EP0305702A1 - Wärmetauscher mit einer Rippenrohranordnung - Google Patents

Wärmetauscher mit einer Rippenrohranordnung Download PDF

Info

Publication number
EP0305702A1
EP0305702A1 EP88111312A EP88111312A EP0305702A1 EP 0305702 A1 EP0305702 A1 EP 0305702A1 EP 88111312 A EP88111312 A EP 88111312A EP 88111312 A EP88111312 A EP 88111312A EP 0305702 A1 EP0305702 A1 EP 0305702A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
exchanger according
tube
tubes
ribs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88111312A
Other languages
English (en)
French (fr)
Other versions
EP0305702B1 (de
Inventor
Jürgen Ing.(grad.) Bayer
Hans-D. Dipl.-Ing.(Fh) Hinderberger
Rudolf Görlich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goerlich Kunststoffverarbeitung und Werkzeugbau G
Mahle Behr GmbH and Co KG
Original Assignee
GORLICH KUNSTSTOFFVERARBEITUNG und WERKZEUGBAU GmbH
GORLICH KUNSTSTOFFVERARBEITUNG
Gorlich Kunststoffverarbeitung und Werkzeugbau GmbH
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GORLICH KUNSTSTOFFVERARBEITUNG und WERKZEUGBAU GmbH, GORLICH KUNSTSTOFFVERARBEITUNG, Gorlich Kunststoffverarbeitung und Werkzeugbau GmbH, Behr GmbH and Co KG filed Critical GORLICH KUNSTSTOFFVERARBEITUNG und WERKZEUGBAU GmbH
Publication of EP0305702A1 publication Critical patent/EP0305702A1/de
Application granted granted Critical
Publication of EP0305702B1 publication Critical patent/EP0305702B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/26Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/06Arrangements for sealing elements into header boxes or end plates by dismountable joints
    • F28F9/14Arrangements for sealing elements into header boxes or end plates by dismountable joints by force-joining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/162Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by using bonding or sealing substances, e.g. adhesives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/165Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by using additional preformed parts, e.g. sleeves, gaskets
    • F28F9/167Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by using additional preformed parts, e.g. sleeves, gaskets the parts being inserted in the heat-exchange conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • F28F9/187Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding at least one of the parts being non-metallic, e.g. heat-sealing plastic elements

