EP0298996B1 - Verfahren und einrichtung zur raum-klimatisierung - Google Patents

Verfahren und einrichtung zur raum-klimatisierung Download PDF

Info

Publication number
EP0298996B1
EP0298996B1 EP87906063A EP87906063A EP0298996B1 EP 0298996 B1 EP0298996 B1 EP 0298996B1 EP 87906063 A EP87906063 A EP 87906063A EP 87906063 A EP87906063 A EP 87906063A EP 0298996 B1 EP0298996 B1 EP 0298996B1
Authority
EP
European Patent Office
Prior art keywords
room
fresh air
air
temperature
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87906063A
Other languages
English (en)
French (fr)
Other versions
EP0298996A1 (de
Inventor
Helmuth Sokolean
Klaus Roschmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Barcol Air AG
Original Assignee
REDEC AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by REDEC AG filed Critical REDEC AG
Publication of EP0298996A1 publication Critical patent/EP0298996A1/de
Application granted granted Critical
Publication of EP0298996B1 publication Critical patent/EP0298996B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/76Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs

Definitions

  • the invention relates to a method for air conditioning and a device for performing the method.
  • FR-A-2 126 601 a device for ventilating stables is known, with which the main aim is to remove ammonia-containing gases from the ceiling area.
  • the fresh air is fed to the distribution shafts through parallel ducts under the ceiling and apparently warmed somewhat by heat exchange with the room air near the ceiling.
  • an actual climate control is not possible with this facility.
  • GB-A-2 029 004 also shows a device for ventilation of stables with a false ceiling, above which exhaust air is discharged through parallel ducts and on the underside of which fresh air supply is provided, further ducts are provided which have longitudinal slots on the undersides through which the supply air exits in the stable. Heat exchange occurs between the supply air and the extract air, but only to a very small extent between the room air near the ceiling and the supply air.
  • the volume flow can be regulated in two stages.
  • active temperature control is obviously not possible and is also not intended.
  • the invention is based on the object of specifying a method and a device for carrying it out, with which regulated and adequate heating or cooling is also possible for rooms of normal size, without the need for quickly supplied tempered, e.g. B. relatively cold fresh air stronger, as unpleasant drafts currents would arise.
  • the fresh air supplied, before it flows into the room is only exchanged at room temperature by means of heat exchange with no or almost no mass exchange aligned.
  • This not only has the advantage that the flows that may arise through the introduction of fresh air are felt much less strongly and, above all, much less disruptively because of the almost identical temperature with the room air, but also that the fresh air, since it is not blown directly into the room, but first adjusted in temperature by heat exchange, can be supplied with a much larger temperature difference.
  • the required heating or cooling output which is largely provided by the heat exchanger, is achieved with a much smaller volume flow than would be possible with the small temperature difference customary in known methods.
  • This air serves practically exclusively for the supply of fresh air and is led into the room in a largely laminar manner from above through the diffuser. From there, the air distributes itself according to the room's own dynamics, i.e. according to the occurring and possibly changing circumstances, without the strong and therefore disruptive air currents being noticeable.
  • Another advantage of the calmed air flow in the room is the greatly improved purity of the room air.
  • the contamination of the room air due to air turbulence and high flow velocity is reduced.
  • the fresh air volume can preferably be controlled by temperature measurements in the area of the diffuser.
  • the diffuser will be located near the volume regulator, making installation easy and cost-effective. No separate room thermostats or other sensors are required within the air-conditioned room. Additional features and further advantages of the invention result from the following description.
  • the air conditioning system is connected to a fresh air duct 1 and an exhaust air duct 2.
  • a volume regulator 3 is arranged in the fresh air duct 1.
  • the fresh air duct 1 and the exhaust air duct 2 are covered by an installation ceiling 4.
  • a heat exchanger 5 can also be provided, which in the example is designed as a ceiling element. If only low temperature adaptation performance can be achieved, the separate heat exchanger can be dispensed with.
  • the fresh air duct 1 is connected directly to the inlet fins 5A of the heat exchanger, which at the other end merge into the return fins 5B.
