EP0304760A2 - Système de fermeture être composé d'une serrure et plusieurs clés - Google Patents
Système de fermeture être composé d'une serrure et plusieurs clés Download PDFInfo
- Publication number
- EP0304760A2 EP0304760A2 EP19880113236 EP88113236A EP0304760A2 EP 0304760 A2 EP0304760 A2 EP 0304760A2 EP 19880113236 EP19880113236 EP 19880113236 EP 88113236 A EP88113236 A EP 88113236A EP 0304760 A2 EP0304760 A2 EP 0304760A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- locking
- key
- slide
- lock
- locking system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006073 displacement reaction Methods 0.000 claims abstract description 27
- 230000000694 effects Effects 0.000 claims abstract description 4
- 230000005291 magnetic effect Effects 0.000 claims description 17
- 230000033001 locomotion Effects 0.000 claims description 16
- 238000003780 insertion Methods 0.000 claims description 14
- 230000037431 insertion Effects 0.000 claims description 14
- 230000008859 change Effects 0.000 claims description 10
- 239000000969 carrier Substances 0.000 claims description 9
- 244000027321 Lychnis chalcedonica Species 0.000 claims description 5
- 230000005415 magnetization Effects 0.000 claims description 4
- 230000001020 rhythmical effect Effects 0.000 claims description 2
- 230000002441 reversible effect Effects 0.000 claims 3
- 230000000903 blocking effect Effects 0.000 description 11
- 230000008878 coupling Effects 0.000 description 11
- 238000010168 coupling process Methods 0.000 description 11
- 238000005859 coupling reaction Methods 0.000 description 11
- 238000013461 design Methods 0.000 description 9
- 238000000926 separation method Methods 0.000 description 7
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 241001422033 Thestylus Species 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 240000003517 Elaeocarpus dentatus Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05B—LOCKS; ACCESSORIES THEREFOR; HANDCUFFS
- E05B47/00—Operating or controlling locks or other fastening devices by electric or magnetic means
- E05B47/0038—Operating or controlling locks or other fastening devices by electric or magnetic means using permanent magnets
- E05B47/0043—Mechanical locks operated by cards having permanent magnets
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05B—LOCKS; ACCESSORIES THEREFOR; HANDCUFFS
- E05B27/00—Cylinder locks or other locks with tumbler pins or balls that are set by pushing the key in
- E05B27/005—Cylinder locks or other locks with tumbler pins or balls that are set by pushing the key in with changeable combinations
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05B—LOCKS; ACCESSORIES THEREFOR; HANDCUFFS
- E05B35/00—Locks for use with special keys or a plurality of keys ; keys therefor
- E05B35/08—Locks for use with special keys or a plurality of keys ; keys therefor operable by a plurality of keys
- E05B35/083—Locks for use with special keys or a plurality of keys ; keys therefor operable by a plurality of keys with changeable combination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T70/00—Locks
- Y10T70/70—Operating mechanism
- Y10T70/7051—Using a powered device [e.g., motor]
- Y10T70/7057—Permanent magnet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T70/00—Locks
- Y10T70/70—Operating mechanism
- Y10T70/7441—Key
- Y10T70/7729—Permutation
- Y10T70/7734—Automatically key set combinations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T70/00—Locks
- Y10T70/70—Operating mechanism
- Y10T70/7441—Key
- Y10T70/7729—Permutation
- Y10T70/774—Adjustable tumblers
Definitions
- the invention relates to a locking system, especially for door locks, according to the preamble of the main claim.
- the recoding is carried out by a tool which can be inserted into the lock from the outside through an opening in the lock cover, for example in the form of a socket wrench. This engages in the center of a rotatable carrier. At least one permanent magnet forming the tumbler is seated in the rotatable carrier. The carrier can be locked in different angular positions. Every other angular position embodies a different magnetic coding of the lock.
- This type of recoding is user-unfriendly and affects operational security, including burglar security. There is primarily the risk that someone can unauthorizedly carry out the rotation adjustment of the carrier with a tool and that the lock can no longer be opened with the key previously intended.
- this version also requires voltage sources in each individual hotel door lock and has the disadvantage that malfunctions occur if a guest with a newly issued key does not enter his room at all and leaves the hotel without entering the room, in which case the subsequent guest has a key who the room door lock cannot accept because the guest key in between has never become known to him.
- this first key is to be locked out, this can be done with a successor key, the so-called owner key.
- This controls the special pin tumbler during the key insertion movement in addition to the other pin tumblers so that the separation point between the core pin and the ball is located at the level of the core twist joint. During the subsequent closing rotation, the ball comes out through the channel. Then the special pin tumbler works like the others. A lock actuation can no longer be carried out by means of the first key. Furthermore, no further change in permutation can be achieved unless the ball is reintroduced in any way.
- the object of the present invention is to design a locking system of the generic type in such a way that recoding is possible without the need to operate a tool or a button, which in particular also involves the normal use of the locking system due to a forced sequence of key use with the least possible effort cash, for example in hotel locking systems could also be given to the guests' area of competence.
- the tumbler After relocation, the tumbler is still in a position to be recorded by the successor key. In contrast to the cylinder locks according to the prior art, the tumbler link is therefore still included in the permutation of the lock after using the successor key. In this way, a rhythmic return, a so-called repeat, can be achieved in the relocation of the tumbler links, both for locks with mechanical and magnetic coding.
- the lock illustrated in FIGS. 1 and 2 has an elongated lock housing 1 to be assigned to a door (not shown). At one end of this lock is a rotary knob 2, with the aid of which a latch or bolt can be withdrawn, provided that Lock is in the locked position.
- the rotary knob 2 can be coupled to a pusher mandrel 3 which is square in cross section and which carries an inner knob (not shown) lying on the inside of the door. By means of the latter, the latch or bolt which is not shown can be withdrawn at any time.