Definitions

  • the invention relates to a heat exchanger according to the preamble of claim 1.
  • a heat exchanger is known from DE-PS 35 32 493.
  • a tube sheet made of plastic is connected to metal tubes in a particularly simple manner. This is done in that the free ends of the tubes, which are each combined in a known manner to form a finned tube block, are inserted into grooves in retaining lugs of the tube sheets. The pipe ends thus located in the retaining lugs are then sealed in the tube sheet in that after the tube ends have been pressed in with an expanding mandrel, both the plastic of the holding connector and the end of the tube are radially expanded.
  • Such designs are tied to certain design requirements due to the use of the known metallic finned tube block.
  • the invention has for its object to provide a heat exchanger with a finned tube arrangement, in particular a water / air cooler for motor vehicles made of plastic, so that there is largely freedom for the construction of the heat exchanger, so that both in the form different, as well as in the performance different heat exchangers can be manufactured with the same components.
  • the characterizing features of claim 1 are provided in a heat exchanger of the type mentioned.
  • a finned tube or a group of tubes which have common fins is used as a modular component, which is then connected to a tube sheet in the desired manner to the final shape.
  • the ends of the tubes or tube groups can be connected to the associated tube sheet in a relatively simple and known manner, since both the tubes or tube groups, including their fins arranged thereon, and the tube sheet are made of plastic.
  • connection such as friction or laser welding, ultrasonic welding, but also gluing or mechanical joining can therefore be used to assemble the tube sheet and module component.
  • the advantage of laser welding is that different materials can also be welded. Since the pipes with the associated ribs made of plastic after the injection molding process, no conical extensions of the tubes need to be provided in order to be able to remove the cores. The new modular components therefore have a uniform flow cross-section for the heat exchange media.
  • subclaims 2 to 5 have the advantage that, despite the use of a positive fit when the pipe ends are pressed in, no constrictions or widenings of the flow cross section have to occur in the area of the openings of the tube sheets. A uniform flow through the finned tube arrangement is therefore possible.
  • subclaims 6 and 7 have the advantage that the flange provides a relatively large contact surface on the tube sheet, which is suitable, for example, for gluing. Due to the raised edge, the module component is stiffened.
  • subclaims 8 to 10 have the advantage that the individual module components, in particular also individual tubes, can be combined with the outer edges of their ribs to form different designs of the entire heat exchanger block without the gaps influencing the flow occurring between the aligned ribs of adjacent module components.
  • subclaims 11 to 13 offer the advantage that the air flowing through is excited to increase turbulence, which improves the heat transfer.
  • the features of subclaims 14 to 17 outline various possibilities, by influencing the cross-section in the tubes, which can be designed in particular as flat tubes, also Improve turbulence and heat transfer from the liquid to the pipe walls.
  • a part of a heat exchanger made of plastic is shown, which consists of a one-piece plastic module component (10) and from the two, each with the ends of the tubes (1 ') of this module component (10) connectable tube sheets (2 ) with water boxes (4) and (5).
  • Tube plates (2) and water boxes (4) and (5) are also made of plastic in the embodiment.
  • the module component (10) of FIGS. 1 and 2 consists of 25 individual tubes (1 '), which are arranged in columns and rows at the same distance from each other and by common ribs arranged one above the other perpendicular to the tube axes (1a) ( 6 ') are firmly connected in the form of square plates.
  • Pipes (1 ') and fins (6') form a single component, molded or molded from plastic.
  • the ends (9) of the tubes (1 ') protrude from this component and are connected to the tube sheets (2) in a manner yet to be explained (see e.g. FIG. 5).
  • the upper tube sheet (2) is part of a water box (4) connected to it in one piece.
  • the lower tube sheet (2) is separate from the water tank (5), which can be connected to the tube sheet (2) in a known manner.
  • a further module component (10A) or other module components of the same type as the module component (10) can be connected to this module component (10), the connection of the module components (10, 10A) to each other being a common one Tube plate (2) takes over, which is designed according to the desired final shape of the heat exchanger.
  • FIGS. 3 and 4 show a modification of the heat exchanger of FIGS. 1 and 2 insofar as here the module component (1) in each case consists only of a tube (1) with fins (6) arranged in one piece thereon.
  • these individual module components (1) ie the tubes (1) with the associated fins (6), are assembled to form a heat exchanger block similar to FIG. 2 in that the outer edges of the fins (6) aligned with one another abut each other are arranged and the individual tubes (1) are received with their ends in common tube plates (2).
  • Fig. 5 shows a first possibility of joining a tube sheet (2) with the ends (9) of the tubes (1) of the embodiment of Figs. 3 and 4.
  • the tube ends (9) are expanded and have a diameter (i.e. E ), which is larger than the inner diameter (d) of the tube (1) itself.
  • These extended tube ends (9) are pressed into a circumferential plug-in groove (11) in an edge (8) of the tube sheet (2), which is designed like a sleeve and is provided in the region of the opening (7) of the tube sheet (2) for the tube (1).
  • the configuration is such that the width of the plug-in groove (11) corresponds to the thickness of the wall of the pipe end (9) and that the depth (h) of the plug-in groove (11) corresponds to the length (1) of the enlarged area of the pipe end (9) is adjusted. It is also ensured that the distance between the wall of the plug-in groove (11) facing the opening (7) and the inner wall of the opening (7), which has the diameter (D R ), the difference in the diameters (d E - d) corresponds. In such an embodiment, after the pipe end (9) is pressed into the plug-in groove (11) as far as it will go, there will be no change in diameter inside the pipe (1) because the enlarged area of the pipe end (9) is separated from the sleeve-like inner part (30).
  • both the tube sheet (2) including the rim (8) and the tube (1) with the ribs (6) arranged in one piece thereon are made of plastic, this form-fitting joining can result in a very tight connection between the tube sheet (2) and the tube ( 1) can be achieved.
  • additional adhesive for ver bind and provide seals between the tube sheet (2) and tube (1) if this should be necessary.
  • Tight connections can also be achieved by ultrasonic or laser welding, the plug-in groove (11) only having to be designed for preassembly.
  • FIG. 6 Another type of connection between the tube sheet (2) and tube (1) is shown in Fig. 6.
  • the pipe ends (9) have an outwardly projecting flange (12) which extends perpendicular to the pipe axis (1a) and is provided with a circumferential rib (13) which projects in the direction of the pipe axis (1a).
  • the tube sheet (2) is provided in the region of the opening (7) with an edge (8 ') which has a counter surface (31) which runs parallel to the surface (32) of the flange (12) and which can be used for the tube (1) using the flange (12) by means of an adhesive connection with the tube sheet (2).
  • the tightness of the connection is additionally increased by the rib (13); the rib (13) also has the advantage of stiffening the pipe end (9) and stiffening the finished heat exchanger.
  • 7 to 10 show possibilities for designing the outer contour of the ribs (6) of a modular component, consisting of a tube or a flat tube, differently than shown in FIG. 4.
  • 7 shows the shape of a hexagon (14) for the outer contour of the ribs (6) of the module component (1).
  • These ribs can therefore be aligned with their outer edges (34) and (35) on adjacent hexagonal rib contours (14A) and (14B).
  • the honeycomb shape of the ribs (6) allows largely any type of heat exchanger to be produced.
  • the ribs (6) of the modular component (1) have the shape of a trapezoid (15) which, as in Fig. 8 shown, with other adjacent fins in a trapezoidal shape (15E) can be put together to form a row of tubes, which of course can be combined with further rows to form a finned tube block which is held together by corresponding tube sheets.
  • the hexagonal outer contour or the trapezoidal outer contour as well as, for example, a uniform octagonal contour of the ribs, not only in the case of a modular component which is each constructed from a tube.
  • the common fins (6 ') of FIG. 2 in a modular component (1'), consisting of several individual tubes can be brought into such polygonal shapes, which can then be combined to form larger heat exchanger blocks.
  • the invention therefore makes it possible to manufacture heat exchangers of various shapes and capacities from uniform modular plastic components.
  • the arrangement of the fins connected in one piece with the tubes also allows the wall thickness of the tubes themselves to be chosen to be relatively small without affecting the strength. This has an advantageous effect on the heat transfer.
  • the new modular components are preferably suitable for the construction of heat exchangers, such as those used in stationary and transient heating technology. By choosing a suitable plastic, such heat exchanger systems can also be used with corrosive and / or aggressive media.
  • FIG. 11 shows an embodiment in which a flat tube (1 ') is provided with approximately rectangular ribs (6).
  • this flat tube has an internal cross section that has no parallel side walls (22) and (23). Rather, these inner walls (22 and 23) are provided with ribs (24) which extend parallel to the direction of flow and increase the surface area, by means of which the heat transfer can be improved.
  • the cross-sectional shape of the flat tube (1 ') of FIG. 12 has a similar effect, where the inner walls are in the form of two interlocking longitudinal teeth (25) and (26), which have a zigzag slot (27) between them. leave.
  • Such cross-sectional shapes of tubes for heat exchangers can be produced when plastic is used as the production material.
  • the cross-sectional shape of the flat tube (1 ') of FIG. 13, which is provided with a plurality of chambers (21) running parallel to one another, is also particularly stable.
  • the plastic used for production can also be stiffened in a manner known per se by fillers and also improved in terms of its heat transfer.
  • a further improvement in the thermal efficiency can be achieved by coating the surface with materials that conduct heat well, especially metals, e.g. Copper.
  • the coating also serves as a diffusion barrier for media that can diffuse through plastic and can contribute to increasing the strength.
  • the coating is preferably applied after the assembly of all module components.
  • FIG. 14 to 16 show an embodiment of the module of FIG. 3, in which a tube (1) is equipped with ribs (6) which have a wave shape.
  • the course of the waves ie the wave crests (18) running parallel to one another, is in each case arranged such that the crests (19) of the wave crests are respectively run perpendicular to the direction of flow (16) in which the air is carried out between the ribs (6).
  • the water flows through the pipes (1) in the direction (28) or in the opposite direction, as indicated in FIG. 14.
  • the ribs (6) provided in this way with profiles (17) force the air flowing through to increased turbulence and thus to an improved heat absorption by the ribs, which in turn pass on the heat given off by the water to the pipes (1).
  • Fig. 16 shows one way of designing the waveform, which can be realized in the manufacture of plastic.
  • inclined edges (20) against the flow direction (16) are provided, which help to promote the breaking off of the flow and the increase in turbulence.
  • 14 and 15 is readily apparent, the demolding of the modular component of those figures is made possible by pulling a cylindrical core out of the tube (1) and pulling the mold halves in the direction of the wave crests. Since plastic is used as the manufacturing material, it is not absolutely necessary to provide conical core parts for the pipes. The plastic is still elastic during demolding and therefore also allows the demolding of cylindrical cores.
  • FIG. 17 shows a possibility of assembling the tubes (1) themselves from several, in the exemplary embodiment from two partial tube pieces (1a, 1b).
  • the upper ends of the pipe sections (1a) in the tube sheet of a water tank (4 ') and the lower ends are held in a coupling piece (3).
  • the coupling piece (3) sit also the upper ends of the pipe sections (1b), which open into the second water tank (5 ').

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Bekannte Wärmetauscher mit Kunststoffrohrböden und mit einem metallischen Rippenrohrblock sind, ebenso wie vollständig aus Kunststoff hergestellte Wärmetauscher, entweder konstruktionsbedingt oder, bedingt durch die Form für die Herstellung, in ihrer Dimension vorgegeben. Eine Anpassung an andere Gegebenheiten macht eine Konstruktionsänderung erforderlich. Dies soll mit der Erfindung vermieden werden. Zur Lösung wird vorgeschlagen, daß ein Rohr (1) oder eine Gruppe von Rohren (1) mit den sie umgebenden Rippen (6) einstückig als ein aus Kunststoff hergestelltes Modulteil (10, 10a) ausgebildet wird, das wahlweise mit weiteren Modulbauteilen (1a, 1b) und dem Rohrboden (2) zusammensetzbar ist. Der neue Wärmetauscher eignet sich besonders für Wärmetauscher in der stationären und instationären Wärmetechnik.