  • the outputs of the return lamellae 5B lead in parallel to a diffuser 6, which allows the fresh air to enter the room downward from the ceiling in accordance with the arrows A as a laminar flow.
  • the diffuser 6 is preferably arranged on a side of the room which is opposite a window or facade side 7 of the room. In larger rooms, the diffuser is preferably arranged in areas close to the passageway, that is, preferably not above work or lounge areas.
  • Figure 3 shows the arrangement of the heat exchanger designed as a ceiling element on the ceiling 8. It is the formation of the inlet fins 5A and the return fins 5B as rectangular tubes and their mutual arrangement directly recognizable on the ceiling 8.
  • the inlet fins 5A and the return fins 5B with small air exchange openings e.g. B. be provided with slots 9, which accelerates the heat exchange process between the lamella wall and the ambient air surrounding the lamella in the vicinity of the heat exchanger.
  • a type of micro flow is formed exclusively in the surface area of the lamellae. This improves the efficiency of the heat exchanger 5.
  • the return lamella 5B there is additional heat potential from the fresh air emitted to the room air via the heat exchanger.
  • the fresh air which is almost matched to the room air temperature in the manner described above is introduced into the room via the diffuser 6.
  • the fresh air entering the room from the diffuser should differ by a maximum of 1 degree C from the room temperature in the lounge area.
  • the exit velocity of the fresh air emerging from the diffuser is of the order of 0.15 m / sec. It is therefore significantly lower than the exit speed of the fresh air introduced into the room in conventional air conditioning systems, which is approximately 1 to 3 m / sec.
  • the fresh air flowing out of the diffuser 6 flows down into the room, where it forms a supply of fresh air.
  • the fresh air flows horizontally to the heat sources and heats them vertically to the ceiling, where it flows along the ceiling elements to an outlet 10 which merges into the exhaust air duct 2.
  • a warm air flow directed upwards results in a supply air flow which is branched off directly to the side from the fresh air flowing in from the diffuser 6. Larger flow rolls are formed, which, however, cause practically no turbulence, but rather develop their own dynamics in the room, so that main flows are present in the room get supported. Such main flows are the fresh air flowing down from the diffuser 6, branches to diffuse heat sources, further the flow of the fresh air directed towards the facade, finally the upward flow supported in the facade area by natural heating via the windows and the backflow in the ceiling area along the heat exchanger 5 to the room air outlet 10. Despite the practically laminar introduction of fresh air into the room, there is a very good air exchange within the entire room. This is primarily due to the measures described with regard to optimal use of the room's own dynamic.
  • the air conditioning can take place both in terms of cooling and for heating the room, or in quasi-isothermal operation for ventilation. Especially when heating, it can be useful to supply separate warm air and fresh air flows to the system and to regulate the air mixture in the diffuser area.
  • the mixing takes place in a bypass 20 to the heat exchanger 5, as indicated in FIG. 4. Fresh air is fed directly to the bypass at a low temperature of, for example, 12 degrees Celsius. Air, for example, is heated to 38 degrees C via the heat exchanger 5.
  • the mixture is regulated to 21 degrees C, so that a room temperature of 22 degrees C is established.
  • the control is carried out by a control valve 21 in the bypass 20, with a temperature sensor 22 in the area of the diffuser 6 a control device 23 cooperates and switches the motor 24 of the control valve 21 depending on the temperature.
  • the combination of static cooling surfaces on the heat exchanger 5 with laminar air inlet via the diffuser 6 and the use of the dynamics for the fresh air supply to the room result in a low room air speed comparable to the non-air-conditioned room and a uniform room air temperature distribution in the lounge area.
  • the system operates extremely quietly and can also be used at high heat loads, especially if the heat exchanger fins are provided with the aforementioned micro-openings 9 to improve the heat exchange. No additional ducts or installation lines are required inside the room.
  • the height of the heat exchanger fins is approx. 15 cm, so that the normal room height for non-air-conditioned rooms can be kept practically unchanged. So there is no need for double ceilings, which require additional room height in conventional air conditioning systems. Due to the intrinsically dynamic room air flow, which essentially runs from bottom to top, and by largely avoiding a cross flow with contaminated air, the pollution in the room air is kept extremely low.