- the lock housing is provided on the end face opposite the rotary knob 2 with an insertion slot 4 into which a card-like key 5 can be inserted.
- the card is provided with a magnetic coding of sufficient rigidity to be able to displace a slide 6 guided inside the lock housing 1 by means of this card.
- the guide plate 8 is a plate made of ferromagnetic iron, while the other guide plate is designed to be non-magnetic.
- the guide plate 8 is thicker than the guide plate 9 adjacent to it and is loaded by a leaf spring 10, which in turn is supported on the bottom 11 of the inner housing 7.
- the guide plates 8, 9 lie flat against one another. If the key 5 occurs between the guide plates 8, 9, the guide plate 8 deflects resiliently in the direction of the base 11.
- the anti-magnetic guide plate 9 is in turn supported on a blocking plate 12 made of non-magnetizable material.
- a blocking plate 12 made of non-magnetizable material.
- brass is used in the exemplary embodiment.
- Circular blocking openings 13 are located in the blocking plate 12 in a corresponding distribution, which correspond to blind bores 14 of the same in the starting position of the slide 6.
- pin-shaped permanent magnets 15 are let in, which in turn are attracted to the guide plate 8 and thereby pass through the blocking openings 13.
- the permanent magnets act on the guide plate 9 with either its south or north pole.
- the slide 6 can therefore not be moved. It is otherwise under the action of a tension spring 16 which loads it in the direction of the insertion slot 4.
- the tension spring 16 engages on one end on a pin 17 of a cover 18 covering the slide 6 and on the other end on a control projection 19 extending from the slide 6.
- the latter is equipped with an inclined surface 20, by means of which, when the slide 6 is advanced, a leaf spring 21 fastened at the level of the insertion slot 4 on the inner housing 7 can be displaced in the direction of the arrow X, dragging a coupling sleeve 22 and thereby turning the knob 2 in the coupling position
- Lever pin 3 brings what allows the subsequent opening of the door.
- the slide 6 contains four mutually coupled, rotatable carriers 24, 25, 26, 27, each of which is equipped with a recoding magnet 28, 29, 30, 31 designed as a tumbler.
- the carriers 24 to 27 are provided with teeth with which they mesh with one another.
- holes 32 are machined in the slide.
- the carriers, each equipped with a recoding magnet are arranged relative to one another in such a way that the recoding magnets successively step into the position in front of an obstacle or out of this position due to the rotary movement of the carriers.
- the obstacle 33 is formed by a transverse edge of a longitudinal groove 34 which extends in the direction of displacement y of the slide 6.
- longitudinal grooves 34 are also provided. They are located in the cover 18 of the inner housing 7 that overlaps the slide 6.
- the two longitudinal grooves 34, which are arranged further inward of the lock, are at a greater distance from one another than the other two longitudinal grooves 34.
- recoding magnet 28 Of the four recoding magnets 28 to 31, however, only one serves as a real recoding magnet or a real tumbler. 4 and 5, this is the recoding magnet 28.
- the follower key 36 With its facing the locking plate 12 At the end, when the follower key 36 is not inserted, it protrudes into a longitudinal slot 35 of the locking plate 12 lying in the direction of displacement. The remaining recoding magnets 29, 30, 31 can then dip into corresponding locking openings 13 of the locking plate 12, so that in this case they perform a function similar to the permanent magnets .
- the lock is assigned to a hotel room door, for example, the guest has a guest key that is comparable to key 5.
- all permanent magnets 15 and recoding magnets 29, 30, 31 are displaced such that they disengage from the blocking openings 13.
- the slide 6 can thus be displaced in the direction of the arrow y to produce the coupling to the rotary knob 2. Only the recoding magnet 28 or the tumbler is not displaced in this case. The slide movement is nevertheless possible through the longitudinal slot 35 of the locking plate 12.
- the lock is recoded beforehand on the hotel side using the command key illustrated in FIG. 5 and serving as the successor key 36.
- This includes a first area A, which is assigned to the locking code, and an additional area E, which initiates the changeover.
- the corresponding areas are illustrated in broken lines in FIG. 5. All the permanent magnets are brought out of engagement with the locking plate 12 by the first region A and the recoding magnet 28 or tumbler element is brought out of engagement by the supplementary region E.
- the recoding magnet 28 therefore dips into the longitudinal groove 34.
- the new guest must be given a modified guest key, by means of which he can shift all of the magnets except for the recoding magnet 29 accordingly.
- This recoding can also be changed again by means of a successor key 36 ′ on the hotel side, which also has the areas A and E, a different recoding pin then entering the corresponding recoding position, see FIG. 7.
- Variations on this embodiment are possible in that the number of carriers is changed. It is also possible to equip each carrier with more than one recoding magnet.
- the slide is designated by the number 37.
- the structure of the slide corresponds to that of the slide 8.
- One change is that the slide now accommodates two supports 38 and 39 lying next to one another at the same height.
- each carrier 38, 39 continues into a switching cam 40 which projects beyond the corresponding slide broad surface 37 'and which forms switching cam edges 41, 42, 43, 44, which in turn are arranged in the manner of a Maltese cross.
- Each carrier 38, 39 also receives a locking magnet-like recoding magnet 45, which interacts with a corresponding locking opening of the locking plate 12.
- the Maltese cross-like switching cam 40 extends through an inner opening 46 of a fixedly mounted control member 47.
- Whose bearing pin 48 sits in a suitable manner on the ceiling 18 of the inner housing 7.
- the bearing point of the one-armed control member 47 faces the direction of insertion of the key.
- With an edge lying approximately perpendicular to the direction of displacement of the slide 37 the inner opening 46 forms an obstacle 49.
- the inner opening 46 is designed such that in the starting position of the slide three corners of the Maltese cross form stop faces for two inner opening walls 50, 51 which are at right angles to one another.
- a stop 52 is provided on the slide 37, against which the rear edge 53 of the control member 47 occurs. This secures the latter against rotation.