Description

  • Die Erfindung betrifft einen Wärmetauscher nach dem Oberbegriff des Patentanspruches 1. Ein solcher Wärmetauscher ist aus der DE-PS 35 32 493 bekannt. Bei dieser Bauart wird ein aus Kunst­stoff hergestellter Rohrboden in besonders einfacher Weise mit Metallrohren verbunden. Das geschieht dort dadurch, daß die freien Enden der Rohre, die jeweils in bekannter Weise zu einem Rippen-Rohrblock zusammengefaßt sind, in Nuten von Halte­ansätzen der Rohrböden eingeschoben werden. Die so in den Halteansätzen befindlichen Rohrenden werden dann dadurch im Rohrboden abgedichtet, daß nach dem Einpressen der Rohrenden mit einem Aufweitdorn sowohl der Kunststoff des Haltestutzens, als auch das Ende des Rohres radial aufgeweitet wird. Solche Bauarten sind wegen der Verwendung des bekannten metallischen Rippen-Rohrblockes an bestimmte Konstruktionsvorgaben gebunden.
  • Bekannt ist es auch, Wärmetauscher durch formschlüssiges Anein­anderfügen einzelner Bauteile aus Kunststoff herzustellen (EP-OS 0 191 956). Die zum Aufbau eines solchen Wärmetauschers verwendeten Kunststoffteile werden extrudiert. Solche Bauarten sind wegen der fehlenden Rippen-Rohranordnung nicht für alle Zwecke einsetzbar. Die notwendigen Wandstärken solcher extru­dierten Kunststoffbauteile sind auch relativ hoch, so daß die Wärmetauschfähigkeit dadurch beeinträchtigt wird.
  • Bekannt ist es schließlich auch (DE-OS 35 36 527), einen Wärmetauscherblock für einen Flüssigkeits/Luft/Wärmetauscher aus einem einteiligen Spritzgußteil, insbesondere aus Aluminium herzustellen, dessen Rohre sich jeweils keilförmig bis zur Mitte verengen, damit die für den Guß notwendigen Kerne nach der Herstellung entfernt werden können. Auch die an beiden Seiten jeweils einstückig angegossenen Rohrböden müssen zum Entfernen des Kernes geeignet ausgebildet sein. Abgesehen davon, daß eine Verengung des Durchströmungsquerschnittes in den Rohren ungünstig ist, ist es mit einer solchen Herstel­lungsart nur möglich, bestimmte, durch die Form vorgegebene Wärmetauscherbauarten herzustellen. Eine Möglichkeit zur Variation der Rippen-Rohrblockform oder -größe besteht nicht.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Wärmetauscher mit einer Rippen-Rohranordnung, insbesondere einen Wasser/Luft­kühler für Kraftfahrzeuge aus Kunststoff so auszubilden, daß weitgehend Freiheit für den Aufbau des Wärmetauschers besteht, so daß sowohl in der Form unterschiedliche, als auch in der Leistung verschiedene Wärmetauscher mit den gleichen Bauteilen herstellbar sind.
  • Zur Lösung dieser Aufgabe werden bei einem Wärmetauscher der eingangs genannten Art die kennzeichnenden Merkmale des Patent­anspruches 1 vorgesehen. Im Gegensatz zu den bekannten Bau­arten, wo die Rohrböden im Druck- oder Spritzguß bereits ein­teilig mit dem Rippen-Rohrblock verbunden sind, wird erfin­dungsgemäß nur entweder ein mit Rippen bestücktes Rohr oder eine Gruppe von Rohren, die gemeinsame Rippen aufweisen, als ein Modulbauteil benutzt, das anschließend mit einem Rohrboden in der gewünschten Weise zur Endform verbunden wird. Dabei können die Enden der Rohre oder der Rohrgruppen in relativ einfacher und bekannter Weise mit dem dazugehörigen Rohrboden verbunden werden, da sowohl die Rohre oder Rohrgruppen ein­schließlich ihrer einstückig daran angeordneten Rippen, als auch der Rohrboden aus Kunststoff bestehen. Bekannte Verbin­dungsarten, wie beispielsweise Reib- oder Laser-Schweißen, Ultraschall-Schweißen, aber auch Kleben oder mechanisch Fügen können daher zum Zusammensetzen von Rohrboden und Modulbauteil verwendet werden. Beim Laser-Schweißen wird der Vorteil erzielt, daß auch unterschiedliche Werkstoffe verschweißbar sind.
    Da die Rohre mit den dazugehörigen Rippen aus Kunststoff nach dem Spritzgießverfahren hergestellt sind, brauchen keine konus­förmigen Erweiterungen der Rohre vorgesehen zu werden, um die Kerne entfernen zu können. Die neuen Modulbauteile weisen daher einen gleichmäßigen Strömungsquerschnitt für die Wärmetausch­medien auf.
  • Vorteilhafte Weiterbildungen des Erfindungsgedankens sind in den Unteransprüchen gekennzeichnet. Dabei weisen die Merkmale der Unteransprüche 2 bis 5 den Vorteil auf, daß trotz der Verwendung eines Formschlusses beim Einpressen der Rohrenden auch im Bereich der Öffnungen der Rohrböden keine Verengungen oder Erweiterungen des Strömungsquerschnittes auftreten müssen. Eine gleichmäßige Durchströmung der Rippen-Rohranordnung wird daher möglich.
  • Die Merkmale der Unteransprüche 6 und 7 weisen den Vorteil auf, daß durch den Flansch eine relativ große, beispielsweise für das Verkleben geeignete Anlagefläche am Rohrboden zur Verfügung steht. Durch den hochstehenden Rand wird eine Versteifung des Modulbauteiles erreicht.
  • Die Merkmale der Unteransprüche 8 bis 10 weisen den Vorteil auf, daß die einzelnen Modulbauteile, insbesondere auch einzelne Rohre mit den Außenkanten ihrer Rippen zu verschiedenen Bau­formen des gesamten Wärmetauscherblockes kombiniert werden können, ohne daß zwischen den fluchtenden Rippen benachbarter Modulbauteile die Durchströmung beeinflussende Zwischenräume auftreten.
  • Die Merkmale der Unteransprüche 11 bis 13 bieten den Vorteil, daß die durchströmende Luft zur erhöhter Turbulenz angeregt wird, wodurch der Wärmeübergang verbessert wird. Die Merkmale der Unteransprüche 14 bis 17 umreißen verschiedene Möglich­keiten, durch Querschnittsbeeinflussung in den Rohren, die ins­besondere als Flachrohre ausgebildet sein können, auch die Turbulenz und den Wärmeübergang von der Flüssigkeit an die Rohrwandungen zu verbessern.
  • Die Erfindung ist in der Zeichnung anhand von Ausführungs­beispielen dargestellt und wird im Nachfolgenden erläutert. Es zeigen:
    • Fig. 1 einen schematischen Längsschnitt durch einen Teil eines erfindungsgemäßen, mit mindestens einem Modulbauteil und mit zwei damit verbundenen Rohrböden mit Wasserkästen aufgebauten Kunststoffwärmetauscher,
    • Fig. 2 den Schnitt durch den Wärmetauscher der Fig. 1 längs der Linie II-II,
    • Fig. 3 einen Wärmetauscher ähnlich Fig. 1, bei dem jedoch zur Herstellung der gleichen Baugröße wie in Fig. 1, mehrere und andere Modulbauteile verwendet sind,
    • Fig. 4 den Schnitt durch den Wärmetauscher der Fig. 3 längs der Linie IV-IV,
    • Fig. 5 eine vergrößerte Detaildarstellung des Anschluß­bereiches zwischen Rohrende und Rohrboden, wie sie bei einem der Wärmetauscher der Fig. 1 und 3 vor­gesehen sein kann,
    • Fig. 6 eine andere Anschlußmöglichkeit in einer Dar­stellung ähnlich Fig. 5,
    • Fig. 7 die schematische Darstellung eines Teilschnittes ähnlich Fig. 4, jedoch bei einer Ausführungsform, bei der die Rippen des zugeordneten Rohres Sechs­eckform aufweisen,