  • the regulation of the fresh air supply via the volume controller 3 takes place with a view to a constant outlet temperature in the diffuser 6.
  • the temperature of the primary air ie the fresh air supplied in the fresh air duct 1
  • the exhaust air in the exhaust air duct 2 has a temperature of +27 degrees Celsius
  • the room temperature is +24 degrees Celsius.
  • the difference in temperature between the primary air and the exhaust air is 15 degrees Celsius here.
  • current air conditioning systems with direct introduction of the cooled fresh air into the room with a differential temperature of max. 8-10 degrees worked, which results in greater air turbulence and thus a higher flow velocity in the lounge area and thus the unpleasant disturbing side effects.
  • the desired outlet temperature and thus room temperature is determined by an automatic volume flow adjustment, i.e. achieved by a temperature-volume cascade control.
  • the temperature sensor leading the system possibly with a measuring transducer, is integrated in the laminar flow diffuser 6.
  • the control system works on the principle of a variable volume flow system "VVS".
  • the ceiling with its heat storage capacity can be incorporated directly into the heat exchange system. This has an additional stabilizing effect on the overall system and its control system and increases the efficiency of the heat exchange.
  • the heat exchanger can also be arranged in other suitable areas of the room. It is also important in this case that the fresh air supplied via the fresh air duct 1 first passes through the heat exchanger and is only introduced into the room after it has warmed up to almost room temperature.
  • a material with good heat conductivity e.g. offers a metal
  • it can also be made of other materials, e.g. made of plastic.
  • air conditioning is not limited to the aforementioned office or business premises.
  • the device described can also be used to advantage in test laboratories or production rooms where a balanced climate, in particular constant temperatures, is required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Central Air Conditioning (AREA)
  • Duct Arrangements (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Raumklimatisierung sowie eine Einrichtung zur Durchführung des Verfahrens.
  • Aus der DE-C-915 386 ist eine gattungsgemässe Einrichtung zur Klimatisierung einer verhältnismässig grossen Halle bekannt, bei welcher offenbar ungeregelt Frischluft oberhalb einer ersten Zwischendecke zu Luftzuleitungen, welche als senkrecht nach unten in die Halle ragende Rohre ausgebildet sind, geführt und Abluft zwischen der ersten und einer unterhalb derselben angeordneten, mit Absaugeöffnungen versehenen zweiten Zwischendecke abgezogen wird. Die Luftzuleitungen weisen Oeffnungen auf derart, dass jeweils zwei Oeffnungen benachbarter Zuleitungen gegeneinander gerichtet sind, sodass die kinetische Energie der einströmenden Luft in sich bildenden Wirbeln vernichtet wird.
  • Auf diese Weise wird in sehr grossen Räumen, wo die Oeffnungen der Zuleitungen hoch über dem Boden liegen, erreicht, dass Zugwirkungen in der Aufenthaltszone vermieden werden, da die Luft ihre kinetische Energie verliert, bevor sie in Bodennähe gelangt.
  • Bei Räumen normaler Grösse wie Wohnzimmern oder Büros erfassen durch Frischluftzuführung bewirkte Turbulenzen jedoch den ganzen Raum und können von der Aufenthaltszone nicht ferngehalten werden.
  • Aus der FR-A-2 126 601 ist eine Einrichtung zur Belüftung von Ställen bekannt, mit welcher hauptsächlich die Entfernung ammoniakhaltiger Gase aus dem Deckenbereich angestrebt wird. Die Frischluft wird durch unter der Decke geführte parallele Kanäle den Verteilungsschächten zugeführt und dabei durch Wärmeaustausch mit der deckennahen Raumluft offenbar etwas erwärmt. Eine eigentliche Klimaregelung ist mit dieser Einrichtung jedoch nicht möglich.
  • Die GB-A-2 029 004 zeigt ebenfalls eine Einrichtung zur Belüftung von Ställen mit einer Zwischendecke, oberhalb welcher durch parallele Kanäle Abluft abgeführt wird und an deren Unterseite zur Frischluftzufuhr weitere Kanäle angebracht sind, welche an den Unterseiten Längsschlitze aufweisen, durch welche die Zuluft in den Stall austritt. Zwischen der Zuluft und der Abluft tritt Wärmeaustausch auf, zwischen der deckennahen Raumluft und der Zuluft wohl nur in sehr geringem Mass. Der Volumenstrom kann zweistufig geregelt werden. Auch hier ist eine aktive Temperaturregelung offenbar nicht möglich und auch nicht beabsichtigt.
  • Der Erfindung liegt die Aufgabe zu Grunde, ein Verfahren und eine Einrichtung zu dessen Durchführung anzugeben, mit welchem eine geregelte und ausreichende Heizung oder Kühlung auch normal grosser Räume möglich ist, ohne dass durch rasch zugeführte temperierte, z. B. relativ kalte Frischluft stärkere, als unangenehme Zugluft empfundene Strömungen entstünden.
