequentially entered, and subsequent observed values are sequentially estimated by using the estimated and amended multidimensional variation factors.
  • the measured values of the thickness distribution of the sheet material after formation thereof by the sheet forming process and the data of the adjustment amounts of the adjusting means on the die are discrete successive values at any given time.
  • arbitrary successive times are expressed as t i-1 , t i and t i+1 .
  • t i is a present time.
  • the measured thickness distributions at the times t i-1 and t i are expressed as P i-1 and P i respectively.
  • a difference between the measured thickness distributions at times t i-1 and t i is expressed as ⁇ P i .
  • the following equation stands. ⁇ P i P i - P i-1 (1)
  • a i-1 is a correspondence relational matrix at the time t i-1 .
  • ⁇ P i A i-1 * B i-1 + ⁇ i (2)
  • ⁇ i noise (error) vector.
  • the thickness distribution of the sheet material can be expressed as a vector including a plurality of discrete values, for example, the number m of such values may be 300.
  • the adjustment amounts of the adjusting means can be expressed as a vector including a plurality of discrete values, for example, the number n of such values may be 100. This number n corresponds to, for example, the number of adjusting bolts aforementioned.
  • the above system equation (2) is changed to the following equation.
  • a i-1 is a multidimensional correspondence relational matrix representing a relation between P i and B i-1 .
  • This correspondence relational matrix A i-1 is sequentially estimated and amended by a Kalman filter, using actual measured data of the thickness distribution sequentially entered.
  • ⁇ P* i is an estimated difference between the thickness distribution at the time t i-1 and the thickness distribution at the present time t i , estimated by use of A* i-1 .
  • the following equation is derived from the equations (1) and (4).
  • P* i is an estimated thickness distribution (thickness profile) of the sheet material at the present time t i before the measured thickness distribution P i at the time t i can be obtained.
  • the optimum correspondence relational matrix A* i-1 having been estimated at the time t i-1 , is amended according to the difference between the measured thickness distribution P i at the present time t i and the estimated thickness distribution P* i at the time t i calculated by use of the optimum correspondence relational matrix A* i-1 estimated at the time t i-1 , and the optimum correspondence relational matrix A* i at the present time t i is estimated therefrom.
  • the multidimensional variation factors in the present invention mean the factors where noises are eliminated from the difference between the measured thickness distribution P i at the present time t i and the estimated thickness distribution P* i at the time t i calculated using the estimated thickness distribution A* i-1 .
  • the optimum adjustment amount B* i of the adjusting means on the die at the time t i can be computed.
  • the following equation stands from the equation (5).
  • P i+1 P i + A* i * B i + ⁇ i+1 (6)
  • P i and A* i are known values at the present time t i and the P* i+1 is an estimated thickness distribution at the time t i+1 which will result by the operation of the adjustment amount B i of the adjusting means at the time t i .
  • a B* i which minimizes the difference between P and P* i+1 in accordance with B i can be calculated as follows.
  • J is an evaluation function.
  • B* i By calculating the B i that can minimize this evaluation function J, B* i can be obtained. Therefore, a B i that can satisfy the extreme value of the equation (7) may be calculated.
  • dJ/dB i O (8)
  • a B i that satisfies the equation (8) is the optimum adjustment amount B* i of the adjusting means at the time t i .
  • the controller including the Kalman filter self-learns and the correspondence relational matrix is automatically and sequentially amended using actual measured data, so that the thickness distribution of the sheet material after formation thereof by the sheet forming process can accurately correspond to the positions and adjustment amounts of the adjusting means on the die.
  • This initial data may be by appropriate data. For instance, an appropriate correspondence relationship between the thickness distribution of the sheet material and the adjusting means on the die or a correspondence relational matrix employed when a previous production of the sheet material has been performed or finished, or a rough correspondence relationship data resulting from a test such as the previously mentioned forced test the results of which are shown in FIG. 14, may be set as an initial value.
  • the initial data provides a starting point, and as abovementioned, the accurate correspondence relational matrix is sequentially estimated promptly using a Kalman filter.
  • a method, in accordance with the second aspect of the invention, for monitoring a correspondence relationship between the thickness distribution of a sheet material and means for adjusting the thickness is explained as follows.
  • a plurality of such means for adjusting the thickness of a web of molten material delivered from a die is disposed on the die in the width direction of the web.
  • the sheet material is formed by delivering the web of molten material from the die and subjecting the web of molten material to a sheet forming process.
  • the method includes the steps of:
  • the step for estimating the correspondence relational matrix by use of a Kalman filter in the aforementioned thickness control method is utilized, and from the estimated matrix, feedback information capable of being fed back to the sheet forming process and effective in providing the sheet material with a uniform quality in the width direction can be obtained.