    • Fig. 8 eine Darstellung ähnlich Fig. 7, jedoch bei einem Modulbauteil, bei dem die Rippen Trapezform auf­weisen,
    • Fig. 9 eine Darstellung ähnlich den Fig. 7 und 8, jedoch unter Verwendung von Flachrohren, die von Rippen mit Trapezform umgeben sind, wobei mehrere, jeweils aus einem Rohr aufgebaute Modulbauteile mit den Außenkanten ihrer Rippen zu einem mehrreihigen Rippen-Rohr-Wärmetauscher zusammengefügt sind,
    • Fig. 10 eine Darstellung ähnlich Fig. 9, bei der jedoch die einzelnen Modulbauteile zu einem ringförmigen Wärmetauscher zusammengesetzt werden,
    • Fig. 11 einen Schnitt durch eine andere Ausführungsform eines Modulbauteiles mit einem Flachrohr und mit einer rechteckigen Rippenanordnung, wobei der Innenquerschnitt des Flachrohres in besonderer Weise gestaltet ist,
    • Fig. 12 einen Schnitt ähnlich Fig. 11, jedoch etwas ver­größert und bei einer Ausführungsform, bei der der Innenquerschnitt anders gestaltet ist,
    • Fig. 13 einen Schnitt ähnlich Fig. 11 mit einem Flachrohr, das aus einem Mehrkammerquerschnitt aufgebaut ist,
    • Fig. 14 einen Teilschnitt ähnlich Fig. 6, jedoch bei einem Modulbauteil mit Rippen in Wellform,
    • Fig. 15 die Ansicht des Modulbauteiles der Fig. 14 in Richtung des Pfeiles XV,
    • Fig. 16 die vergrößerte Darstellung eines Teilschnittes durch eine Rippe der Fig. 14, bei der Turbulenz erzeugende Spitzen an den Rippen vorgesehen sind und
    • Fig. 17 eine schematische Darstellung einer Ausführungsform, bei der die Rohre des Wärmetauschers aus mehreren Teilrohrstücken zusammengesetzt sind.
  • In den Fig. 1 und 2 ist ein Teil eines aus Kunststoff her­gestellten Wärmetauschers gezeigt, der aus einem einstückig hergestellten Kunststoffmodulbauteil (10) und aus den beiden, jeweils mit den Enden der Rohre (1′) dieses Modulbauteiles (10) verbindbaren Rohrböden (2) mit Wasserkästen (4) und (5) be­steht. Rohrböden (2) und Wasserkästen (4) und (5) bestehen beim Ausführungsbeispiel ebenfalls aus Kunststoff.
  • Der Modulbauteil (10) der Fig. 1 und 2 besteht aus 25 einzelnen Rohren (1′), die in Spalten und Reihen jeweils mit gleichem Ab­stand zueinander angeordnet sind und durch gemeinsame, senk­recht zu den Rohrachsen (1a) verlaufende lamellenartig überein­ander angeordnete Rippen (6′) in der Form von quadratischen Platten fest miteinander verbunden sind. Rohre (1′) und Rippen (6′) bilden ein einziges, aus Kunststoff gespritztes oder gegossenes Bauteil. Aus diesem Bauteil ragen jeweils die Enden (9) der Rohre (1′) heraus, die in noch zu erläuternder Weise (s. z.B. Fig. 5) mit den Rohrböden (2) verbunden werden. Beim Ausführungsbeispiel der Fig. 1 und 3 ist jeweils der obere Rohrboden (2) Teil eines einstückig mit ihm verbundenen Wasser­kasten (4). Der untere Rohrboden (2) ist getrennt vom Wasser­kasten (5), der in bekannter Weise mit dem Rohrboden (2) ver­bindbar ist. Wie Fig. 2 zeigt, kann ein weiteres Modulbauteil (10A) oder auch noch andere Modulbauteile der gleichen Art wie das Modulbauteil (10) mit diesem Modulbauteil (10) verbunden werden, wobei die Verbindung der Modulbauteile (10, 10A) unter­einander jeweils ein gemeinsamer Rohrboden (2) übernimmt, der entsprechend der gewünschten Endform des Wärmetauschers aus­gebildet ist.
  • Die Fig. 3 und 4 zeigen eine Abwandlung des Wärmetauschers der Fig. 1 und 2 insofern, als hier der Modulbauteil (1) jeweils nur aus einem Rohr (1) mit einstückig daran angeordneten Rippen (6) besteht. Wie Fig. 4 zeigt, werden diese einzelnen Modulbau­teile (1), d.h. die Rohre (1) mit den dazugehörigen Rippen (6), zu einem Wärmetauscherblock ähnlich Fig. 2 dadurch zusammen­gesetzt, daß jeweils die Außenkanten der zueinander fluchtenden Rippen (6) aneinanderstoßend angeordnet werden und die einzel­nen Rohre (1) mit ihren Enden in gemeinsamen Rohrböden (2) aufgenommen werden.
  • Fig. 5 zeigt eine erste Möglichkeit des Zusammenfügens eines Rohrbodens (2) mit den Enden (9) der Rohre (1) der Ausführungs­form der Fig. 3 und 4. Bei diesem Ausführungsbeispiel sind die Rohrenden (9) erweitert und besitzen einen Durchmesser (dE), der größer ist als der Innendurchmesser (d) des Rohres (1) selbst. Diese erweiterten Rohrenden (9) werden in eine umlau­fende Stecknut (11) in einem Rand (8) des Rohrbodens (2) einge­preßt, der muffenartig ausgebildet und im Bereich der Öffnung (7) des Rohrbodens (2) für das Rohr (1) vorgesehen ist. Die Ausgestaltung ist dabei so vorgenommen, daß die Breite der Stecknut (11) der Dicke der Wandung des Rohrendes (9) ent­spricht und daß die Tiefe (h) der Stecknut (11) der Länge (1) des erweiterten Bereiches des Rohrendes (9) angepaßt ist. Ferner ist dafür gesorgt, daß der Abstand zwischen der zur Öffnung (7) weisenden Wand der Stecknut (11) und der Innenwand der Öffnung (7), die den Durchmesser (DR) aufweist, der Dif­ferenz der Durchmesser (dE - d) entspricht. Bei einer solchen Ausgestaltung wird sich nach dem Eindrücken des Rohrendes (9) in die Stecknut (11) bis zum Anschlag keine Durchmesserverän­derung im Inneren des Rohres (1) ergeben, weil der erweiterte Bereich des Rohrendes (9) von dem hülsenartigen Innenteil (30) des Randes (8) ausgefüllt ist. Da sowohl der Rohrboden (2) einschließlich Rand (8), als auch das Rohr (1) mit den daran einstückig angeordneten Rippen (6) aus Kunststoff bestehen, kann durch dieses formschlüssige Fügen eine sehr dichte Verbin­dung zwischen Rohrboden (2) und Rohr (1) erreicht werden. Natürlich ist es auch möglich, zusätzlich Klebstoff zum Ver­ binden und Dichten zwischen Rohrboden (2) und Rohr (1) vor­zusehen, wenn dies notwendig sein sollte. Auch durch Ultra­schall- oder Laserschweißen sind dichte Verbindungen zu erzielen, wobei die Stecknut (11) lediglich zur Vormontage ausgebildet sein braucht.
  • Eine andere Art der Verbindung zwischen Rohrboden (2) und Rohr (1) ist in Fig. 6 gezeigt. Hier weisen die Rohrenden (9) einen nach außen abstehenden, senkrecht zur Rohrachse (1a) verlaufen­den Flansch (12) auf, der mit einer in Richtung der Rohrachse (1a) abstehenden umlaufenden Rippe (13) versehen ist. Der Rohr­boden (2) ist im Bereich der Öffnung (7) mit einem Rand (8′) versehen, der eine parallel zur Oberfläche (32) des Flansches (12) verlaufende Gegenfläche (31) besitzt, die dazu ausgenutzt werden kann, das Rohr (1) mit Hilfe des Flansches (12) durch eine Klebverbindung mit dem Rohrboden (2) zusammenzusetzen. Möglich wäre es auch, durch Ultraschallanwendung oder Laser die Verbindung herzustellen. Beim gezeigten Ausführungsbeispiel wird zusätzlich durch die Rippe (13) die Dichtheit der Verbin­dung erhöht; die Rippe (13) bringt aber auch den Vorteil einer Versteifung des Rohrendes (9) und einer Versteifung des fer­tigen Wärmetauschers mit sich.