  • Diese Aufgabe wird durch die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, gelöst.
  • Gemäss der Erfindung wird die zugeführte Frischluft, bevor sie in den Raum einströmt, erst durch Wärmeaustausch ohne oder fast ohne Masseaustausch an die Raumlufttemperatur angeglichen. Dies hat nicht nur den Vorteil, dass allenfalls durch die Frischlufteinleitung entstehende Strömungen wegen der annähernden Temperaturgleichheit mit der Raumluft viel weniger stark und vor allem viel weniger störend empfunden werden, sondern auch, dass die Frischluft, da sie ja nicht direkt in den Raum geblasen, sondern zuerst durch Wärmeaustausch in ihrer Temperatur angepasst wird, mit wesentlich grösserer Temperaturdifferenz zugeführt werden kann. Damit wird aber die erforderliche Heiz- oder Kühlleistung, die zum grossen Teil über den Wärmetauscher erbracht wird, mit einem viel kleineren Volumenstrom erreicht, als das bei der bei bekannten Verfahren üblichen geringen Temperaturdifferenz möglich wäre.
  • Ein solches Verfahren und eine solche Einrichtung besitzen erhebliche und gravierende Vorteile gegenüber bekannten Einrichungen. In erster Linie werden die Komforteigenschaften der Klimaanlage ganz entscheidend dahingehend verbessert, dass sie von den Personen im Raum praktisch nicht wahrgenommen, geschweige denn als störend empfunden wird. Diese Eigenschaft ist eine Folge der Zuführung isothermer Frischluft mit nur geringer Strömungsgeschwindigkeit in den Raum. Verbrauchte und erwärmte Raumluft steigt selbttätig im Raum nach oben und wird von dort abgeführt. Sind grössere Temperaturanpassungs-Leistungen zu erbringen, wird dem Diffusor ein Wärmetauscher vorgeschaltet, der im Deckenbereich angebracht ist, so dass die aus dem Diffusor in den Raum eintretende Frischluft in diesem Fall ihr ursprüngliches Temperaturgefälle gegenüber der Raumluft im Wärmetauscher bereits zu grössten Teil ausgeglichen hat. Die in den Raum eintretende Frischluft selbst übt also in keinem Fall eine Kühl- bzw. Heizwirkung aus. Diese Luft dient praktisch ausschliesslich der Frischluftversorgung und wird über den Diffusor weitgehend laminar von oben seitlich in den Raum geführt. Von dort aus verteilt sich die Luft gemäss der Raum-Eigendynamik, also gemäss den jeweils auftretenden und eventuell wechselnden Gegebenheiten, von selbst, ohne dass sich starke und damit störende Luftströmungen bemerkbar machen.
  • Wegen der geringeren Mengen der zu- und abgeführten Luft sind geringere Querschnitte für die Versorgungsleitungen erforderlich, was Platz- und Kosteneinsparungen zur Folge hat. Bedingt durch die Funktionsaufteilung ergibt sich ferner ein erheblich verbesserter Gesamtenergiebedarf, der z.B. nur ca. 40 % des Energiebedarfs von konventionellen Anlagen bei sonst gleichen Voraussetzungen beträgt.
  • Ein weiterer Vorteil der beruhigten Luftströmung im Raum ist die stark verbesserte Reinheit der Raumluft. Die Kontamination der Raumluft aufgrund von Luftturbulenzen und hoher Strömungsgeschwindigkeit wird reduziert.
  • Da die Frischluftzufuhr nicht mehr an mehreren Stellen mit hoher, für den Raumbewohner spürbarer Geschwindigkeit, sondern mit stark reduzierter Geschwindigkeit auf einer Seite im Raum erfolgt, besteht eine viel grössere Freiheit in der Einrichtung der Räume.
  • Schliesslich lässt sich durch die Verwendung eines direkt als Deckenelement ausgebildeten Wärmetauschers Bauhöhe einsparen, da separate Luftkanäle im Deckenbereich und damit eine zusätzliche abgehängte Decke überflüssig werden. Da auch keine Doppelböden für die Klimaanlage erforderlich sind, kann dieser Bereich sofern erforderlich für andere Installationen, z.B. ausschliesslich für Elektroinstallationen, freigehalten werden. Wegen der geringeren Bauhöhe dieser Einrichtung kann insgesamt eine geringere Raumhöhe in den Bauten eingehalten werden, was bei grösseren Gebäudehöhen zu erheblichen Verbesserungen der Bauausnutzung, in Extremfällen zu zusätzlichen Etagen innerhalb einer vorgegebenen Bauhöhe führen kann.
  • Die Regelung des Frischluftvolumens kann vorzugsweise durch Temperaturmessungen im Bereich des Diffusors erfolgen. In der Regel wird sich der Diffusor in der Nähe des Volumenreglers befinden, so dass die Installation einfach und kostensparend ist. Es sind keine separaten Raumthermostaten oder andere Sensoren innerhalb des klimatisierten Raumes erforderlich. Zusätzliche Merkmale und weitere Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung.
  • Die Erfindung wird nun anhand bevorzugter Ausführungsbeispiele mit Hilfe der Zeichnungen näher erläutert. Es zeigen:
  • Fig.1
    die schematische Ansicht eines zu klimatisierenden Raumes mit den Hauptbestandteilen der erfindungsgemässen Raumklimaeinrichtung,
    Fig.2
    eine Aufsicht auf den Raum gemäss Figur 1 mit der Anordnung der Wärmetauscher im Deckenbereich,