- a correspondingly polarized control magnet 54 is guided in the slide 37 at the level of the bearing point of the control member 47.
- this control magnet 54 is not moved because the end of the control magnet 54 facing the locking plate runs in a longitudinal slot of the locking plate 12.
- the position according to FIG. 12 is then present.
- the carrier 39 and the recoding magnet 45 consequently assume a different rotational angle position. If the slide 37 is now brought back into its initial position, the above-mentioned residual rotation of the carrier 39 takes place, so that the recoding magnet 45 is then aligned with another locking opening in the locking plate.
- the guest key previously used then no longer classifies this relocated recoding magnet, and the slide 37 can accordingly not be advanced in order to open the lock. If it is a locked hotel room door, the following guest must be given an appropriately coded key.
- the control member 56 is designed in the manner of a multi-unit pawl. It has an angle lever 58 mounted on the housing side of the pin 57. Its lever arm 58 'lies in the range of motion of a control magnet 54. Again, there is a short idle stroke between the control magnet 54 and the lever arm 58'.
- the other lever arm 58 ⁇ carries by means of a pivot pin 59 a ratchet lever 60, the blocking tooth 61 which forms an obstacle interacts with the teeth of the carrier 62 designed as a ratchet wheel. This receives a recoding magnet 63 which represents the tumbler.
- a spring not shown, loads the angle lever 58 counterclockwise.
- a stop 64 on the housing side is also assigned to the pawl lever 60 .
- a spring not shown, which sits, for example, on the pivot pin 59 and which forces the pawl lever 60 into tooth engagement with the carrier 62.
- the permanent magnets of the slide 65 and the recoding magnet 63 are brought out of engagement with the locking plate 12.
- the control magnet 54 runs through a longitudinal slot of the locking plate 12 and accordingly does not perform a locking function.
- the change of the locking code is also to be carried out by means of a corresponding follow-up key, which in addition to the other magnetic pins also shifts the control magnet 54 with its areas and lifts it out of the locking plate.
- Whose end of the slide 65 projecting end is thus at the level of the lever arm 58 'of the control member 56.
- the control magnet 54 acts on the lever arm 58 after an idle stroke and pivots the angle lever 56, whereby according to further advancement of the slide 65 and Via the ratchet lever 60, the carrier 62 mounted in the slide 65 is rotated further.
- the recoding magnet 63 receives a different position relative to the slide 65 by being moved.
- the slide 65 can also be assigned two supports 62 of the same design with locking member 56.
- a modification of this embodiment could be made in that an anchor is provided instead of the pawl lever 60 as in a clockwork.
- a wind-up clock spring is then assigned to the carrier or its axis as an energy store. The lever arm 58 is not required in this embodiment.
- the slide has the reference number 66. At least one of the permanent magnets 67 carried by it is guided with its end facing the locking plate 12 in a locking plate longitudinal slot opening 69. A further blocking plate longitudinal slot opening 70 runs parallel to this.
- the permanent magnet 67 it can be a control magnet for a previously described control element.
- the next guest receives a follow-up key 68, shown in dash-dot lines in FIG. 14, which has two magnetic zones 71, 72 lying next to one another for the permanent magnet 67. The latter form the supplementary area E. which causes the changeover.
- the classification of the other permanent magnets, not shown, takes place with a first area assigned to the locking code.
- Zone 71 is polarized in such a way that it acts on repulsion after insertion of successor key 68.
- the permanent magnet or control magnet 67 is shifted into the position shown in broken lines in FIG. 14.
- Subsequent displacement of the key with slide 66 causes the control member located in the path of the control magnet 67 to be acted upon.
- the dot-dash position in FIG. 15 is reached.
- the end of the receiving opening 73 facing away from the key is circular and the opposite end is oval.
- a modification is possible in that a circular locking plate locking opening is selected instead of the control plate longitudinal slot opening 69. Then the permanent magnet 67 acts like the other permanent magnets. It always returns to the locking plate locking opening after the slide has been returned to its starting position. A successor key that corresponds to key 68 is then used for recoding. This means that in the forward position of the slide the pendulum movement takes place, after which the key magnetization or the magnetic zone 72 pulls the relocated end 67 'into the locking plate longitudinal slot opening 70. Such a configuration is then independent of a control function for a carrier.
- the fifth embodiment results from FIGS. 16 and 17.
- the slide 74 is provided with an elongated recess 75 running transversely to its direction of displacement. From the side of the slide facing the locking plate 12, two opposite bearing recesses 76 extend in the center, into which bearing pins 77 are inserted. The latter are part of a cylindrical sleeve 79 surrounding a permanent magnet 78 and made of plastic. If the key is not inserted, the polarized end 78 'of the permanent magnet 78 facing the locking plate 12 is drawn into a locking plate longitudinal slot opening 80 lying in the direction of displacement of the slide 74 up to the guide plate 9 The blocking plate longitudinal slot opening 80 widens at the end opposite the insertion slot 4 in a T-shaped arrangement to a transverse slot 81.
- the supplementary area E which causes the changeover has two adjacent, oppositely magnetically polarized zones 83, 84, the zone 83 applies the permanent magnet 78 to repulsion. It thereby reaches the position illustrated in FIG. 16, in which the end 78 'facing the key still remains within the longitudinal slot 80. This is achieved in that the bearing recesses 76 limit the movement of the permanent magnet 78.
- the end of the magnetic pin projecting beyond the corresponding slide width area can be used to control a control element which recodes a coding pin on the carrier side.
- the permanent magnet 78 thus serves as a control magnet.
- the permanent magnet or control magnet 78 As soon as the permanent magnet or control magnet 78 has reached the transverse slot 81, it pivots by 180 degrees because it is exposed to the attractive force of the magnetic zone 84 and is drawn into the longitudinal slot 80. A further use of the follower key 82 then does not result in the permanent magnet 78 being driven and thus in no recoding. Again, this must be done using a further key, in which the magnetic areas are appropriately polarized.