  • In den Fig. 7 bis 10 sind Möglichkeiten gezeigt, die Außen­kontur der Rippen (6) eines Modulbauteiles, bestehend aus einem Rohr oder einem Flachrohr anders als in Fig. 4 gezeigt zu gestalten. In der Fig. 7 ist die Form eines Sechseckes (14) für die Außenkontur der Rippen (6) des Modulbauteiles (1) gezeigt. Diese Rippen lassen sich daher fluchtend mit ihren Außenkanten (34) und (35) an angrenzende sechseckige Rippenkonturen (14A) und (14B) anlegen. Durch die Wabenform der Rippen (6) lassen sich weitgehend beliebige Bauarten von Wärmetauscher her­stellen.
  • Das gilt auch dann, wenn die Rippen (6) des Modulbauteiles (1) die Form eines Trapezes (15) aufweisen, das sich, so wie in Fig. 8 gezeigt, mit anderen angrenzenden Rippen in Trapezform (15E) zu einer Reihe von Rohren zusammensetzen läßt, die natürlich mit weiteren Reihen zu einem Rippen-Rohrblock kom­biniert werden kann, der durch entsprechende Rohrböden zu­sammengehalten ist.
  • Fig. 9 und 10 schließlich zeigen die Möglichkeit, anstelle von Rohren (1) mit kreisrundem Querschnitt Flachrohre (1′) mit etwa ovalem Querschnitt zu verwenden, die ebenfalls von Rippen mit Trapezform (15) umgeben sein können. Auch hier lassen sich, beispielsweise durch Aneinanderfügen benachbarter Trapezformen (15A und 15B), zwei- oder mehrreihige Wärmetauscherblöcke aufbauen. Wie Fig. 10 zeigt, ist es aber auch möglich, mit der Trapezform (15) und den entsprechend angelegten Trapezformen (15C) und (15D) der Rippen von Flachrohren (1′) kreisrunde Wärmetauscher aufzubauen. Natürlich ist es auch möglich, die sechseckige Außenkontur oder die Trapezaußenkontur, ebenso wie beispielsweise eine gleichmäßige Achteckkontur der Rippen nicht nur bei einem Modulbauteil vorzusehen, das jeweils aus einem Rohr aufgebaut ist. Natürlich lassen sich auch die gemeinsamen Rippen (6′) der Fig. 2 bei einem Modulbauteil (1′), bestehend aus mehreren einzelnen Rohren, in solche Mehreckformen bringen, die untereinander dann zu größeren Wärmetauscherblöcken kombi­nierbar sind. Durch die Erfindung wird es daher möglich, Wärmetauscher verschiedener Formen und Leistung aus einheit­lichen Modulbauteilen aus Kunststoff herzustellen. Die Anord­nung der einstückig mit den Rohren verbundenen Rippen erlaubt es auch, die Wandstärke der Rohre selbst verhältnismäßig gering zu wählen, ohne die Festigkeit zu beeinflussen. Dies wirkt sich vorteilhaft auf den Wärmeübergang aus. Die neuen Modulbauteile sind vorzugsweise geeignet für den Aufbau von Wärmetauschern, wie sie in der stationären und instationären Wärmetechnik verwendet werden. Durch die Wahl eines geeigneten Kunststoffes können derartige Wärmetauschersysteme auch bei korrosiv und/­oder aggressiv wirkenden Medien eingesetzt werden.
  • Zur Verbesserung des Wärmeüberganges bei gleichzeitigem Erhalt der Stabilität können auch Flachrohrformen gemäß den Fig. 11 bis 13 vorgesehen werden. Fig. 11 zeigt dabei eine Ausführungs­form, bei der ein Flachrohr (1′) mit etwa rechteckig ausgebil­deten Rippen (6) versehen ist. Dieses Flachrohr besitzt jedoch einen Innenquerschnitt, der keine parallelen Seitenwände (22) und (23) aufweist. Vielmehr sind diese Innenwände (22 und 23) mit parallel zur Durchströmungsrichtung verlaufenden, die Ober­fläche vergrößernden Rippen (24) versehen, durch die der Wärme­übergang verbessert werden kann. Ähnliches bewirkt auch die Querschnittsform des Flachrohres (1′) der Fig. 12, wo die Innenwände in der Form von zwei ineinandergreifenden Längsver­zahnungen (25) und (26) ausgebildet sind, die zwischen sich einen zick-zack-förmig verlaufenden Schlitz (27) belassen. Solche Querschnittsformen von Rohren für Wärmetauscher, die gleichzeitig mit Außenrippen bestückt sein können, lassen sich bei Verwendung von Kunststoff als Herstellungsmaterial erzeu­gen. Besonders stabil ist auch die Querschnittsform des Flach­rohrs (1′) der Fig. 13, das mit mehreren parallel zueinander verlaufenden Kammern (21) versehen ist. Der zur Herstellung verwendete Kunststoff läßt sich in an sich bekannter Weise auch durch Füllstoffe sowohl versteifen, als auch hinsichtlich seines Wärmedurchganges verbessern. Eine weitere Verbesserung des thermischen Wirkungsgrades kann durch Beschichtung der Oberfläche mit gut wärmeleitenden Stoffen, insbesondere Me­tallen, z.B. Kupfer, erzielt werden. Die Beschichtung dient auch als Diffusionssperre bei Medien, die durch Kunststoff diffundieren können, und kann zur Erhöhung der Festigkeit bei­tragen. Vorzugsweise wird die Beschichtung nach dem Zusammen­setzen aller Modulbauteile aufgebracht.
  • Die Fig. 14 bis 16 zeigen eine Ausführungsform des Modules der Fig. 3, bei der ein Rohr (1) mit Rippen (6) bestückt ist, die Wellenform aufweisen. Dabei ist der Verlauf der Wellen, d.h. der parallel zueinander verlaufenden Wellenberge (18) jeweils so gelegt, daß die Scheitel (19) der Wellenberge jeweils senkrecht zu der Durchströmungsrichtung (16) verlaufen, in der die Luft zwischen den Rippen (6) durchgeführt wird. Bei einem Wasser/Luftkühler durchströmt das Wasser die Rohre (1) in Richtung (28) oder in entgegengesetzter Richtung, wie dies in Fig. 14 angedeutet ist. Die auf diese Weise mit Profilierungen (17) versehenen Rippen (6) zwingen die durchströmende Luft zu einer erhöhten Turbulenz und damit zu einer verbesserten Wärmeaufnahme von den Rippen, die ihrerseits die vom Wasser an die Rohre (1) abgegebene Wärme weitergeben.
  • Fig. 16 zeigt eine Möglichkeit der Ausgestaltung der Wellen­form, die sich bei der Herstellung aus Kunststoff verwirklichen läßt. Hier sind am Scheitel (19) der Wellenberge (18) auf einer Seite der Rippen (6) gegen die Strömungsrichtung (16) geneigte Kanten (20) vorgesehen, die dazu beitragen, das Abreißen der Strömung und die Erhöhung der Turbulenz zu fördern. Wie aus den Fig. 14 und 15 ohne weiteres ersichtlich ist, wird die Ent­formung des Modulbauteiles jener Figuren einmal durch Heraus­ziehen eines zylindrischen Kernes aus dem Rohr (1) und zum anderen durch Abziehen der Formhälften in Richtung des Ver­laufes der Wellenberge ermöglicht. Da Kunststoff als Her­stellungsmaterial eingesetzt wird, ist es nicht zwingend erforderlich, konisch verlaufende Kernteile für die Rohre vorzusehen. Der Kunststoff ist beim Entformen noch elastisch und läßt daher auch die Entformung zylindrischer Kerne zu.
  • Fig. 17 zeigt eine Möglichkeit, die Rohre (1) selbst aus mehreren, beim Ausführungsbeispiel aus zwei Teilrohrstücken (1a, 1b) zusammenzusetzen. Hier sind die oberen Enden der Teil­rohrstücke (1a) im Rohrboden eines Wasserkastens (4′) und die unteren Enden in einem Kupplungsstück (3) gehalten. Im Kupplungsstück (3) sitzen abgedichtet auch die oberen Enden der Teilrohrstücke (1b), die im zweiten Wasserkasten (5′) münden. Dieser Aufbau ermöglicht es, Wärmetauscher mit großen Rohrlängen zu verwirklichen.