    Fig.3
    den Schnitt 3-3 aus Fig.2, und
    Fig.4
    das Ausführungsbeispiel eines By-Pass-geregelten Heizsystems.
  • Gemäss dem gezeigten Beispiel ist die Klimaanlage an einen Frischluftkanal 1 und einen Abluftkanal 2 angeschlossen. Im Frischluftkanal 1 ist ein Volumenregler 3 angeordnet. Der Frischluftkanal 1 und der Abluftkanal 2 sind durch eine Installationsdecke 4 abgedeckt. Im zu klimatisierenden Raum kann ferner ein Wärmetauscher 5 vorgesehen sein, der im Beispiel als Deckenelement ausgebildet ist. Sind nur geringe Temperatur-Anpassungs-Leistungen zu erbringen, kann auf den separaten Wärmetauscher verzichtet werden.
  • Wie Figur 2 im einzelnen zeigt, ist im Beispiel der Frischluftkanal 1 direkt mit Hinlauf-Lamellen 5A des Wärmetauschers verbunden, welche an ihrem anderen Ende in Rücklauf-Lamellen 5B übergehen. Die Ausgänge der Rücklauf-Lamellen 5B führen parallel auf einen Diffusor 6, welcher die Frischluft von der Decke aus nach unten gerichtet gemäss den Pfeilen A als Laminarströmung in den Raum treten lässt. Vorzugsweise ist der Diffusor 6 auf einer Seite des Raumes angeordnet, welche einer Fenster- oder Fassadenseite 7 des Raumes gegenüberliegt. In grösseren Räumen ist der Diffusor vorzugsweise in durchgangsnahen Bereichen, also möglichst nicht über Arbeits- oder Aufenthaltsbereichen, angeordnet.
  • Figur 3 zeigt die Anordnung des als Deckenelement ausgebildeten Wärmetauschers an der Raumdecke 8. Es ist die Ausbildung der Hinlauf-Lamellen 5A und der Rücklauf-Lamellen 5B als Rechteckrohre und ihre wechselseitige Anordnung direkt an der Raumdecke 8 zu erkennen. Durch Geometrie und Dimensionierung der als statische Kühlelemente wirkenden Wärmetauscher-Lamellen wird eine mittlere Oberflächentemperatur der Decke eingestellt, welche annähernd gleich der mittleren Raumtemperatur ist. Bei sehr grossen Wärmetausch-Lasten kann der Wirkungsgrad der Kühllamellen durch Vergrösserung der freien Oberflächen innerhalb des Kanals erhöht werden.
  • Für sogenannte Hochleistungszonen können, wie im rechten Teil von Figur 3 zu erkennen ist, die Hinlauf-Lamellen 5A und die Rücklauf-Lamellen 5B mit kleinen Luftaustauschöffnungen, z. B. mit Schlitzen 9 versehen sein, welche den Wärmeaustauschvorgang zwischen der Lamellenwand und der die Lamelle umgebenden Raumluft im Nahbereich des Wärmetauschers beschleunigt. Auf keinen Fall findet an dieser Stelle eine direkte Frischluftzuführung in die Aufenthaltszone des Raumes statt. Vielmehr bildet sich eine Art Mikroströmung ausschliesslich im Oberflächenbereich der Lamellen. Dadurch verbessert sich der Wirkungsgrad des Wärmeaustauschers 5.
  • Die vom Frischluftkanal 1 über den Volumenregler 3 in die Hinlauf-Lamellen 5A des Wärmetauschers 5 geführte Frischluft verliert über die vorzugsweise aus einem Metall oder einem anderen gut wärmeleitenden Material bestehenden Lamellen des Wärmetauschers einen Teil ihres Temperaturgefälles gegenüber der Raumluft. Auch bei ihrem Rückweg über die Rücklauf-Lamelle 5B wird weiteres Wärmepotential von der Frischluft über den Wärmetauscher an die Raumluft abgegeben. Am Ausgang der Rücklauf-Lamellen 5B wird die auf die zuvor beschriebene Weise nahezu an die Raumlufttemperatur angepasste Frischluft über den Diffusor 6 in den Raum eingeführt. Die aus dem Diffusor in den Raum eintretende Frischluft soll sich höchstens um 1 Grad C von der Raumtemperatur im Aufenthaltsbereich unterscheiden. Die Austrittsgeschwindigkeit der aus dem Diffusor austretenden Frischluft beträgt grössenordnungsmässig 0,15 m/sec. Sie ist damit wesentlich geringer als die Austrittsgeschwindigkeit der in den Raum eingeführten Frischluft bei konventionellen Klimaanlagen, die ca. 1 bis 3 m/sec beträgt.
  • Die aus dem Diffusor 6 ausströmende Frischluft strömt nach unten in den Raum, wo sie ein Frischluftangebot bildet. Verursacht durch die über den Raum verteilten diffusen Wärmequellen strömt die Frischluft horizontal zu den Wärmequellen und von diesen erwärmt vertikal zur Decke, wo sie den Deckenelementen entlang zu einem Austritt 10 strömt, der in den Abluftkanal 2 übergeht.
  • Ein nach oben gerichteter Warmluftstrom hat einen Zuluftstrom zur Folge, der direkt seitlich von der aus dem Diffusor 6 einströmenden Frischluft abgezweigt wird. Es bilden sich grössere Strömungswalzen, welche jedoch praktisch keine Turbulenzen verursachen, sondern eine Eigendynamik im Raum entwickeln, so dass im Raum vorhandene Hauptströmungen unterstützt werden. Solche Hauptströmungen sind die vom Diffusor 6 nach unten strömende Frischluft, Abzweigungen zu diffusen Wärmequellen, ferner die zur Fassadenseite hin gerichtete Strömung der Frischluft, schliesslich die im Fassadenbereich durch natürliche Aufheizung über die Fenster unterstützte Aufwärtsströmung sowie die Rückströmung im Deckenbereich entlang dem Wärmetauscher 5 zum Raumluftaustritt 10. Trotz der praktisch laminaren Frischlufteinführung in den Raum findet ein sehr guter Luftaustausch innerhalb des gesamten Raumes statt. Dies ist in erster Linie auf die beschriebene Massnahmen im Hinblick auf eine optimale Ausnutzung der Raumeigendynamik zurückzuführen.