- the permanent magnet 78 is not used as a control magnet and only one locking plate locking opening is provided for it, an alternate lockability can be achieved by means of appropriate keys. This means that after locking by means of one key, locking is only possible by means of another key. A repeated closing by means of a key in a row is then not feasible.
- the blocking plate openings and blocking plate longitudinal slots can optionally also be provided in an additional plate.
- the energy accumulator can be coupled to the slide in such a way that it is pulled up by a certain amount each time the slide is moved. Since the slider is operated more often without changing the position due to the more frequent normal key actuation, it is statistically evident that it never completely discharges.
- the lock shown in Figures 18 to 27 has a box-like lock housing 85 with a lock base 86 and from this lock case side walls 87, 88, 89 and 90.
- the lock set out below is overlaid by a lock cover 91.
- the latter contains a center in the longitudinal direction of the Lock-extending key insertion opening 92.
- a centering mandrel 93 extending from the bottom of the lock 86 extends into the center of the key insertion opening.
- a pin 94 extends from the lock base 86, on which the lock cover 91 is also supported and in which a lock cover fastening screw engages.
- the pin 94 also serves to longitudinally guide a plate shaped, the lock base 86 adjacent carrier 95, which is equipped in the region between the pin 94 and the lock case side wall 88 with a fixing tooth 96. This extends to the underside of the lock cover 91.
- the carrier 95 is equipped with a key opening 97. Above this there is a recess 98 which forms a locking shoulder 98 'with a lower flank. In front of this is an angled portion 99 of a locking lever 101 mounted below the carrier 95, which is spring-loaded in the direction of engagement by means of a leaf spring 102.
- the carrier 95 is adjacent a bar 103. It forms a thicker, the lock case side wall 90 penetrating bolt head 103 ', to which the thinner bolt tail 103 ⁇ connects. The end of the same is slotted for guiding engagement of the pin 94.
- the bolt tail 103 ⁇ is equipped with a control opening 104.
- a leaf spring 106 ' acts on this bolt rocker 106 in Clockwise direction, which rocker receives a support on the lower flank of the recess 105.
- the edge edge which runs concentrically to the arch slot 114, is equipped with a toothing 115.
- the fixing tooth 96 engages in a corresponding tooth gap.
- the end of each tumbler 113 and the tumbler plate 112 opposite the toothing 115 is provided with a stepped tour opening 116. All tumblers form a central control opening 117 and are acted upon counterclockwise by leaf springs 118 in such a way that they are supported on the touring projection 109 when the bolt 103 is closed, see FIG. 21.
- a follow-up key 119 It has a key shaft 120 and a key handle 121.
- An opening 122 with a circular cross section extends from the lower end of the key shaft 120 to the entry of the centering mandrel 93.
- a locking code beard step area A unloads from the key shaft 120. It comprises seven beard levels 123, which are used to classify the tumblers 113.
- An extension area E follows in the extension of the locking code area.
- the beard step 124 directly adjacent to the beard steps 123 serves to control the tumbler plate 112.
- the next, wider beard step 125 is provided to control the bolt 103.
- the lowest beard step 127 in turn serves to control the locking lever 101.
- the supplementary area E has a driver wing 128 which extends exclusively in the plane of the tumbler plate 112 and the bolt tail 103 ", forming a gap 129 that on Arranged at the height of the beard steps 126 and 127 is a trigger safety wing 130.
- an additional beard step area B is provided in diametrical opposite to the locking code beard steps 123, the beard steps 123 'of which embody the new locking code.
- the closing method is as follows:
- the key can only be removed when the bolt 103 is locked. If the locking code used, for example, by a previous user is to be changed over, a prescribed sequence key 119 is handed over to the subsequent user. This encompasses the beard level areas A, E and B.
- the beard level area A corresponds in its locking code to the locking code used in the previous key, while the additional beard level area B embodies the new locking code. Since the trigger securing wing 130 lies on the same side as the beard step area B, the wing serves as an orientation aid when inserting the follow-up key 119 into the lock. The insertion movement is limited by the lock base 86, so that the corresponding beard steps are then aligned with the corresponding parts of the lock fitting, see FIG. 20.
- the tumblers 113 of the area A assigned to the lock code are pivoted in such a way that their Tour openings 116 lie on top of one another and thus allow the bolt 103 to be withdrawn, the tour projection 109 moving into the tour openings 116. This is possible because of the tumbler plate 112, which is simultaneously disengaged from the beard step 124.
- the latch 103 becomes approximately one third larger from the beard step 125 acting on a control edge 104 ' withdrawn from its total closing path. Level 125 therefore causes a partial relocation of the bolt to prove the authorization to change over.
- the key can no longer be turned back from this position, since the locking lever 101 has fallen back into its starting position and is therefore in the range of rotation of the beard step 127. The key must therefore continue to be turned clockwise.
- the driver wing 128 of the follower key 119 acts on the bolt rocker 106.
- the spring-loaded tumblers 113 are shifted into their new basic position by the beard steps 123 'of the additional beard step area B, which is possible because of the fixing tooth 96 which is still in the release position. 26, i.e.
- the beard step 126 of the supplementary area E comes up against another driving shoulder 97 ⁇ of the key engagement opening 97 of the carrier 95 and thus shifts it in the closing direction, whereby the fixing tooth 96 falls into the corresponding tooth gaps of the toothing 115 of the tumblers 113, capturing the different basic positions of the tumblers.
- the driver wing 128 is immersed in the locking engagement recess 108 during this remaining rotational path and has thus completely moved the bolt back.
- the locking tooth 111 of the tumbler plate 112 engages in the locking opening 110 of the touring projection 109, which is not shown. From this position is the successor key 119 not removable, since the beard step 127 engages under the carrier 95.