  • the data of the adjustment amounts of the adjusting means and the data of the thickness distribution of the sheet material resulting from the adjustment of the adjusting means may be entered repeatedly. Therefore, the adjustment of the adjusting means according to the thickness distribution of the sheet material may be controlled via a conventional controller, or the adjusting means may be manually adjusted. In these cases, however, the control accuracy of the thickness distribution of the sheet material after formation, that is, the difference between a target distribution and an actual distribution remains at the conventional level, and only provide the advantage that the feedback information which can be used to control the sheet forming process can be observed.
  • the thickness distribution of the sheet material can be controlled with an extremely high accuracy so as to approach a target distribution and at the same time the feedback information effective for controlling the sheet forming process can be observed.
  • the feedback information effective to provide the sheet material with the uniform quality in the width direction is displayed on a display means, for example, a display unit and/or a printer.
  • a display means for example, a display unit and/or a printer.
  • On the display means at least the correspondence relationship, between the position of the adjusting means on the die in the width direction of the web of molten material and the position of the sheet material in the width direction of the sheet material after formation of the sheet material by the sheet forming process at which position the thickness of the sheet material is varied by the adjustment of the adjusting means, is displayed.
  • the adjusting means on the die are arranged in the width direction of the sheet material, usually with a uniform pitch.
  • the pitches between the positions of the sheet material in the width direction corresponding to the positions of the adjusting means on the die are not always uniform, because there are nonuniformities and/or variations of the conditions in the sheet material forming process. If the nonuniformity of the pitches of the positions of the sheet material can be ascertained, how to correct the conditions (for example, temperature condition and mechanical condition) in the sheet forming process in order to make the pitches uniform can often be understood. Therefore, by adequately correcting the temperature condition, mechanical condition etc. of the sheet forming process, the pitches of the positions of the sheet material can approach a desired uniform pitch. That the pitches are uniform shows that the treatment in the sheet forming process has been performed uniformly. By making the pitches uniform, the quality of the sheet material obtained can be made uniform in the width direction.
  • FIG. 1 illustrates a biaxially oriented film manufacturing system including a thickness control system for carrying out the method according to the present invention.
  • a die 21 delivers a web 22 of molten resin.
  • the web 22 of molten resin delivered from the die 21 is cooled and formed by a cooling drum (casting drum) 23.
  • the cooled and formed sheet (web) is stretched in the longitudinal direction of the sheet during passage through an apparatus 24 having pre-heating, longitudinal stretching and thermosetting (cooling) means, and then the sheet is stretched in the width direction of the sheet during passage through an apparatus 25 having pre-heating, transverse stretching and thermosetting (cooling) means.
  • a film 26 having a predetermined thickness can be formed and the film is wound by an appropriate winder 27.
  • a sheet forming process according to the present invention means any one or more, or all of the processes carried out using apparatus such as 23, 24 and 25.
  • the film-forming process has three stages because a biaxially oriented film is required
  • a sheet forming process which may be controlled by the method of the invention may be of another type.
  • it may be a manufacturing process having only a cooling and a forming stage for the web of molten resin from the die, or such a process which additionally has a longitudinal-stretching stage, or a manufacturing process having a further stretching stage after the biaxial stretching stages.
  • the thickness distributions of the sheet, or the final film are measured at respective positions downstream of the cooling drum 23, downstream of the longitudinal-stretching apparatus 24 and downstream of the transverse-stretching apparatus 25 arranged in the running direction of the film by thickness gauges 28, 29 and 30, respectively.
  • the respective measured data provided by the thickness gauges 28, 29 and 30 are entered into control processing unit CPU 31 as a controller.
  • control processing unit CPU 31 respective target thickness distributions in the width direction of the film at the positions of thickness gauges 28, 29 and 30 can be pre-set.
  • a plurality of adjusting bolts 32 as respective means for adjusting the thickness of the delivered web 22 of molten resin are disposed with a small pitch in the direction perpendicular to the sheet of paper containing FIG. 1, that is, in the width direction of the web of molten resin delivered from the die.
  • the number of the adjusting bolts 32 is, for example, 100.
  • FIG. 2 The detail of this portion, for example, is shown in FIG. 2.
  • Many adjusting bolts 32 are arranged on one of the blocks 34 defining a slit 33 delivering the web 22 of molten resin, in the direction perpendicular to the sheet of paper containing FIG. 2.
  • Heater 35 is provided around or in the adjusting bolt 32, the expansion and contraction of the bolt in the direction Y-Y is controlled by the control of temperature due to the heater, and the gap of the slit 33 is adjusted by the controller CPU 31.