Claims (19)

1. Wärmetauscher, bestehend aus einer Rippen-Rohranord­nung, deren Rohre (1) beidseitig im Rohrboden (2) eines Wasser­kastens (4, 5) gehalten und deren Rippen (6, 6′) quer zur Achse (1a) der Rohre (1, 1′) von Luft o.dgl. angeströmt sind, wobei mindestens der Rohrboden aus Kunststoff besteht, dadurch gekennzeichnet, daß ein Rohr (1) oder eine Gruppe (10) von Rohren (1′) mit den sie umgebenden Rippen (6, 6′) einstückig als ein aus Kunststoff hergestelltes Modulteil ausgebildet ist, das wahlweise mit weiteren Modulbauteilen (1A, 1B, 10A) und dem Rohrboden (2) zusammensetzbar ist.
2. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, daß die Öffnungen (7) der Rohrböden (2) für die Rohrenden (9) mit muffenartig ausgebildeten Rändern (8) versehen sind.
3. Wärmetauscher nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß die Ränder (8) der Öffnungen (7) auf ihrer den Rohrenden (9) zugewandten Stirnseite mit einer umlaufenden Stecknut (11) für die Rohrenden versehen sind.
4. Wärmetauscher nach Anspruch 3, dadurch gekennzeichnet, daß die Rohrenden (9) einen gegenüber dem übrigen Rohrdurch­messer (d) erweiterten Durchmesser (dE) besitzen und daß der Innendurchmesser (DR) der Ränder (8, 30) der Öffnung (7) dem Innendurchmesser (d) der Rohre (1) entspricht.
5. Wärmetauscher nach Anspruch 4, dadurch gekennzeichnet, daß die Tiefe (h) der Stecknut (11) der Länge (1) des er­weiterten Bereiches des Rohrendes (9) entspricht.
6. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, daß an den Rohrenden (9) ein nach außen gerichteter senkrecht zur Rohrachse (1a) verlaufender Flansch (12) vorgesehen ist.
7. Wärmetauscher nach Anspruch 6 und 3, dadurch gekenn­zeichnet, daß der Flansch (12) auf seiner zum Rohrboden (2) hinweisenden Seite mit einer umlaufenden Rippe (13) versehen ist, die in eine Stecknut (11′) einschiebbar ist.
8. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, daß die Rippen des Modulbauteiles (1, 10) alle gleich ausge­bildet sind und in einer Draufsicht in Richtung der Rohrachsen (1a) eine mehreckige, zum Aneinandersetzen benachbarter Modul­bauteile geeignete Form aufweisen.
9. Wärmetauscher nach Anspruch 8, dadurch gekennzeichnet, daß die Rippen (6) die Form eines regelmäßigen Sechseckes (14) aufweisen.
10. Wärmetauscher nach Anspruch 8, dadurch gekennzeichnet, daß die Rippen (6) Trapezform (15) besitzen.
11. Wärmetauscher nach Anspruch 8, dadurch gekennzeichnet, daß die Rippen (6) quer zur Anströmrichtung (16) mit Profilie­rungen (17) versehen sind.
12. Wärmetauscher nach Anspruch 11, dadurch gekennzeichnet, daß als Profilierung (17) eine Wellenform vorgesehen ist.
13. Wärmetauscher nach den Ansprüchen 11 und 12, dadurch gekennzeichnet, daß mindestens auf einer Seite am Scheitel (18) der Wellenberge (19) die Turbulenz erhöhende spitze Kanten (20) vorgesehen sind.
14. Wärmetauscher nach Anspruch 1 und einem der übrigen Ansprüche, dadurch gekennzeichnet, daß die Rohre als Flachrohre (1′) ausgebildet sind.
15. Wärmetauscher nach Anspruch 14, dadurch gekennzeichnet, daß die Flachrohre (1′) einen Querschnitt mit mehreren parallel zueinander verlaufenden Kammern (21) besitzen.
16. Wärmetauscher nach Anspruch 14, dadurch gekennzeichnet, daß die Flachrohre (1′) auf ihren gegenüberliegenden längeren Innenseiten (22, 23) mit in der Strömungsrichtung (28) ver­laufenden, zum freien Ende spitz zulaufenden Rippen (24) ver­sehen sind, die jeweils gegenüberliegend angeordnet sind.
17. Wärmetauscher nach Anspruch 14, dadurch gekennzeichnet, daß die gegenüberliegenden Innenseiten (22, 23) in der Art von ineinandergreifenden Längsverzahnungen (25, 26) ausgebildet sind, die zwischen sich einen zick-zack-förmig verlaufenden Spalt (27) belassen.
18. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, daß die Rohre (1) aus zueinander fluchtenden Teilrohrstücken (1a, 1b) zusammengesetzt sind, deren Enden mindestens zum Teil in Kupplungsstücken (3) gehalten sind.
19. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, daß die Modulbauteile (1A, 1B, 10A) mindestens im Bereich der Rohre (1) und Rippen (6, 6′) mit einem gut wärmeleitenden Material, insbesondere mit Metall, beschichtet sind.
EP88111312A 1987-08-25 1988-07-14 Wärmetauscher mit einer Rippenrohranordnung Expired - Lifetime EP0305702B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3728303 1987-08-25
DE19873728303 DE3728303A1 (de) 1987-08-25 1987-08-25 Waermetauscher mit einer rippen-rohranordnung