  • Die Klimatisierung kann sowohl im Sinne einer Kühlung als auch zur Heizung des Raumes erfolgen, oder im quasi-isothermischen Betrieb zum Lüften. Insbesondere beim Heizen kann es zweckmässig sein, dem System getrennte Warmluft- und Frischluftströme zuzuführen und im Diffusor-Bereich eine geregelte Luft-Mischung aus beiden vorzunehmen. Dabei erfolgt die Mischung in einem Bypass 20 zum Wärmetauscher 5, wie in Fig. 4 angedeutet. Dem Bypass wird direkt Frischluft einer tiefen Temperatur von z.B. 12 Grad Celsius zugeführt. Über den Wärmetauscher 5 wird z.B. 38 Grad C warme Luft geführt. Im Diffusor 6 erfolgt eine geregelte Mischung auf 21 Grad C, so dass sich eine Raumtemperatur von 22 Grad C einstellt. Die Regelung erfolgt durch ein Stellventil 21 im Bypass 20, wobei ein Temperaturfühler 22 im Bereich des Diffusors 6 mit einer Regeleinrichtung 23 zusammenwirkt und den Motor 24 des Stellventils 21 temperaturabhängig schaltet.
  • Die Kombination von statischen Kühlflächen am Wärmetauscher 5 mit laminarem Lufteintritt über den Diffusor 6 sowie die Ausnützung der Eigendynamik für die Frischluftzufuhr des Raumes haben eine geringe, dem nicht klimatisierten Raum vergleichbare Raumluftgeschwindigkeit sowie eine gleichmässige Raumlufttemperaturverteilung im Aufenthaltsbereich zur Folge. Die Anlage arbeitet extrem geräuscharm und ist auch bei hohen Wärmelasten einsatzfähig, insbesondere wenn die Wärmetauscherlamellen mit den zuvor erwähnten Mikroöffnungen 9 zur Verbesserung des Wärmeaustauschs versehen sind. Innerhalb des Raumes sind keine zusätzlichen Kanäle oder Installationsleitungen erforderlich. Die Höhe der Wärmetauscherlamellen beträgt im typischen Beispiel ca. 15 cm, so dass die normale Raumhöhe für nichtklimatisierte Räume praktisch unverändert beibehalten werden kann. Es sind also keine Doppeldecken nötig, welche bei konventionellen Klimaanlagen zusätzliche Raumhöhe erfordern. Durch die eigendynamische Raumluftströmung, die im wesentlichen von unten nach oben verläuft, und durch weitgehende Vermeidung einer Querströmung mit kontaminierter Luft wird die Schadstoffbelastung innerhalb der Raumluft äusserst gering gehalten.
  • Die Regelung der Frischluftzufuhr über den Volumenregler 3 erfolgt im Hinblick auf eine konstante Austrittstemperatur im Diffusor 6. In einem bevorzugten Ausführungsbeispiel beträgt die Temperatur der Primärluft, also der im Frischluftkanal 1 zugeführten Frischluft +12 Grad Celsius, die Abluft im Abluftkanal 2 weist eine Temperatur von +27 Grad Celsius auf, während die Raumtemperatur +24 Grad Celsius beträgt. Die Differenztemperatur zwischen der Primärluft und der Abluft beträgt hier also 15 Grad Celsius. Demgegenüber wird bei derzeit gebräuchlichen Klimaanlagen mit direkter Einführung der gekühlten Frischluft in den Raum mit einer Differenztemperatur von max. 8-10 Grad gearbeitet, was eine grössere Luftturbulenz und damit eine höhere Strömungsgeschwindigkeit im Aufenthaltsbereich und damit die unangenehmen störenden Nebeneffekte zur Folge hat.
  • Im einzelnen wird die gewünschte Austrittstemperatur und somit Raumtemperatur durch eine automatische Volumenstromanpassung, d.h. durch eine Temperatur- Volumen-Kaskadenregelung erreicht. Dabei ist der das System führende Temperaturgeber, gegebenenfalls mit einem Messwandler, im Laminarflow-Diffusor 6 integriert. Das Regelungssystem arbeit nach dem Prinzip eines Variablen Volumenstromsystems "VVS".
  • Durch direkte Anordnung der Wärmetauscher 5 an der bauseitigen Decke 8, z.B. mit Hilfe von Montageschienen 13 gemäss Figur 3, kann die Decke mit ihrer Wärmespeicherkapazität direkt in das Wärmeaustauschsystem einbezogen werden. Dies übt eine zusätzliche stabilisierende Wirkung auf das Gesamtsystem und dessen Regelsystem aus und erhöht den Wirkungsgrad des Wärmeaustausches.
  • In Abwandlung des beschriebenen bevorzugten Ausführungsbeispiels kann der Wärmetauscher auch in anderen geeigneten Bereichen des Raumes angeordnet sein. Wichtig ist auch in diesem Fall, dass die über den Frischluftkanal 1 zugeführte Frischluft zunächst den Wärmetauscher durchläuft und erst dann, nachdem sie nahezu auf Raumtemperatur erwärmt ist, in den Raum eingeführt wird.
  • Obwohl sich als Material für den Wärmetauscher 5 ein gut wärmeleitendes Material, z.B. ein Metall anbietet, kann er auch aus anderen Materialien, z.B. aus Kunststoff, gefertigt sein.
  • Der Einsatz einer derartigen Klimaanlage ist nicht auf die zuvor erwähnten Büro- oder Geschäftsräume beschränkt. Auch in Test- Labor- oder Fertigungsräumen, in denen ein ausgeglichenes Klima, insbesondere konstante Temperaturen verlangt werden, lässt sich die beschriebene Einrichtung mit Vorteil anwenden.