  • the control of temperature due to the heater 35 is performed by controlling the on-off control ratio of the heater. For example, as shown in FIG.
  • the on-off control ratio is controlled with intervals of 10 seconds, and for instance, if the heater 35 is on for a period of time of 5 seconds in every interval, the on-off control ratio becomes 50%. This controlling of the on-off control ratio can be easily performed, even if the on time to be controlled or changed is fairly short, for example, 0.1 second.
  • the heater 35 may be controlled by adjustment of applied voltage.
  • adjusting means other than the means for adjusting the heater may be employed.
  • each adjusting bolt does not have a heater and a motor which can rotate the bolt is provided, the rotation of the bolt being controllable by the motor.
  • a Kalman filter is built into the CPU 31.
  • the correspondence relational matrix A having been shown in the aforementioned equation (5) is estimated in the manner schematically shown in FIG. 4. Since the thickness gauges 28, 29 and 30 are provided at three positions in this embodiment, respective correspondence relational matrices between the adjusting bolts 32 and the thickness distributions in accordance with the three positions in the running direction of the film can be obtained.
  • the thickness control of the film can be performed more precisely and the thickness and thickness distribution of the film after the final process (the transverse-stretching process performed by apparatus 25) can approach the target thickness and thickness distribution more closely with high accuracy.
  • the sequential estimation shown in FIG. 4 is explained in relation to an estimation at the position of thickness gauge 30, that is, an estimation for the thickness control of a final film product which has passed through all the sheet forming processes.
  • the actually measured thickness distributions are entered from the thickness gauge 30 to CPU 31 discretely, such as at time t i , at time t i+1 , ---.
  • the thickness distribution P* i at the time t i which will be obtained by the adjustment of the adjusting bolts 32 at the time t i-1 is estimated using the equation (5) including the optimum correspondence relational matrix A* i-1 also using the data measured before the time t i .
  • the estimated value is compared with the actually measured data at the time t i and the difference is calculated as a deviation distribution.
  • the optimum correspondence relational matrix A* i is estimated by amending the deviation distribution using a Kalman gain so as to enable the deviation distribution to approach zero. This arithmetic calculation is sequentially performed each time the actual data from the thickness gauge 30 is entered into CPU 31. As a result, the deviation distribution gradually approaches zero. Accordingly, the correspondence relational matrix A is sequentially amended and estimated to the optimum correspondence relational matrix so that the matrix can precisely show the relationship between the adjusting bolts 32 and the thickness distribution. Since the estimation is performed sequentially, however, an input of appropriate initial data must be supplied as aforementioned.
  • the amount of adjustment of each of the adjusting bolts 32 can be calculated using the sequentially estimated correspondence relational matrix A so that the thickness distribution to be measured by the thickness gauge 30 may approach a target distribution which is pre-set in CPU 31, as shown in the aforementioned equation (7). According to the output due to this calculation, the on-off control ratio of the heater 35 on each of the adjusting bolts 32 is controlled.
  • the thickness of the film at the position corresponding to the position of the adjusting bolt 32 is slightly changed by the adjustment of the bolt so as to appear as a thickness profile 40
  • the thickness of the film at the adjacent position is changed by the adjustment of the adjacent bolt so as to appear as a thickness profile 41
  • these small thickness variations are laminated in the width direction of the film.
  • all of the adjusting bolts 32 are controlled using the sequentially estimated correspondence relational matrix A so that the thickness profile of the film over the entire width may become that of a pre-set target profile such as a profile 42 shown in FIG. 6.
  • the correspondence relational matrix A is obtained with high accuracy by the statistical sequential estimation using a Kalman filter in the present invention, the relationship between the positions of the adjusting bolts 32 and the positions of the film after formation thereof in the width direction and the influence upon the thickness distribution of the film for a small unit adjustment of the adjusting bolt can be obtained accurately.
  • actual thickness distribution of the film is controlled to a target distribution with high accuracy.
  • the optimum matrix can be estimated in a short period of time and the matrix to be estimated automatically follows any process variation or fluctuation and is changed in a manner corresponding to the variation or fluctuation. Therefore, the optimum correspondence relationship can be maintained all the time during production.
  • the sheet material is not restricted to a resin.
  • the method of the present invention can be adopted to any material produced by a manufacturing process having a sheet forming stage, for example, the manufacture of glass or paper.
  • FIGS. 7-10 show an embodiment of a system for monitoring a correspondence relationship between the thickness distribution of a sheet material and means for adjusting the thickness according to a method of the present invention.
  • a display means 50 is added to the system shown in FIG. 1.