Publications (2)

Publication Number Publication Date
EP0305702A1 true EP0305702A1 (de) 1989-03-08
EP0305702B1 EP0305702B1 (de) 1991-09-25

Family

ID=6334430

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88111312A Expired - Lifetime EP0305702B1 (de) 1987-08-25 1988-07-14 Wärmetauscher mit einer Rippenrohranordnung

Country Status (3)

Country Link
EP (1) EP0305702B1 (de)
DE (2) DE3728303A1 (de)
ES (1) ES2025251B3 (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990000469A1 (en) * 1988-07-05 1990-01-25 Uponor N.V. A device for producing a grate construction and a grate construction
WO2000053991A1 (en) * 1999-03-08 2000-09-14 Cesaroni Technologies Incorporated Laser bonding of heat exchanger tubes
EP1203923A3 (de) * 2000-11-01 2003-08-13 AKG-Thermotechnik GmbH & Co.KG Wärmeaustauscher, insbesondere für Kondensations-Wäschetrockner
WO2006072774A1 (en) * 2005-01-06 2006-07-13 Nelson (Heat Transfer) Limited Modular heat exchanger
FR2892802A1 (fr) * 2005-10-28 2007-05-04 Valeo Systemes Thermiques Echangeur de chaleur muni d'une boite a fluide amelioree
EP2146173A1 (de) * 2008-07-17 2010-01-20 MAHLE International GmbH Kunststoffwärmetauscher
EP2369284A2 (de) 2010-03-23 2011-09-28 AKG-Thermotechnik GmbH & Co.KG Wärmetauscher, insbesondere eines Kondensations-Wäschetrockners
US8636836B2 (en) 2009-02-04 2014-01-28 Purdue Research Foundation Finned heat exchangers for metal hydride storage systems
US8778063B2 (en) 2009-02-04 2014-07-15 Purdue Research Foundation Coiled and microchannel heat exchangers for metal hydride storage systems
WO2015063169A1 (de) * 2013-10-30 2015-05-07 MAHLE Behr GmbH & Co. KG Rohrwärmeübertrager
US10048010B2 (en) 2014-03-19 2018-08-14 Samsung Electronics Co., Ltd. Heat exchanger and method for manufacturing same
US10739078B2 (en) 2015-01-15 2020-08-11 A Markussen Holding As Heat exchanger
CN114867971A (zh) * 2019-10-04 2022-08-05 里姆制造公司 热交换器管和管组件配置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013215358A1 (de) * 2013-08-05 2015-02-19 Behr Gmbh & Co. Kg Wärmetauscher für eine Kühlung einer Fahrzeugbatterie, insbesondere für Hybrid- oder Elektrofahrzeuge

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR582834A (fr) * 1923-11-28 1924-12-29 Réchauffeur à gaz de fumée
FR2178253A1 (de) * 1972-01-29 1973-11-09 Krupp Gmbh
DE3124216A1 (de) * 1981-06-20 1982-12-30 Ventos Lüftungstechnik GmbH, 4504 Georgsmarienhütte Kreuzstrom-waermetauscher
FR2512191A1 (fr) * 1981-08-26 1983-03-04 Sueddeutsche Kuehler Behr Agencement pour relier des tubes d'un bloc-echangeur de chaleur avec un collecteur de raccordement, notamment pour un evaporateur
EP0076724A1 (de) * 1981-09-25 1983-04-13 SAUNIER DUVAL EAU CHAUDE CHAUFFAGE S.D.E.C.C. - Société anonyme Verfahren zur Herstellung eines Heizkörpers mit ringförmig angeordneten Wasserrohren
GB2180634A (en) * 1985-09-12 1987-04-01 Sueddeutsche Kuehler Behr Tube end plates for heat exchangers
EP0243575A2 (de) * 1986-04-28 1987-11-04 Akzo N.V. Wärme- und/oder Stoffaustauscher und Verfahren zum Herstellen von Wärme- und/oder Stoffaustauscher