Claims (8)

  1. Verfahren zur Raumklimatisierung durch Regelung des dem Raum zugeführten Frischluftvolumens und Ableitung von Innenluft aus den oberen Raumluftschichten, wobei die Temperatur der zugeführten Frischluft und der Raumluft durch Wärmeaustausch der Frischluft mit den oberen Raumluftschichten einander angenähert werden, bevor die dann wenigstens annähernd raumisotherme Frischluft von der Decke des Raums her mit derart geringer Strömungsgeschwindigkeit laminar eingebracht wird, dass nur die Ausbildung raumeigendynamischer Teilströmungen entsprechend den im Raum vorhandenen diffusen Wärmequellen unterstützt wird, ausserdem der Volumenstrom der zugeführten Frischluft durch einen von lufthygienischen Anforderungen bestimmten Minimalwert nach unten begrenzt und im übrigen nach der Austrittstemperatur oder der Raumtemperatur geregelt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass nach Erreichen des Minimalwerts des Volumenstroms in einer Sequenzregelung eine Temperaturanpassung der zugeführten Frischluft vorgenommen wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Austrittsgeschwindigkeit der Frischluft durch entsprechende Regelung des Volumenstroms auf 0,15 m/sec begrenzt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Austrittstemperatur der Frischluft von der Raumtemperatur im Aufenthaltsbereich um höchstens 1°C abweicht.
  5. Einrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 4, mit einem Frischluftkanal (1) zur Zuführung temperierter Frischluft, einem mit demselben verbundenen Luftauslass sowie einem Abluftkanal (2), dadurch gekennzeichnet, dass der Frischluftkanal (1) mittels eines Volumenreglers (3) nach der Austrittstemperatur oder der Raumtemperatur volumengeregelt und der Luftauslass als im Deckenbereich angeordneter Diffusor (6) ausgebildet und mit dem Frischluftkanal (1) über einen gleichfalls im Deckenbereich angeordneten, mehrere parallele beabstandete rohrartige Hinlauflamellen (5A) und Rücklauflamellen (5B) umfassenden Wärmetauscher (5) mit dem Diffusor (6) verbunden ist.
  6. Einrichtung nach Anspruch 5, dadurch gekennzeichnet, dass sich der Wärmetauscher (5) über den gesamten Deckenbereich erstreckt.
  7. Einrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass dem Wärmetauscher (5) ein Frischluft-Bypass (20) zugeordnet ist, der zusammen mit dem Wärmetauscher (5) in den Diffusor (6) mündet und mit einem Ventil (21) versehen ist, das in Abhängigkeit von einem im Bereich des Diffusors (6) angeordneten Temperaturfühler (22) von einem Regler (23) geregelt wird.
  8. Einrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass in den nach unten gerichteten Wandbereichen der rohrartigen Hinlauflamellen (5A) und Rücklauflamellen (5B) kleine Oeffnungen (9) angebracht sind, sodass ein verstärkter Wärmeaustausch mit Luftschichten im unmittelbaren Nahbereich der Lamellenwand stattfindet.
EP87906063A 1986-09-30 1987-09-30 Verfahren und einrichtung zur raum-klimatisierung Expired - Lifetime EP0298996B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH3933/86 1986-09-30
CH3933/86A CH672833A5 (de) 1986-09-30 1986-09-30
PCT/CH1987/000129 WO1988002464A1 (fr) 1986-09-30 1987-09-30 Procede et dispositif de climatisation
CA000551165A CA1324021C (en) 1986-09-30 1987-11-05 Method and apparatus for the air conditioning of rooms