  • the disply means 50 comprises a display unit 51 and a printer 52 connected to CPU 31. Alternatively, only one of the display unit 51 and the printer 52 may be provided.
  • An arithmetic unit 53 having a Kalman filter is built into CPU 31.
  • the optimum correspondence relational matrixes A* and the optimum adjustment amounts of the adjusting means 32 required to render the thickness distribution of the film uniform are estimated using a Kalman filter from the data obtained by measurement of the thickness distributions in the width direction of the film entered from thickness gauges 28, 29 and 30 and the data of adjustment amounts of the adjusting bolts.
  • the estimated correspondence relational matrix A* is displayed on display means 50.
  • the matrix A* has, for example, a content such as that shown in FIG. 8.
  • a series of numbers M1, M2, M3 --- indicates the amounts of thickness variations of the film after formation and the positions where the thickness variations occur in the width direction of the film, in a case where each of the adjusting means 32 is adjusted by a unit amount of adjustment.
  • the series of numbers can be expressed as thickness variation patterns of the film L1, L2, L3 ---.
  • the correspondence relational matrix A* is displayed on display means 50 as a graph, as shown in FIG. 9. In the graph shown in FIG. 9, the ordinate indicates the number (position) of the adjusting bolts 32, and the pitch between adjacent bolts is uniform.
  • the abscissa indicates the positions of the film after formation by a sheet forming process and each position F1, F2, F3 --- indicates the position where the greatest thickness variation occurs in the width direction of the film by the adjustment of each bolt No. 1, 2, 3 ---.
  • Each line in the graph corresponds to each bolt.
  • the pitch between the positions F1 and F2 or F2 and F3 --- is varied by variations in the conditions of the sheet forming process. Therefore, by the nonuniformity of the pitches, the nonuniformity of the conditions in the sheet forming process can be understood. For instance, in the graph shown in FIG. 9, portion R extends to a relatively lesser degree in the width direction of the film because the pitches are relatively small and portion Q extends to a relatively greater degree because the pitches are relatively large. From this information, how the conditions of the sheet forming process such as temperature condition, mechanical condition etc. should be corrected in order to render uniform the pitches can be guessed. Then, when the conditions are adequately corrected, the pitch D can become uniform and the treatment in the sheet forming process can be uniformly performed. Thus a film having a uniform quality in the width direction can be obtained.
  • FIG. 10 shows a graph simultaneously illustrating the correspondence relational matrices at the positions of three thickness gauges, which matrices have been respectively displayed on the display means 50.
  • the correspondence relational matrix 1A* has relatively uniform pitch D1 at the position of thickness gauge 28. From this it can be seen that the treatment in the cooling and forming process 23 has been relatively uniform. It can also be seen that, in the correspondence relational matrix 2A* at the position of thickness gauge 29, the pitch D2 becomes a little nonuniform, and the treatment in the longitudinal-stretching process performed by apparatus 24 has been a little nonuniform.
  • the pitch D3 in the correspondence relational matrix 3A* becomes fairly nonuniform. Since the film passes through the transverse-stretching apparatus 25, nonuniformity of the conditions in the process directly affects the uniformity of the pitch D3. Thus, the nonuniformity of the conditions can be guessed in accordance with each of the forming processes, and adequate actions can be performed on each process in order to render uniform the quality of the finally formed film in the width direction.
  • a monitoring method according to the present invention can be adopted to a case where the thickness control of the film is performed by a conventional method.
  • FIG. 11 and FIG. 12 show such embodiments.
  • a Kalman filter is built not in CPU 60 but in CPU 61 as an arithmetic unit which is connected to CPU 60.
  • the data of adjustment amounts of the adjusting bolts 32 and the data of measured thickness distributions from the thickness gauges 28, 29 and 30 are entered into CPU 61 via CPU 60, repeatedly. From the repeatedly entered data, the correspondence relational matrix A* can also be estimated in the same manner as aforementioned.
  • the matrix A* thus obtained is displayed on a display unit 62.
  • adjusting bolts 71 are manually adjusted after observing the data of thickness distribution of the film from the thickness gauges 28, 29 and 30.
  • the adjustment amounts of the adjusting bolts 71 are entered into CPU 72 as an arithmetic unit via appropriate detecting means (not shown) and the data of thickness distributions from the gauges 28, 29 and 30 which result from the adjustment of the adjusting bolts are entered into CPU 72.
  • the sets of enterings are repeated, and the correspondence relational matrix A* is estimated using a Kalman filter in the CPU 72.
  • the estimated matrix A* is displayed on a display unit 73.
  • the correspondence relational matrix A* can be obtained, and from the display of the matrix the feedback information effective for the corrections of the conditions of sheet forming processes can be obtained. Since the thickness control systems are conventional methods in the above cases, however, improvement of the thickness distribution cannot always be expected.
  • monitoring method according to the present invention can also be adopted to processes for manufacturing glass, paper etc. without restriction to the manufacture of resin film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Claims (24)