- the locking of the bolt 103 now requires an opposite closing rotation, that is to say counterclockwise.
- the driver wing 128 dips into the locking engagement niche 108 of the bolt 103 formed by the bolt rocker 106 and entrains it.
- the gap 129 between the driving wing 128 and the trigger locking wing 130 causes the key not to come into contact with the carrier and locking lever.
- the tumblers 113 are also shifted from the additional beard step area B.
- the bolt 103 After a return rotation of 180 °, the bolt 103 then assumes its pre-closed position from which the follower key 119 can be removed.
- the successor key must then be inserted so that the additional beard step area B, i.e. the new area, is on the left.
- a key following the successor key 119 would then look such that it receives the beard step area B above the beard steps 124, 125, 126, 127.
- a new additional beard step area would then have to be provided in a diametrically opposed position.
- the supplementary area E of the key only comes into effect when the first area -beard level area A- matches the locking code of the tumblers. If this is not the case, the tumblers prevent a closing rotation.
- the lock designed as a lock cylinder 131, has a housing 132 which is circular in cross section. In a central bore 133, this receives a cylinder core 134 which extends over a little more than half the length of the housing 132.
- a cylinder core 134 which extends over a little more than half the length of the housing 132.
- Four rows of housing pins 135 and core pins 136 are arranged in the housing 132 and cylinder core 134 in a uniform angular distribution.
- the cylinder core has a key channel 137 with a cross-shaped cross section, into which the facing ends of the core pins 136 protrude.
- Pin springs 138 act on the housing pins 135, which in turn load the core pins in the inward direction. So that the pin springs 138 do not come out of the bores which receive the housing pins 135, the housing 132 is surrounded by a jacket 139.
- a bore 140 which is larger in cross section than the core bore 133 is machined, in which a changeover ring 141 is rotatably supported.
- the latter can be locked in 90 degree positions.
- a blind bore 142 extends from the outer surface of the changeover ring 141 for receiving a locking pin 143 which is spring-loaded in the outward direction.
- Its cone tip works together with four latching niches 144, which are arranged in the same cross-sectional plane and are distributed around the circumference. One of these latching niches 144 extends at the level of a tumbler pin row.
- a changeover core 146 In a central bore 145, which corresponds to the diameter of the core bore 133, there is a changeover core 146.
- the changeover ring 141 and the changeover core 146 serve to receive a single row of tumbler pins 147. These also consist of core and housing pins and are cushioned inwards .
- the changeover core 146 also contains an extension of the key channel 137, a cross channel 148. Its cross webs 148 'all have the same web width.
- the bore 145 continues beyond the changeover ring 141 into a bore section 149 of larger cross section.
- a closing member 150 which is provided with an eccentrically arranged driver pin 151, rotatably projects into this.
- the locking member 150 contains an arc slot 152 into which a stop pin 153 of the housing 132, which is located on the same cross-sectional plane of the locking cylinder, is immersed.
- the length of the bore slot 152 is so large that the closing rotation of the closing member 150 is less than 90 °.
- a blind bore 154 extends from the end face of the closing member 150 facing the diverter core 146 to receive a cup-shaped coupling member 155. Its pot bottom 156 faces the diverter core 146 and carries an eccentrically mounted driver pin 157. The diameter of this pin 157 is less than the width of the Cross webs 148. In the direction of its engagement, the coupling member 155 is loaded by a compression spring 158. The coupling member 155 is non-rotatable in the blind bore 154 by a radially oriented control wing 159, located at the level of the pot base 156, for which a longitudinal groove 160 extends from the blind bore 154.
- the control wing 159 is equipped with an inclined surface 161 sloping in the direction of the pot edge.
- the latter works together with a cone tip one in the closing member 150 control pin 162 which is displaceable in the radial direction.
- a compression spring 163 arranged on its stepped shaft loads the control pin 162 in the direction of the inclined surface 161.
- the outward end of the control pin 162 interacts with a pawl 164 which is located in one of the casing side of the housing 132 outgoing longitudinal recess 165 is housed.
- the pawl 164 it is a one-armed lever.
- Whose bearing pin 166 is located near the parting line between the adjusting ring 141 and the housing 132.
- a locking projection 167 pointing in the direction of the adjusting ring 141, which protrudes into one of four locking niches 168 arranged in the same circumferential distribution.
- the engagement is forced by a compression spring 169 which acts on the pawl 164.
- the latching pin 143 also dips into one of the latching niches 144.
- the control pin 162 then serves another function. For this purpose, it has a control zone formed by a notch groove 170 near its cone tip. The latter acts together with a stylus 171 arranged crossing the direction of movement of the control pin. For this, the control member 155 forms a corresponding bore 172. When the coupling member 155 is in engagement with the cross channel 148, the stylus 171 is supported on the lateral surface of the control pin 162. The feeler pin 171 projects beyond the separating surface between the closing member 150 and the changeover core 146. In doing so, it acts on one of four longitudinal pins 173 which are arranged in the same circumferential distribution and are accommodated in corresponding longitudinal bores 174 which completely penetrate the changeover core 146.
- the longitudinal pin 173 acted upon by the stylus 171 dips with its distal end into one of four blocking openings 175 of the cylinder core 134 arranged in the same circumferential distribution. 29 and 34 show that the longitudinal pins 173 of one each Compression spring 176 are acted upon in the opposite direction of their engagement.
- the key channel 137 of the cylinder core 134 lies with its crosspieces in alignment with those of the cross channel 148 in the changeover core 146.
- One of the crosspieces 137 ' is narrower than the other crosspieces, compare in particular FIGS. 38 and 39.
- the lock cylinder 131 shown can be closed by means of a key 177 illustrated in FIGS. 28 and 30.
- the latter is cross-shaped in cross section and forms two thinner cross sections 178 and 179 arranged at right angles to one another. They correspond in thickness to the width of the cross bar 137 '.