Publications (2)

Publication Number Publication Date
EP0298996A1 EP0298996A1 (de) 1989-01-18
EP0298996B1 true EP0298996B1 (de) 1994-07-06

Family

ID=25671575

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87906063A Expired - Lifetime EP0298996B1 (de) 1986-09-30 1987-09-30 Verfahren und einrichtung zur raum-klimatisierung

Country Status (6)

Country Link
EP (1) EP0298996B1 (de)
JP (1) JP2509652B2 (de)
CA (1) CA1324021C (de)
CH (1) CH672833A5 (de)
DE (1) DE3750179D1 (de)
WO (1) WO1988002464A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3128244A1 (de) 2015-08-03 2017-02-08 ERNE AG Holzbau Aktivierbares beton-verbundelement

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4015665C3 (de) * 1990-05-16 1995-06-01 Schmidt Reuter Klimasystem für Mehrraumgebäude
DE4308969C1 (de) * 1993-03-22 1994-07-28 Schmidt Reuter Kühldecke
DE4308968C1 (de) * 1993-03-22 1994-07-14 Schmidt Reuter Kühldecke
GB2558625B (en) 2017-01-11 2020-01-01 Sporting Edge Uk Ltd An air conditioning assembly

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE915386C (de) * 1941-07-30 1954-07-22 Maschf Augsburg Nuernberg Ag Luftfuehrung bei Klimaanlagen, insbesondere fuer grosse Raeume
CH459512A (de) * 1966-07-05 1968-07-15 Sulzer Ag Verfahren und Vorrichtung zur Einführung von Zuluft
FR2126601A5 (de) * 1971-02-12 1972-10-06 Govignon Fernand
DE2222691A1 (de) * 1972-05-09 1973-11-22 Aschenbrenner Fa Franz Verfahren und vorrichtung zum entfeuchten von tierstaellen
DE2462078A1 (de) * 1974-05-17 1975-11-20 Heinz Eichholz Abluftschacht
CH600254A5 (en) * 1976-05-21 1978-06-15 Kicon Ag Multi-storey building air conditioning system
GB2029004A (en) * 1978-08-19 1980-03-12 Downing J Ventilated roof
NL7902350A (nl) * 1979-03-26 1980-09-30 Schellens Werktuigenbouw B V Ventilatie-inrichting.
US4334577A (en) * 1980-01-11 1982-06-15 George Robert M Ventilating system for livestock houses
GB2155170B (en) * 1984-03-05 1987-06-03 Waterloo Grille Company Limite Adjustable ventilators

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3128244A1 (de) 2015-08-03 2017-02-08 ERNE AG Holzbau Aktivierbares beton-verbundelement

Also Published As

Publication number Publication date
CA1324021C (en) 1993-11-09
WO1988002464A1 (fr) 1988-04-07
JPH01501335A (ja) 1989-05-11
EP0298996A1 (de) 1989-01-18
DE3750179D1 (de) 1994-08-11
JP2509652B2 (ja) 1996-06-26
CH672833A5 (de) 1989-12-29

Similar Documents

Publication Publication Date Title
DE1679480A1 (de) Steuer-Vorrichtung fuer Klima-Anlagen
DE2358884C3 (de) Klimaanlage
AT407669B (de) Vorrichtung zur laminarisierung raumlufttechnischer anlagen
EP0298996B1 (de) Verfahren und einrichtung zur raum-klimatisierung
DE2303592A1 (de) Lueftungstechnisches bauelement
DE69021205T2 (de) Klimaanlage.
DE2033195C3 (de) Luftaustrittseinrichtung für Klimaanlagen
EP0667495B1 (de) Laborbe- und -entlüftungsanlage
DE3322075C2 (de) Gerät zum Temperieren der Luft innerhalb eines Raumes
DE3877280T2 (de) Temperatursteuerung vom gebaeuden.
DE4022392C2 (de) Verfahren zur Belüftung eines Raumes, insbesondere Aufenthaltsraumes
DE2206799C3 (de) Belüftungseinrichtung für Viehstalle
DE60215503T2 (de) Lüftungsanlage
DE3139997A1 (de) "zuluftvorrichtung"
DE2218716C2 (de) Verfahren zum Heizen oder Kühlen eines Raumes
DE10253264C5 (de) Dezentrale lufttechnische Einrichtung sowie Verfahren zum dezentralen Heizen oder Kühlen eines Raumes
DE2323141A1 (de) Verfahren und vorrichtung zum regeln der temperatur mittels eines stromes untertemperierter luft
EP0167729B1 (de) Verfahren zur Erneuerung und Konditionierung der Raumluft im Aufenthaltsbereich von Hallen
AT393092B (de) Vorrichtung zum reinigen der luft von einzelraeumen
CH675294A5 (de)
DE3719134A1 (de) Luftaustrittsvorrichtung
DE3832915A1 (de) Reinraum
EP0050816A1 (de) Stallbelüftung
DE19608327C2 (de) Konvektor zum Kühlen oder Heizen eines Raumes
DE29502396U1 (de) Quelluftdurchlaß

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880830

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE GB LI LU NL SE

17Q First examination report despatched

Effective date: 19900605

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: REDEC AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE GB LI LU NL SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940712

REF Corresponds to:

Ref document number: 3750179

Country of ref document: DE

Date of ref document: 19940811

EAL Se: european patent in force in sweden

Ref document number: 87906063.0

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
NLS Nl: assignments of ep-patents

Owner name: BARCOL-AIR AG

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: REDEC AG TRANSFER- BARCOL-AIR AG

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020904

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020923

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020925

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20020927

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020930

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021011

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20021129

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031001

BERE Be: lapsed

Owner name: *BARCOL-AIR A.G.

Effective date: 20030930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040401

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040401

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030930

EUG Se: european patent has lapsed
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040401