  1. Méthode pour réguler l'épaisseur d'une feuille d'un matériau formé en produisant un voile de matériau fondu à partir d'une filière et en soumettant le voile de matériau fondu à un procédé de formation de feuille, laquelle méthode comporte les étapes consistant à:
    1) disposer sur la filière une pluralité de moyens pour ajuster l'épaisseur du voile de matériau fondu,
    2) pour chaque moyen d'ajustement, fournir :
    i) une estimation, qui soit au moins une estimation grossière, d'une relation de correspondance entre a) une position des moyens d'ajustement sur la filière dans la direction de la largeur du voile de matériau fondu, et un degré d'ajustement des moyens d'ajustement à un instant donné, et b) après formation du matériau sous forme de feuille par le procédé de formation de feuille, d'une position sur la feuille à laquelle l'épaisseur de la feuille est modifiée par application dudit ajustement par les moyens d'ajustement, et d'un degré de variation d'épaisseur à un instant ultérieur audit instant donné, provoqué par ledit ajustement audit instant donné, pour ainsi obtenir une matrice de relation de correspondance estimée A*i-1 pour tous lesdits moyens d'ajustement, et
    ii) une répartition d'épaisseur mesurée Pi-1, dans la direction de la largeur du matériau sous forme de feuille à un instant ti-1,
    3) mesurer la répartition de l'épaisseur Pi dans la direction de la largeur du matériel sous forme de feuille à un instant ti,
    4) utiliser une équation mettant en jeu la matrice de relation de correspondance estimée A*i-1, et la répartition d'épaisseur mesurée Pi-1,
    i) en calculant une répartition d'épaisseur estimée P*i à un instant ti et en déterminant la différence entre la répartition d'épaisseur estimée P*i et la répartition d'épaisseur mesurée Pi, et
    ii) lorsqu'une telle différence se produit, en modifiant ladite matrice de relation de correspondance estimée A*i-1 en fonction de ladite différence, pour donner une matrice de relation de correspondance estimée modifiée A*i,
       lesdites étapes (i) et (ii) étant effectuées au moyen d'un filtre de Kalman et répétées à chaque instant, par exemple ti+1, ti+2, etc, où une telle différence se produit, par utilisation de matrices de relation de correspondance estimées respectives A*i, A*i+1, etc., et de répartitions d'épaisseur mesurées respectives Pi, Pi+1, etc., de façon à fournir successivement lesdites matrices de relation de correspondance estimées modifiées A*i+1,  A*i+2, etc., de manière à ce que la répartition d'épaisseur mesurée Pi+1, Pi+2, etc, tende vers une distribution d'épaisseur cible P,
    5) calculer, à partir de ladite matrice de relation de correspondance estimée résultant de l'étape (4), un réglage optimal pour chaque moyen d'ajustement dépendant de la répartition cible P, et
    6) commander automatiquement les réglages des moyens d'ajustement en fonction dudit réglage optimal afin d'obtenir une répartition d'épaisseur optimale.
  2. Méthode selon la revendication 1, dans laquelle ledit procédé de formation de feuille comprend un procédé pour refroidir le voile de matériau fondu sortant de la filière de façon à former un matériau sous forme de feuille et un procédé pour étirer le matériau sous forme de feuille formé par ledit procédé de refroidissement.
  3. Méthode selon la revendication 2, dans laquelle ledit procédé d'étirage comporte un procédé d'étirage longitudinal pour étirer le matériau sous forme de feuille dans la direction longitudinale du matériau sous forme de feuille.
  4. Méthode selon la revendication 2, dans laquelle ledit procédé d'étirage comporte un procédé d'étirage longitudinal pour étirer le matériau sous forme de feuille dans la direction longitudinale du matériau sous forme de feuille et un procédé d'étirage transversal pour étirer le matériau sous forme de feuille dans la direction de la largeur du matériau sous forme de feuille.
  5. Méthode selon la revendication 4, dans laquelle la répartition d'épaisseur du matériau sous forme de feuille est mesuré à trois positions, à savoir après ledit procédé de refroidissement et de formation, après ledit procédé d'étirage longitudinal et après ledit procédé d'étirage transversal, qui sont agencées dans la direction de déplacement du matériau sous forme de feuille.
  6. Méthode selon l'une quelconque des revendications précédentes, dans laquelle ledit moyen d'ajustement est un moyen pour ajuster un interstice formé par une fente dans la filière.
  7. Méthode selon la revendication 6, dans laquelle l'épaisseur du voile de matériau fondu est ajustée par dilatation et contraction du moyen d'ajustement et dans laquelle ladite dilatation et ladite contraction sont commandées par un élément chauffant.
  8. Méthode selon la revendication 7, dans laquelle le rapport de commande marche/arrêt dudit élément chauffant est régulé.
  9. Méthode selon l'une quelconque des revendications précédentes, dans laquelle une matrice de relation de correspondance utilisée lorsqu'un procédé antérieur pour la production d'un matériau sous forme de feuille a été mis en oeuvre, est utilisée à l'étape 2i) en tant que valeur initiale de la matrice de relation de correspondance à modifier.
  10. Méthode selon l'une quelconque des revendications 1 à 8, dans laquelle des données obtenues par un test préliminaire qui comprend un actionnement délibéré des moyens d'ajustement, sont utilisées à l'étape 2i) en tant que valeur initiale de la matrice de relation de correspondance à modifier, test dans lequel l'un présélectionné desdits moyens d'ajustement est délibérément ajusté d'une valeur constante et dans lequel une variation de la répartition de l'épaisseur du matériau sous forme de feuille après formation par le procédé de formation de feuille lorsque ledit ajustement délibéré a été effectué, est mesurée.
  11. Méthode selon l'une quelconque des revendications précédentes, dans laquelle ledit matériau sous forme de feuille est un film de résine.
  12. Méthode pour contrôler une relation de correspondance entre la répartition de l'épaisseur d'un matériau sous forme de feuille dans la direction de la largeur du matériau sous forme de feuille et une pluralité de moyens pour ajuster l'épaisseur d'un voile de matériau fondu délivré par une filière, ledit matériau sous forme de feuille étant formé en faisant sortir le voile de matériau fondu de la filière et en soumettant le voile de matériau fondu à un procédé de formation de feuille, lesdits moyens d'ajustement étant disposés sur la filière dans la direction de la largeur du voile de matériau fondu, laquelle méthode comporte les étapes consistant à:
    1) pour chaque moyen d'ajustement, fournir
    i) une estimation, qui soit au moins une estimation grossière, d'une relation de correspondance entre a) une position des moyens d'ajustement sur la filière dans la direction de la largeur du voile de matériau fondu, et un degré d'ajustement des moyens d'ajustement à un instant donné, et b) après formation du matériau sous forme de feuille par le procédé de formation de feuille, d'une position sur la feuille à laquelle l'épaisseur de la feuille est modifiée par application dudit ajustement par les moyens d'ajustement, et d'un degré de variation d'épaisseur à un instant ultérieur audit instant, provoqué par ledit ajustement à l'instant donné, de façon à obtenir une matrice de relation de correspondance estimée A*i-1 pour tous lesdits moyens d'ajustement, et
    ii) une répartition d'épaisseur mesurée Pi-1, dans la direction de la largeur du matériau sous forme de feuille à un instant ti-1,
    2) mesurer la répartition d'épaisseur Pi dans la direction de la largeur du matériau sous forme de feuille à un instant ti,
    3) utiliser une équation mettant en jeu la matrice de relation de correspondance estimée A*i-1 et la répartition d'épaisseur mesurée Pi-1,
    i) en calculant une répartition d'épaisseur estimée P*i à un instant ti et en déterminant la différence entre la répartition d'épaisseur estimée P*i et la répartition d'épaisseur mesurée Pi, et
    ii) lorsqu'une telle différence se produit, en modifiant ladite matrice de relation de correspondance estimée A*i-1 en fonction de ladite différence, pour donner une matrice de relation de correspondance estimée modifiée A*i,
       lesdites étapes (i) et (ii) étant effectuées au moyen d'un filtre de Kalman et répétées à chaque instant, par exemple ti+1, ti+2, etc., où une telle différence se produit, par utilisation de matrices de relation de correspondance estimées respectives A*i, A*i+1, etc., et de répartitions d'épaisseur mesurées respectives Pi, Pi+1, etc., de façon à fournir successivement des matrices de relation de correspondance estimées modifiées A*i+1, A*i+2, etc., et
    4) afficher au moins une relation de correspondance entre la position desdits moyens d'ajustement sur la matrice dans la direction de la largeur du voile de matériau fondu et la position sur la feuille dans la direction de la largeur de la feuille de matériau sous forme de feuille après formation dudit matériau sous forme de feuille par ledit procédé de formation de feuille, position à laquelle l'épaisseur de la feuille est modifiée par ajustement des moyens d'ajustement en fonction de ladite matrice de relation de correspondance estimée modifiée A*i+1, A*i+2, etc., sur ledit moyen d'affichage.
  13. Méthode selon la revendication 12, dans laquelle ledit ajustement desdits moyens d'ajustement est commandé par un dispositif de commande auquel est fournie la répartition d'épaisseur mesurée du matériau sous forme de feuille après sa formation par le procédé de formation de feuille et dans laquelle une unité arithmétique mettant en oeuvre un filtre de Kalman est directement incorporée audit dispositif de commande.
  14. Méthode selon la revendication 12, dans laquelle ledit ajustement des moyens d'ajustement est commandé par un dispositif de commande auquel est fournie la répartition d'épaisseur mesurée du matériau sous forme de feuille après sa formation par le procédé de formation de feuille et dans laquelle une unité arithmétique mettant en oeuvre un filtre de Kalman, est connectée audit dispositif de commande.
  15. Méthode selon la revendication 12, dans laquelle ladite pluralité de moyens d'ajsutement est ajustée manuellement.
  16. Méthode selon l'une quelconque des revendications 12 à 15, dans laquelle ledit affichage est effectué sur une unité d'affichage.
  17. Méthode selon l'une quelconque des revendications 12 à 15, dans laquelle ledit affichage est effectué sur une imprimante.
  18. Méthode selon l'une quelconque des revendications 12 à 17, dans laquelle ledit procédé de formation de feuille comprend un procédé pour refroidir le voile de matériau fondu délivré par la filière de façon à former un matériau sous forme de feuille et un procédé pour étirer le matériau sous forme de feuille formé par ledit procédé de refroidissement.
  19. Méthode selon la revendication 18, dans laquelle ledit procédé d'étirage comporte un procédé d'étirage longitudinal pour étirer le matériau sous forme de feuille dans la direction longitudinale du matériau sous forme de feuille.
  20. Méthode selon la revendication 18, dans laquelle ledit procédé d'étirage comporte un procédé d'étirage longitudinal pour étirer le matériau sous forme de feuille dans la direction longitudinale du matériau sous forme de feuille, et un procédé d'étirage transversal pour étirer le matériau sous forme de feuille dans la direction de la largeur du matériau sous forme de feuille.
  21. Méthode selon la revendication 20, dans laquelle la répartition d'épaisseur du matériau sous forme de feuille est mesurée à trois positions, à savoir après ledit procédé de refroidissement et de formation, après ledit procédé d'étirage longitudinal et après ledit procédé d'étirage transversal, qui sont agencées dans la direction de déplacement du matériau sous forme de feuille.
  22. Méthode selon l'une quelconque des revendications 12 à 21, dans laquelle ledit moyen d'ajustement est un moyen pour ajuster un interstice formé par une fente dans la filière.
  23. Méthode selon l'une quelconque des revendications 12 à 22, dans laquelle une matrice de relation de correspondance utilisée lorsqu'un procédé antérieur pour la production du matériau sous forme de feuille a été effectué, est utilisée à l'étape 2i) en tant que valeur initiale de la matrice de relation de correspondance à modifier.
  24. Méthode selon l'une quelconque des revendications 12 à 23, dans laquelle ledit matériau sous forme de feuille est un film de résine.
EP88306507A 1987-07-17 1988-07-15 Méthode de contrôle de l'épaisseur d'un matériel en forme de bande Expired - Lifetime EP0307076B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17712787 1987-07-17
JP177127/87 1987-07-17