- the remaining cross sections 180, 181 correspond to the width of the remaining crossbars of the key channel 137 and also the width of the crossbars 148 'of the cross channel 148 located in the changeover core 146.
- the key 177 has a first area A assigned to the locking code, which extends to the point of separation between the cylinder core 134 and the changeover core 146. From there, the supplementary area E follows, which prompts a change. According to FIG. 28, a change has already been made.
- the cross sections 178 to 181 are provided with closing notches 182 at the level of area A. These represent the locking code notch area.
- the supplementary area E adjoining the first area A has control notches 183 only on the cross section 181.
- the remaining cross sections have no locking notches in the area there.
- the spring-loaded tumbler pins 147 are aligned by the control notches 183 in such a way that whose separation point is at the level of the lateral surface of the changeover core 146.
- a nose 184 then extends from the free end of the cross section 178. When the key 177 is inserted, however, this is offset in terms of the angle of rotation relative to the driver pin 157 and consequently does not act on the driver pin. When the key 177 is fully inserted, the nose 184 extends to the point of separation between the changeover core 146 and the locking member 150. This means that the control pin 162 is then also not displaced.
- the key 177 could indeed be inserted at a 90 ° angle of rotation. However, the tumbler pins 147 are then not classified.
- a new key 185 is handed over to the new user.
- the latter is designed similarly to the previous key 177.
- the successor key 185 is also composed of the two areas A and E.
- the cross sections 179 'and 181' are now thinner. This means that they correspond in thickness to the width of the cross bar 137 'of the cross channel 137.
- the remaining cross sections 178 ′ and 180 ′ are now created with a thickness that corresponds to the width of the remaining crossbars of the key channel 137.
- the position according to FIGS. 32, 33, 34, 35 and 38 results.
- the first area A therefore only classifies the housing pins 135 and core pins 136.
- the cross notch cross section 180 'in the supplementary area E does not classify the tumbler pins 147.
- the nose 184 of the cross section 178 'acts on the driver pin 157 and thus shifts the coupling member 155 against spring loading.
- the driver pin 157 has then left the corresponding cross bar 148 'of the cross channel 148.
- the control pin 162 is moved outward in the radial direction via its control wing 159.
- the locking displacement is limited by the driver pin 157, which then engages in the next cross bar 148 'of the key channel 148, that is to say after a 90 degree locking rotation.
- the position according to FIGS. 36 and 39 is then present. A further turning of the key forwards or backwards is then not possible.
- the follower key 185 must be removed and inserted into an angular position offset by 90 degrees in order to bring the control notches 183 into engagement with the tumbler pins 147. Just like with Predecessor key incorrectly inserting the successor key 185 does not result in a locking operation.
- a modified new successor key can then be used, which changes the locking of the locking cylinder and excludes the previously used successor key 185.
- this version too, there is a mandatory sequence in the use of the successor keys. It is not possible to skip a successor key.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Lock And Its Accessories (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT88113236T ATE81703T1 (de) | 1987-08-22 | 1988-08-16 | Aus schloss und mehreren schluesseln bestehendes schliesssystem. |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3728073 | 1987-08-22 | ||
DE3728073 | 1987-08-22 | ||
DE19873742826 DE3742826A1 (de) | 1987-08-22 | 1987-12-17 | Aus schloss und mehreren schluesseln bestehendes schliesssystem |
DE3742826 | 1987-12-17 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0304760A2 true EP0304760A2 (fr) | 1989-03-01 |
EP0304760A3 EP0304760A3 (en) | 1990-07-18 |
EP0304760B1 EP0304760B1 (fr) | 1992-10-21 |
Family
ID=25858922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19880113236 Expired - Lifetime EP0304760B1 (fr) | 1987-08-22 | 1988-08-16 | Système de fermeture être composé d'une serrure et plusieurs clés |
Country Status (10)
Country | Link |
---|---|
US (2) | US5072604A (fr) |
EP (1) | EP0304760B1 (fr) |
JP (1) | JPH0833084B2 (fr) |
CN (1) | CN1027297C (fr) |
AU (1) | AU617759B2 (fr) |
CA (1) | CA1316697C (fr) |
DE (2) | DE3742826A1 (fr) |
ES (1) | ES2035197T3 (fr) |
GR (1) | GR3006535T3 (fr) |
PT (1) | PT88317B (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2663072A1 (fr) * | 1990-06-08 | 1991-12-13 | Conforti Spa | Serrure a cle changeable. |
WO1992006264A2 (fr) * | 1990-09-28 | 1992-04-16 | Sedley Bruce S | Verrou a changement de codes fonctionnant avec une cle magnetique |
US5267459A (en) * | 1989-02-15 | 1993-12-07 | Sedley Bruce S | Magnetic key operated lock |
WO1995020087A1 (fr) * | 1994-01-22 | 1995-07-27 | Schulte-Schlagbaum | Systeme de fermeture comprenant une serrure et plusieurs clefs adaptees a une serrure |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE131567T1 (de) * | 1989-10-30 | 1995-12-15 | Mas Juan Capdevila | Magnetischer schlüssel für schlösser mit zugangskontrolle |