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE381001B (sv) * 1973-10-22 1975-11-24 Erik G W Nordstroem Forfarande och anordning for framstellning av kamflensror av plast
DE3536527A1 (de) * 1984-10-20 1986-04-24 Volkswagen AG, 3180 Wolfsburg Waermetauscherblock fuer einen fluessigkeits-luft-waermetauscher
NL8403934A (nl) * 1984-12-24 1986-07-16 Gen Electric Warmtewisselaar.
DE3532493C1 (en) * 1985-09-12 1987-02-26 Sueddeutsche Kuehler Behr Heat exchanger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR582834A (fr) * 1923-11-28 1924-12-29 Réchauffeur à gaz de fumée
FR2178253A1 (de) * 1972-01-29 1973-11-09 Krupp Gmbh
DE3124216A1 (de) * 1981-06-20 1982-12-30 Ventos Lüftungstechnik GmbH, 4504 Georgsmarienhütte Kreuzstrom-waermetauscher
FR2512191A1 (fr) * 1981-08-26 1983-03-04 Sueddeutsche Kuehler Behr Agencement pour relier des tubes d'un bloc-echangeur de chaleur avec un collecteur de raccordement, notamment pour un evaporateur
EP0076724A1 (de) * 1981-09-25 1983-04-13 SAUNIER DUVAL EAU CHAUDE CHAUFFAGE S.D.E.C.C. - Société anonyme Verfahren zur Herstellung eines Heizkörpers mit ringförmig angeordneten Wasserrohren
GB2180634A (en) * 1985-09-12 1987-04-01 Sueddeutsche Kuehler Behr Tube end plates for heat exchangers
EP0243575A2 (de) * 1986-04-28 1987-11-04 Akzo N.V. Wärme- und/oder Stoffaustauscher und Verfahren zum Herstellen von Wärme- und/oder Stoffaustauscher

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 7, Nr. 63 (M-200)[1208], 16. März 1983; & JP-A-57 207 797 (TOKYO SHIBAURA DENKI K.K.) 20-12-1982 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU617495B2 (en) * 1988-07-05 1991-11-28 Uponor N.V. A device for producing a grate construction and a grate construction
WO1990000469A1 (en) * 1988-07-05 1990-01-25 Uponor N.V. A device for producing a grate construction and a grate construction
WO2000053991A1 (en) * 1999-03-08 2000-09-14 Cesaroni Technologies Incorporated Laser bonding of heat exchanger tubes
EP1203923A3 (de) * 2000-11-01 2003-08-13 AKG-Thermotechnik GmbH & Co.KG Wärmeaustauscher, insbesondere für Kondensations-Wäschetrockner
WO2006072774A1 (en) * 2005-01-06 2006-07-13 Nelson (Heat Transfer) Limited Modular heat exchanger
US8607853B2 (en) 2005-01-06 2013-12-17 Modular Heat Exchangers Limited Modular heat exchanger connectable in multiple different configurations
FR2892802A1 (fr) * 2005-10-28 2007-05-04 Valeo Systemes Thermiques Echangeur de chaleur muni d'une boite a fluide amelioree
EP2146173A1 (de) * 2008-07-17 2010-01-20 MAHLE International GmbH Kunststoffwärmetauscher
US8636836B2 (en) 2009-02-04 2014-01-28 Purdue Research Foundation Finned heat exchangers for metal hydride storage systems
US8778063B2 (en) 2009-02-04 2014-07-15 Purdue Research Foundation Coiled and microchannel heat exchangers for metal hydride storage systems
DE202011000660U1 (de) 2010-03-23 2012-01-13 Akg-Thermotechnik Gmbh & Co. Kg Wärmetauscher, insbesondere eines Kondensations-Wäschetrockners
EP2369284A2 (de) 2010-03-23 2011-09-28 AKG-Thermotechnik GmbH & Co.KG Wärmetauscher, insbesondere eines Kondensations-Wäschetrockners
WO2015063169A1 (de) * 2013-10-30 2015-05-07 MAHLE Behr GmbH & Co. KG Rohrwärmeübertrager
US10048010B2 (en) 2014-03-19 2018-08-14 Samsung Electronics Co., Ltd. Heat exchanger and method for manufacturing same
EP3121545B1 (de) * 2014-03-19 2019-05-22 Samsung Electronics Co., Ltd. Wärmetauscher und verfahren zu herstellung davon
US10739078B2 (en) 2015-01-15 2020-08-11 A Markussen Holding As Heat exchanger
CN114867971A (zh) * 2019-10-04 2022-08-05 里姆制造公司 热交换器管和管组件配置
US11499747B2 (en) * 2019-10-04 2022-11-15 Rheem Manufacturing Company Heat exchanger tubes and tube assembly configurations

Also Published As

Publication number Publication date
DE3865155D1 (de) 1991-10-31
DE3728303A1 (de) 1989-03-16
ES2025251B3 (es) 1992-03-16
EP0305702B1 (de) 1991-09-25

Similar Documents

Publication Publication Date Title
DE4340378C2 (de) Wärmeaustauscher und Verfahren zur Herstellung derselben
EP0672882B1 (de) Rippe für Wärmetauscher
EP0305702B1 (de) Wärmetauscher mit einer Rippenrohranordnung
EP0387678B1 (de) Wärmeaustauscher und Verfahren zur flüssigkeitsdichten Befestigung einer Bodenplatte an einem Wärmeaustauschernetz
EP0444423B1 (de) Kunststoffwasserkasten für Wärmetauscher
EP0772018A2 (de) Wärmeübertrager zum Kühlen von Abgas
DE202006009464U1 (de) Wärmetauscher
DE3813339A1 (de) Roehrenwaermetauscher und verfahren zu seiner herstellung
DE3241842C2 (de) Plattenförmiger Wärmetauscher
DE3500571A1 (de) Kuehler fuer kraftfahrzeuge
DE2951352A1 (de) Flachrohr-waermetauscher
DE3834822A1 (de) Waermetauscher
EP0201665A1 (de) Wärmeübertrager mit mehreren parallelen Rohren und auf diesen angebrachten Rippen
EP0582835B1 (de) Wärmetauscher
DE3502619C2 (de)
EP0444595A1 (de) Wärmetauscher, insbesondere Ölkühler für Kraftfahrzeuge
EP1771697B1 (de) Wärmeübertrager, kasten zur aufnahme eines fluids für einen wärmeübertrager sowie verfahren zur herstellung eines derartigen kastens
DE3148941A1 (de) Oelkuehler in scheibenbauweise
EP0177904B1 (de) Vorrichtung zum Austausch der Wärme zwischen zwei im Kreuzstrom zueinander geführten Gasen
DE2013940A1 (de) Wärmeübertrager für flüssige und gasförmige Medien
DE3902786C2 (de) Ölkühler
EP1662223A1 (de) Wärmeübertrager und Herstellungsverfahren
EP0451507B1 (de) Wärmetauscher
DE10212801C5 (de) Kühler für flüssige Medien sowie Verfahren zur Herstellung eines solchen Kühlers
DE3904250C2 (de) Flachrohr für Wärmeaustauscher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19890511

17Q First examination report despatched

Effective date: 19900223

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GOERLICH KUNSTSTOFFVERARBEITUNG UND WERKZEUGBAU G

Owner name: BEHR GMBH & CO.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3865155

Country of ref document: DE

Date of ref document: 19911031

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2025251

Country of ref document: ES

Kind code of ref document: B3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920601

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920602

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19920610

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930715

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19930715

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930714

EUG Se: european patent has lapsed

Ref document number: 88111312.0

Effective date: 19940210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950629

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950719

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970402

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050714