Publications (3)

Publication Number Publication Date
EP0307076A2 EP0307076A2 (fr) 1989-03-15
EP0307076A3 EP0307076A3 (en) 1989-07-26
EP0307076B1 true EP0307076B1 (fr) 1992-10-21

Family

ID=16025642

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88306507A Expired - Lifetime EP0307076B1 (fr) 1987-07-17 1988-07-15 Méthode de contrôle de l'épaisseur d'un matériel en forme de bande

Country Status (4)

Country Link
US (1) US4931982A (fr)
EP (1) EP0307076B1 (fr)
KR (1) KR970002260B1 (fr)
DE (1) DE3875433T2 (fr)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2609540B2 (ja) * 1988-08-31 1997-05-14 住友重機械工業株式会社 非干渉制御型tダイギャップ制御装置
JPH02169119A (ja) * 1988-12-22 1990-06-29 Toshiba Corp 板平坦度制御方法
JP2612244B2 (ja) * 1988-12-29 1997-05-21 王子油化合成紙株式会社 延伸樹脂フィルムの肉厚制御方法
US5291415A (en) * 1991-12-13 1994-03-01 Hughes Aircraft Company Method to determine tool paths for thinning and correcting errors in thickness profiles of films
EP0575636A1 (fr) * 1992-06-10 1993-12-29 Siemens Aktiengesellschaft Méthode de régulation des boucles de contrôle impliquants des temps morts
DE4238037A1 (en) * 1992-11-11 1993-04-08 Voith Gmbh J M Paper web profile fault correction - uses mathematical model for current operation to eliminate residual faults on the lateral profile
DE4239270A1 (de) * 1992-11-23 1994-05-26 Siemens Ag Verfahren zur Stellgliedidentifizierung bei der Querprofil-Regelung einer kontinuierlich erzeugten Materialbahn
EP0731913B1 (fr) * 1993-12-02 1999-03-10 Siemens Aktiengesellschaft Dispositif permettant d'examiner le profil transversal d'une bande de materiau produite en continu
FR2713539A1 (fr) * 1993-12-14 1995-06-16 Darlet Marchante Tech Sa Procédé et dispositif de régulation automatique d'épaisseur pour lignes de production de films, feuilles ou plaques.
DE19505694C1 (de) * 1995-02-20 1996-07-04 Siemens Ag Einrichtung zur Dickenregelung von Walzgut
DE19542448A1 (de) * 1995-11-14 1997-05-15 Voith Sulzer Papiermasch Gmbh Verfahren und Einrichtung zur Ermittlung der Auswirkung der Verstellung von Stellgliedern
JP3828950B2 (ja) * 1995-12-15 2006-10-04 東芝機械株式会社 2軸延伸フィルム上のダイボルト対応位置算出方法および同算出方法を用いた2軸延伸フィルムの厚さ制御方法
JPH10225973A (ja) * 1997-02-14 1998-08-25 Toshiba Mach Co Ltd 熱変位式自動tダイの制御方法
JP3858101B2 (ja) * 1997-05-01 2006-12-13 東セロ株式会社 延伸フィルム製造設備、及び製造方法
US6339727B1 (en) * 1998-12-21 2002-01-15 Recot, Inc. Apparatus and method for controlling distribution of product in manufacturing process
EP1325806B1 (fr) * 2000-09-19 2009-03-25 Toray Industries, Inc. Procede de fabrication de feuilles
EP1987942A3 (fr) * 2000-09-21 2009-12-23 Toray Industries Inc. Feuille obtenue par l'extrusion et le moulage d'une matière première
US6850857B2 (en) * 2001-07-13 2005-02-01 Honeywell International Inc. Data fusion of stationary array sensor and scanning sensor measurements
JP4076059B2 (ja) * 2001-11-07 2008-04-16 東レ株式会社 フィルムロール
DE10300374B4 (de) * 2003-01-06 2010-12-23 Windmöller & Hölscher Kg Verfahren und Vorrichtung zur Regelung der Dicke extrudierter Folie
DE10306837A1 (de) * 2003-02-18 2004-08-26 BFI VDEh-Institut für angewandte Forschung GmbH Verfahren zur Ermittlung des Oberflächenverlaufs eines bewegten Bandes
EP2718086B1 (fr) * 2011-06-07 2020-12-02 3M Innovative Properties Company Réglage de position de filière à fente
US9579684B2 (en) 2011-06-07 2017-02-28 3M Innovative Properties Company Slot die position adjustment control
DE102011083019A1 (de) * 2011-09-20 2013-03-21 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung der Rotorposition und der Drehzahl einer Drehfeldmaschine
DE102018111766A1 (de) 2018-05-16 2019-11-21 Windmöller & Hölscher Kg Verfahren zur automatisierten Regelung der Größe eines Spaltes einer Düsenanordnung und Steuer- und/oder Regelsystem
US11426914B2 (en) * 2019-03-15 2022-08-30 The Japan Steel Works, Ltd. Resin film manufacturing device and resin film manufacturing method
DE102019121959B4 (de) * 2019-08-14 2021-07-08 Sml Maschinengesellschaft Mbh Verfahren zur Herstellung einer Kunststoff-Folie
FR3103728B1 (fr) * 2019-11-28 2021-10-22 Aleph Procede de fabrication d’un film souffle avec determination de profil d’une grandeur caracteristique du film
CN116080042B (zh) * 2023-04-11 2023-06-02 山东金双防水科技有限公司 一种便于调节厚度的防水卷材冷却成型装置
CN117089817B (zh) * 2023-06-29 2024-02-13 同济大学 一种基于卡尔曼滤波数据融合的光学薄膜混合监控方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4124342A (en) * 1974-05-31 1978-11-07 Toray Industries, Inc. Apparatus for controlling the gap between lips of a die for extruding a plastic sheet material
JPS5844463B2 (ja) * 1975-09-18 1983-10-03 三菱樹脂株式会社 ネツカソセイジユシフイルムノアツサチヨウセイホウホウ
JPS5839050B2 (ja) * 1975-09-18 1983-08-27 三菱樹脂株式会社 熱可像性樹脂フイルムの厚さ調整方法
DE3176317D1 (en) * 1980-02-28 1987-08-20 Mitsubishi Heavy Ind Ltd Method and apparatus for controlling the thickness of a film product
JPS56133135A (en) * 1980-03-21 1981-10-19 Mitsubishi Heavy Ind Ltd Controlling method for thickness of film
JPS56120318A (en) * 1980-02-28 1981-09-21 Mitsubishi Heavy Ind Ltd Control of film thickness
JPS6050133B2 (ja) * 1981-11-05 1985-11-07 東芝機械株式会社 口金隙間調整方法
JPS60132727A (ja) * 1983-12-22 1985-07-15 Toshiba Mach Co Ltd プラスチツクフイルム等の厚さ調整方法
JPS60225730A (ja) * 1984-04-24 1985-11-11 Toshiba Mach Co Ltd 口金隙間調整方法
US4680089A (en) * 1985-01-22 1987-07-14 Measurex Corporation Process for controlling the formation of sheet material
JPS62117321A (ja) * 1985-11-18 1987-05-28 Hitachi Ltd カルマン・フイルタ−による塗布膜厚制御装置