DE9110066U1 (de) * | 1991-08-14 | 1992-12-17 | Schulte-Schlagbaum Ag, 5620 Velbert | Aus Schlüssel und Schloß bestehende Schließ-/Sperreinrichtung |
DE4216421A1 (de) * | 1992-05-18 | 1993-11-25 | Schulte Schlagbaum Ag | Aus Schloß und mehreren Schlüsseln bestehendes Schließsystem |
GB9213652D0 (en) * | 1992-06-26 | 1992-08-12 | Sedley Bruce S | Magnetic locks |
SE501359C2 (sv) * | 1994-01-14 | 1995-01-23 | Sargent & Greenleaf | Omkodbart tillhållarlås för värdeförvaringsenheter, t ex kassaskåp |
DE4402349A1 (de) * | 1994-01-27 | 1995-08-03 | Sudhaus Schlos Und Beschlagtec | Magnetschließeinrichtung zum Verschließen von Koffern, Taschen o. dgl. Behältern |
JP3708768B2 (ja) | 1999-11-22 | 2005-10-19 | シャープ株式会社 | 読取り装置及びデータ処理システム |
WO2001095058A2 (fr) * | 2000-06-03 | 2001-12-13 | Ebox.Com, Inc. | Enregistrement et notification informatises de la livraison et de la levee de marchandises au detail |
DE20021631U1 (de) * | 2000-12-21 | 2002-05-02 | Burg-Wächter KG, 58540 Meinerzhagen | Umkodierbares Schloss |
US7634930B2 (en) | 2002-01-03 | 2009-12-22 | Strattec Security Corporation | Lock apparatus and method |
US7007528B2 (en) | 2004-04-01 | 2006-03-07 | Newfrey Llc | Re-keyable lock cylinder |
DE102010022742B4 (de) * | 2009-09-28 | 2023-05-17 | Kaba Mauer Gmbh | Sicherheitsschloss mit einem Schlüssel zur Umstellung der Zuhaltungen und zur Betätigung des Schließwerks |
US8253533B2 (en) * | 2009-09-30 | 2012-08-28 | Universal City Studios Llc | Locker system and method |
JP6105369B2 (ja) * | 2013-04-25 | 2017-03-29 | 株式会社足立ライト工業所 | シリンダ錠 |
RU2756627C1 (ru) * | 2020-11-18 | 2021-10-04 | Ильдар Ибрагимович Салимов | Привод засова замка |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2818723A (en) * | 1952-12-03 | 1958-01-07 | Morris J Levin | Cylinder lock |
DE2401602A1 (de) * | 1973-01-12 | 1974-07-18 | Pitney Bowes | Elektronisches kombinationsschloss und schleusensystem |
DE2646739A1 (de) * | 1976-10-15 | 1978-04-20 | James W Raymond | Schlossanordnung |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1136067A (en) * | 1909-11-08 | 1915-04-20 | Elmer E Watson | Interchangeable-key lock. |
US3234768A (en) * | 1963-04-15 | 1966-02-15 | Russell | Key actuated mechanism with temporary ball tumbler |
US3926021A (en) * | 1974-01-02 | 1975-12-16 | Monitron Ind | Electronic combination lock and system |
US4133194A (en) * | 1976-12-02 | 1979-01-09 | Bruce S. Sedley | Magnetic key operated door lock |
US4312198A (en) * | 1979-08-09 | 1982-01-26 | Sedley Bruce S | Magnetic key operated hotel door lock |
JPS5768051U (fr) * | 1980-10-09 | 1982-04-23 | ||
US4519228A (en) * | 1981-04-01 | 1985-05-28 | Trioving A/S | Electronic recodeable lock |
US4516417A (en) * | 1982-12-13 | 1985-05-14 | American Standard Inc. | Changeable keylock having tumblers with shiftable pivot seats |
GB2137685B (en) * | 1983-02-16 | 1987-10-21 | Kumahira Safe Co | Magnetic lock |
JPH0246743B2 (ja) * | 1983-06-30 | 1990-10-17 | Ota Kogyo Kk | Kahenshikijomae |
US4644766A (en) * | 1983-10-04 | 1987-02-24 | Avant Incorporated | Non-electronic card-key actuated combination lock |
DE3421667A1 (de) * | 1984-06-09 | 1985-12-12 | Schulte-Schlagbaum Ag, 5620 Velbert | Anlage zur aufsichtslosen kontrolle der benutzung, insbesondere der benutzungszeit, von badeanstalten, lesesaelen oder dergleichen |
DE3431113A1 (de) * | 1984-08-24 | 1986-03-06 | Schulte-Schlagbaum Ag, 5620 Velbert | Benutzungskontrollanlage |
AT385311B (de) * | 1984-10-09 | 1988-03-25 | Evva Werke | Schloss mit zumindest einem magnetrotor |
US4676083A (en) * | 1986-03-07 | 1987-06-30 | Sedley Bruce S | Locking mechanism with actuator |
US4712402A (en) * | 1986-06-16 | 1987-12-15 | Monahan Brian J | Integrally and sequentially re-keyable lock apparatus and method |
-
1987
- 1987-12-17 DE DE19873742826 patent/DE3742826A1/de not_active Withdrawn
-
1988
- 1988-08-16 ES ES88113236T patent/ES2035197T3/es not_active Expired - Lifetime
- 1988-08-16 DE DE8888113236T patent/DE3875427D1/de not_active Expired - Fee Related
- 1988-08-16 EP EP19880113236 patent/EP0304760B1/fr not_active Expired - Lifetime
- 1988-08-19 CA CA 575280 patent/CA1316697C/fr not_active Expired - Fee Related
- 1988-08-22 US US07/234,813 patent/US5072604A/en not_active Expired - Fee Related
- 1988-08-22 JP JP20650788A patent/JPH0833084B2/ja not_active Expired - Fee Related
- 1988-08-22 US US07/234,855 patent/US5074135A/en not_active Expired - Fee Related
- 1988-08-22 PT PT88317A patent/PT88317B/pt not_active IP Right Cessation
- 1988-08-22 CN CN88106176A patent/CN1027297C/zh not_active Expired - Fee Related
-
1989
- 1989-02-08 AU AU29720/89A patent/AU617759B2/en not_active Ceased
-
1992
- 1992-12-14 GR GR920402909T patent/GR3006535T3/el unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2818723A (en) * | 1952-12-03 | 1958-01-07 | Morris J Levin | Cylinder lock |
DE2401602A1 (de) * | 1973-01-12 | 1974-07-18 | Pitney Bowes | Elektronisches kombinationsschloss und schleusensystem |
DE2646739A1 (de) * | 1976-10-15 | 1978-04-20 | James W Raymond | Schlossanordnung |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5267459A (en) * | 1989-02-15 | 1993-12-07 | Sedley Bruce S | Magnetic key operated lock |
EP0458870B1 (fr) * | 1989-02-15 | 1994-06-15 | SEDLEY, Bruce Samuel | Serrure actionnee par une cle magnetique |
US5388437A (en) * | 1989-02-15 | 1995-02-14 | Sedley; Bruce S. | Magnetic key operated lock |
FR2663072A1 (fr) * | 1990-06-08 | 1991-12-13 | Conforti Spa | Serrure a cle changeable. |
WO1992006264A2 (fr) * | 1990-09-28 | 1992-04-16 | Sedley Bruce S | Verrou a changement de codes fonctionnant avec une cle magnetique |
WO1992006264A3 (fr) * | 1990-09-28 | 1992-05-14 | Sedley Bruce S | Verrou a changement de codes fonctionnant avec une cle magnetique |
US5406815A (en) * | 1990-09-28 | 1995-04-18 | Sedley; Bruce S. | Magnetic key operated code-change lock |
WO1995020087A1 (fr) * | 1994-01-22 | 1995-07-27 | Schulte-Schlagbaum | Systeme de fermeture comprenant une serrure et plusieurs clefs adaptees a une serrure |
Also Published As
Publication number | Publication date |
---|---|
PT88317B (pt) | 1993-09-30 |
CN1027297C (zh) | 1995-01-04 |
DE3742826A1 (de) | 1989-03-02 |
US5074135A (en) | 1991-12-24 |
EP0304760A3 (en) | 1990-07-18 |
ES2035197T3 (es) | 1993-04-16 |
JPH01151667A (ja) | 1989-06-14 |
JPH0833084B2 (ja) | 1996-03-29 |
CA1316697C (fr) | 1993-04-27 |
EP0304760B1 (fr) | 1992-10-21 |
GR3006535T3 (fr) | 1993-06-30 |
AU2972089A (en) | 1990-08-23 |
US5072604A (en) | 1991-12-17 |
CN1032209A (zh) | 1989-04-05 |
PT88317A (pt) | 1989-06-30 |
AU617759B2 (en) | 1991-12-05 |
DE3875427D1 (de) | 1992-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0304760B1 (fr) | Système de fermeture être composé d'une serrure et plusieurs clés | |
DE69903872T2 (de) | Elektromechanisches Zylinderschloss | |
EP0526904B1 (fr) | Serrure à cylindre, notamment pour serrure encastrée | |
EP0974719A2 (fr) | Serrure, notamment pour un système de fermeture | |
DE2711061C2 (de) | Permanentmagnet-Schlüssel betätigbares Schloß | |
DE69901698T2 (de) | Elektromagnetische verriegelungsvorrichtung | |
DE10303220B3 (de) | Schließzylinder | |
EP0668422B1 (fr) | Mécanisme de blocage pour serrure | |
EP0276444B1 (fr) | Dispositif de verrouillage avec un grand nombre de combinaisons de verrouillage | |
EP0298193B1 (fr) | Cylindre de serrure à goupille électromagnétique | |
EP0819813B1 (fr) | Serrure contrôlé électromagnétiquement | |
EP0304761B1 (fr) | Installation pour l'usage des casiers ou des choses pareilles | |
DE19517704C2 (de) | Profilzylinder | |
DE102006024063B4 (de) | Schloss mit einem durch einen elektrischmechanisch betätigten Sperrstift verriegelbaren Schließzylinder | |
EP0644974B1 (fr) | Systeme de fermeture comportant une serrure et plusieurs clefs | |
EP1785558B1 (fr) | Serrure, en particulier pour coffre-fort | |
WO2002057575A1 (fr) | Dispositif de fermeture a commande electronique | |
DE20102279U1 (de) | Elektronisch steuerbare Schließvorrichtung | |
EP0774033B1 (fr) | Systeme de fermeture comprenant une serrure et une clef | |
DE3702730A1 (de) | Schliesseinrichtung mit grosser schliesskombinationsanzahl | |
DE1728621C3 (de) | Drehzylinderschloß mit permanentmagnetischen, federlosen Zuhaltungsstiften | |
EP0119530B1 (fr) | Serrure à pêne coulissant, notamment pour coffre-fort | |
WO1997008412A1 (fr) | Serrure a fonction de fermeture declenchee par insertion d'une carte pourvue de zones magnetisees | |
EP0641412B1 (fr) | Serrure comportant une fonction de deverrouillage s'operant par l'introduction d'une carte a code partiellement magnetisee | |
DE2841845A1 (de) | Verschlussvorrichtung fuer ein schloss |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE ES FR GB GR IT LI NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE ES FR GB GR IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19900815 |
|
17Q | First examination report despatched |
Effective date: 19911220 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR GB GR IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 81703 Country of ref document: AT Date of ref document: 19921115 Kind code of ref document: T |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 3875427 Country of ref document: DE Date of ref document: 19921126 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2035197 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: FG4A Free format text: 3006535 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 88113236.9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19970818 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 19970822 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980831 |
|
EUG | Se: european patent has lapsed |
Ref document number: 88113236.9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19990831 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19990903 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990906 Year of fee payment: 12 Ref country code: BE Payment date: 19990906 Year of fee payment: 12 Ref country code: AT Payment date: 19990906 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19990907 Year of fee payment: 12 Ref country code: FR Payment date: 19990907 Year of fee payment: 12 Ref country code: CH Payment date: 19990907 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000816 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000816 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000831 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000831 |
|
BERE | Be: lapsed |
Owner name: SCHULTE-SCHLAGBAUM A.G. Effective date: 20000831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010301 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20000816 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010430 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20010301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20010911 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050816 |