Also Published As

Publication number Publication date
EP0307076A2 (fr) 1989-03-15
DE3875433T2 (de) 1993-04-22
US4931982A (en) 1990-06-05
KR970002260B1 (ko) 1997-02-26
DE3875433D1 (de) 1992-11-26
KR890002742A (ko) 1989-04-11
EP0307076A3 (en) 1989-07-26

Similar Documents

Publication Publication Date Title
EP0307076B1 (fr) Méthode de contrôle de l'épaisseur d'un matériel en forme de bande
JP3828950B2 (ja) 2軸延伸フィルム上のダイボルト対応位置算出方法および同算出方法を用いた2軸延伸フィルムの厚さ制御方法
EP0035356B1 (fr) Procédé et appareil pour régler l'épaisseur d'un produit en feuille
US5128077A (en) Method for producing multicomponent extrusions having controlled component contributions
US4428896A (en) Method of producing an extrudate of controlled size and shape from a roller die
EP1987942A2 (fr) Feuille obtenue par l'extrusion et le moulage d'une matière première
DE3730043C2 (fr)
KR900001824B1 (ko) 판재(板材)의 형상제어방법
US5094790A (en) Method of an apparatus for producing a web of platelike thermoplastic
US6185967B1 (en) Strip threading speed controlling apparatus for tandem rolling mill
EP1325806B1 (fr) Procede de fabrication de feuilles
JP2586114B2 (ja) シート状物の厚さ制御方法および装置、厚さ分布と厚さ調整手段との対応関係監視方法およびシート状物の製造方法
JPH06249621A (ja) 膜厚分布計測装置
JP3016117B2 (ja) テーパー鋼板の製造方法
JP2945749B2 (ja) フィルムシートのプロファイル制御方法
JP3766401B2 (ja) 熱可塑性樹脂シートの製造方法および製造装置
JP3252036B2 (ja) プラスチツクフイルムのプロフアイル制御方法
KR100929015B1 (ko) 압연재 소성계수 보정에 의한 예측압연하중 보정방법
JP2719215B2 (ja) 板圧延のエッジドロップ制御方法
KR100660215B1 (ko) 연속 압연기의 압연롤 속도 제어 장치
JPS6359855B2 (fr)
JP3260581B2 (ja) シート状物の厚みプロフィール制御装置
JPS5839050B2 (ja) 熱可像性樹脂フイルムの厚さ調整方法
JPH0618733B2 (ja) ゴムシ−トの厚さ制御方法
JP2006001290A (ja) 2軸延伸フィルムの厚さ制御方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB LU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB LU

17P Request for examination filed

Effective date: 19891204

17Q First examination report despatched

Effective date: 19911213

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB LU

REF Corresponds to:

Ref document number: 3875433

Country of ref document: DE

Date of ref document: 19921126

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19960701

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970715

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000710

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000711

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000713

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010715

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST