EP0289721B1 - Verfahren und Vorrichtung zum kontinuierlichen Dosieren von pulverförmigen Stoffen mittels Pressgas - Google Patents

Verfahren und Vorrichtung zum kontinuierlichen Dosieren von pulverförmigen Stoffen mittels Pressgas Download PDF

Info

Publication number
EP0289721B1
EP0289721B1 EP88102609A EP88102609A EP0289721B1 EP 0289721 B1 EP0289721 B1 EP 0289721B1 EP 88102609 A EP88102609 A EP 88102609A EP 88102609 A EP88102609 A EP 88102609A EP 0289721 B1 EP0289721 B1 EP 0289721B1
Authority
EP
European Patent Office
Prior art keywords
line
branch
synthetic silica
branch lines
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88102609A
Other languages
English (en)
French (fr)
Other versions
EP0289721A3 (en
EP0289721A2 (de
Inventor
Thomas Deuse
Edgar Simon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Priority to AT88102609T priority Critical patent/ATE71573T1/de
Publication of EP0289721A2 publication Critical patent/EP0289721A2/de
Publication of EP0289721A3 publication Critical patent/EP0289721A3/de
Application granted granted Critical
Publication of EP0289721B1 publication Critical patent/EP0289721B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/04Supplying or proportioning the ingredients
    • B28C7/06Supplying the solid ingredients, e.g. by means of endless conveyors or jigging conveyors
    • B28C7/062Supplying the solid ingredients, e.g. by means of endless conveyors or jigging conveyors with a pneumatic or hydraulic conveyor

Definitions

  • the invention relates to a method and a device for the continuous dosing of powdery substances, in particular of powdery synthetic silica by means of pressurized gas.
  • the synthetic silica is fed directly to the spray nozzle via a third feed line.
  • the object of the invention is to precisely meter the addition of synthetic silica to pointed concrete and to mix it homogeneously with the shotcrete.
  • the invention relates to a process for the continuous metering of powdery substances, in particular synthetic silica, by means of pressurized gas, preferably by means of pressurized air, which is characterized in that the pressurized gas supply in a branch pipe is alternately interrupted in a pressurized gas pipe which is guided at least twice Pouring powdered substance into the branch line and then conveying the powdered substance further by means of the pressurized gas.
  • the line carrying the pressurized gas can be routed four times in branch lines.
  • the branch line can be closed off by a check cap.
  • the resulting excess pressure can be shut off via a butterfly valve and another line, e.g. into the silo that contains the powdered material.
  • the powdery substance can be conveyed from the silo into the branch line by means of known means, for example a pump.
  • the branch lines can be shut off by means of known butterfly valves.
  • Another object of the invention is a device for the continuous dosing of powdery substances, in particular synthetic silica, by means of pressurized gas, which is characterized in that a multiple, at least two-fold line, which is brought together again after the branching, in each of the branch lines
  • the direction of flow of the pressurized gas is provided with a shut-off valve and a non-return valve, the branch lines being connected via a shut-off valve to a storage silo for the pulverulent material and to a ventilation pipe.
  • the process according to the invention has the advantage that the pulverulent substance is mixed homogeneously with the concrete without loss of substance.
  • the concrete is transported from the ready-mixed concrete plant 1 to the concrete pump 3 by means of the mixing vehicle 2.
  • the concrete pump 3 conveys the concrete via the valve 4 to the spray nozzle 5. From there, concrete is applied to the wall 6.
  • the synthetic silica is conveyed from the silo 7 by means of the vehicle 8 or alternatively via the dedicated line 9 into the storage container 10 and from there into the feed device 11.
  • Compressed air is fed from the compressor into the feed device 11 via the line 12.
  • the synthetic silica is conveyed from the feed device 11 via the valve 13 into the spray nozzle 5 and mixed with the concrete in the spray nozzle 5.
  • the synthetic silica is pumped from the storage container 10 into the pipes 15 and 16 by means of the pump 14.
  • the pipes 15 and 16 are provided with the butterfly valves 17 and 18.
  • the pipelines 15 and 16 are connected to the branch lines 19 and 20 via the butterfly valves 17 and 18.
  • the branch lines 19 and 20 are connected to the hose line 23 via the butterfly valves 21 and 22.
  • branch lines 19 and 20 are connected to the hose line 26 via the check valves 24 and 25.
  • the hose line 23 is connected to the compressor and introduces the compressed air into the feed device.
  • the hose line 26 is connected to the valve 13 and, via the valve 13, leads the mixture of synthetic silica and compressed air into the spray nozzle 5.
  • branch lines 19 and 20 are provided with the butterfly valves 27 and 28.
  • the butterfly valves 27 and 28 are connected to the lines 29 and 30, which are continued together in the line 31 and are connected to the reservoir 10.
  • the synthetic silica is fed alternately into the compressed air stream via the shut-off valves 17 and 18 into the branch lines 19 and 20.
  • the overpressure when filling the pipeline 19 is compensated via the lines 30 and 31 in the reservoir 10.
  • the compressed air flow is simultaneously passed via the opened shut-off valve 21 and the open non-return valve 24 into the hose line 26 through the branch line 20 to the branch line 19.
  • the butterfly valves 18 and 27 are closed.
  • the flap 22 is opened and the compressed air flow conveys the synthetic silica from the branch line 19 via the open non-return flap 25 into the hose line 26.
  • branch line 20 is filled with synthetic silica via the opened butterfly valve 18.
  • the speed-determining step is to fill the branch lines 19 or 20 with synthetic silica.
  • the synthetic silica is pumped from the storage container 10 into the pipes 32, 33, 34 and 35 by means of the pump 14.
  • the synthetic silica is supplied to the branch lines 36, 37, 38 and 39 via the shut-off valves 40, 41, 42 and 43.
  • the compressed air is supplied to the branch lines 36, 37, 38 and 39 via the shut-off valves 44, 45, 46 and 47.
  • the compressed air is supplied from the compressor via line 57.
  • the branch lines 36, 37, 38 and 39 are shut off during the filling with synthetic silica by means of the non-return flaps 58, 59, 60 and 61.
  • the mixture of compressed air and synthetic silica is led out of the feed device via line 62.
  • the device according to FIG. 3 has four, instead of two, branch lines which can be filled with synthetic silica.
  • the device according to FIG. 3 enables the compressed air to be charged more quickly with synthetic silica.
  • the device according to FIG. 3 is operated in 4-stroke operation.
  • the synthetic silica can be used in the process according to the invention, which are described in Winnacker-Riechler, Chemical Technology, Volume 3, Inorganic Technology II, 4th Edition, Carl Hauser Verlag Kunststoff, Vienna 1983, pages 75 to 90.
  • the precipitated silicas can be used unmilled or steam jet milled or spray dried or spray dried and milled.
  • the following precipitated silicas can be used, with the precipitated silica FK 320 DS being given the delay.
  • the pH value is determined electrometrically with a glass electrode and a pH meter.
  • the pH value of silicas is generally in the neutral range, that of silicates in the weakly alkaline range.
  • the sieve residue is a key figure for the fine particle size.
  • the sieve residue is determined according to the Mocker in order to record the fractions of non-dispersible or difficult-to-disperse fractions found in precipitated silicas and silicates.
  • a silica suspension is rinsed through the sieve at 4 bar water pressure.
  • the sieve is then dried and the sieve residue is weighed out. 45 micrometer sieves are used, which correspond to 325 mesh (according to ASTM).
  • the surface of silicas and silicates is measured in m2 / g using the BET method.
  • the process is based on the adsorption of gaseous nitrogen at the temperature of the liquid nitrogen.
  • the Haul and Dümbgen Areameter method can be used to advantage. Calibration is required. Both the “inner” and the “outer” surface are detected.
  • the average size of the primary particles can be determined using electron microscopic images. For this purpose, the diameters of approx. 3,000 - 5,000 particles are determined, the arithmetic mean of which is calculated.
  • the individual primary particles are generally not isolated, but are combined to form aggregates and agglomerates.
  • the "agglomerate" particle size of precipitated silicas and silicates depends on the grinding process.
  • the precipitation products contain a small proportion of physically bound water. After drying in a drying cabinet at 105 ° C. for 2 hours, most of the physically bound water has been removed.
  • the precipitated silica FK 320 DS is a precipitated silica which was steam-jet milled after the rotary kiln drying.
  • the precipitated silica Durosil is an unmilled rotary kiln-dried precipitated silica.
  • Precipitated silica Sipernat 22 is a spray-dried precipitated silica.
  • Precipitated silica Sipernat 22 S is a spray-dried and ground precipitated silica.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Air Transport Of Granular Materials (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Silicon Compounds (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Lining And Supports For Tunnels (AREA)

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum kontinuierlichen Dosieren von pulverförmigen Stoffen, insbesondere von pulverförmiger synthetischer Kieselsäure mittels Preßgas.
  • Es ist bekannt, im Hoch- und Tiefbau, vor allem beim Tunnelbau, Spritzbeton zu verwenden (vgl. S+t 40 (1986), S. 3).
  • Durch den Zusatz an synthetischer Kieselsäure wird die Stellwirkung der Spritzbetons spontan erhöht, was sich durch eine Erhöhung der anhaftenden Betonmenge respektive einem geringerem Abprall deutlich bemerkbar macht. Der von der Wandung abgenommene Beton erbringt im Vergleich zu einem Beton, der keine synthetische Kieselsäure enthält, eine Reduzierung des Ausbreitmaßes um 20 bis 25 %.
  • Die Einbringung und die exakte Dosierung der synthetischen Kieselsäure in den Spritzbeton während des Auftragens bergen große Probleme in sich. So führt man zum Beispiel die synthetische Kieselsäure neben der Betonmasse und der Förderluft über eine dritte Zuleitung direkt an der Spritzdüse zu.
  • Die dabei erreichbare Vermischung ist jedoch völlig unzureichend, was an dem Kieselsäurenebel bei Austritt aus der Düse deutlich wird.
  • Günstiger wäre es vermutlich, die Kieselsäure direkt in den Förderluftstrom einzubringen (vgl. z.B. US-A-4 234 272).
  • Dies läßt sich aber mit den bekannten Pumpen, wie z. B. Depa-Pumpen, nicht durchführen, weil der Druck in der Luftleitung während des Betriebes ca. 8 bar beträgt.
  • Die Aufgabe der Erfindung besteht darin, den Zusatz an synthetischer Kieselsäure zu Spitzbeton genau zu dosieren und mit dem Spritzbeton homogen zu vermischen.
  • Gegenstand der Erfindung ist ein Verfahren zum kontinuierlichen Dosieren von pulverförmigen Stoffen, insbesondere synthetischer Kieselsäure, mittels Preßgas, vorzugsweise mittels Preßluft, welches dadurch gekennzeichnet ist, daß man in einer mehrfach, mindestens zweifach geführten Preßgas führenden Leitung alternierend die Preßgaszufuhr in einer Zweigleitung unterbricht, den pulverförmigen Stoff in die Zweigleitung einfüllt und anschließend den pulverförmigen Stoff mittels des Preßgases weiterbefördert.
  • In einer bevorzugten Ausführungsform der Erfindung kann die Preßgas führende Leitung vierfach in Zweigleitungen geführt werden.
  • Während des Unterbrechens der Preßgaszufuhr kann, um ein Rückschlagen des Preßgases aus der Zusammenführung der Mehrfachführung der Leitung in die Zweigleitung zu verhindern, die Zweigleitung durch eine Rückschlagkappe abgeschlossen werden.
  • Während des Befüllens der Zweigleitung kann der entstehende Überdruck über eine Absperrklappe und eine weitere Leitung, z.B. in das Silo, das den pulverförmigen Stoff beinhaltet, ausgeglichen werden.
  • Die Beförderung des pulverförmigen Stoffes aus dem Silo in die Zweigleitung kann mittels bekannter Mittel, z.B. einer Pumpe, erfolgen.
  • Derartige Mittel sind in der Schriftenreihe Pigmente der Degussa AG Frankfurt, Nr. 70, erschienen im Dezember 1978, beschrieben.
  • Die Absperrung der Zweigleitungen kann mittels bekannter Absperrklappen erfolgen.
  • Ein weiterer Gegenstand der Erfindung ist eine Vorrichtung zum kontinuierlichen Dosieren von pulverförmigen Stoffen, insbesondere von synthetischer Kieselsäure, mittels Preßgas, welche dadurch gekennzeichnet ist, daß eine mehrfach, mindestens zweifach geführte Leitung, die nach der Verzweigung wieder zusammengeführt wird, in den Zweigleitungen jeweils in Strömungsrichtung des Preßgases mit einer Absperrklappe und einer Rückschlagklappe versehen ist, wobei die Zweigleitungen über jeweils eine Absperrklappe zum einen mit einem Vorratssilo für den pulverförmigen Stoff und zum anderen mit einem Entlüftungsrohr verbunden sind.
  • Das erfindungsgemäße Verfahren hat den Vorteil, daß der pulverförmige Stoff homogen ohne Substanzverlust kontinuierlich mit dem Beton vermischt wird.
  • Das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung werden an Hand der Zeichnung näher erläutert.
  • Es zeigen
  • Figur 1
    die schematische Anordnung der Apparate bei der Aufbringung von Spritzbeton.
    Figur 2
    die erfindungsgemäßen Einspeisvorrichtung.
    Figur 3
    eine weitere Ausführungsform der erfindungsgemäßen Einspeisvorrichtung.
  • Gemäß Figur 1 wird der Beton von dem Transportbetonwerk 1 mittels des Mischfahrzeuges 2 zu der Betonpumpe 3 transportiert.
  • Die Betonpumpe 3 befördert den Beton über das Ventil 4 zu der Spritzdüse 5. Von dort wird Beton auf die Wand 6 aufgetragen.
  • Die synthetische Kieselsäure wird von dem Silo 7 mittels des Fahrzeuges 8 oder alternativ über die Standleitung 9 in den Vorratsbehälter 10 und von dort in die Einspeisvorrichtung 11 befördert.
  • Von dem Kompressor wird Preßluft in die Einspeisvorrichtung 11 über die Leitung 12 geführt.
  • Mittels der Preßluft wird die synthetische Kieselsäure von der Einspeisvorrichtung 11 über das Ventil 13 in die Spritzdüse 5 befördert und in der Spritzdüse 5 mit dem Beton vermischt.
  • Gemäß Figur 2 wird die synthetische Kieselsäure aus dem Vorratsbehälter 10 mittels der Pumpe 14 in die Rohrleitungen 15 und 16 gepumpt. Die Rohrleitungen 15 und 16 sind mit den Absperrklappen 17 und 18 versehen. Über die Absperrklappen 17 und 18 sind die Rohrleitungen 15 und 16 mit den Zweigleitungen 19 und 20 verbunden.
  • Die Zweigleitungen 19 und 20 sind über die Absperrklappen 21 und 22 mit der Schlauchleitung 23 verbunden.
  • Weiterhin sind die Zweigleitungen 19 und 20 über die Rückschlagklappen 24 und 25 mit der Schlauchleitung 26 verbunden.
  • Die Schlauchleitung 23 ist mit dem Kompressor verbunden und führt die Preßluft in die Einspeisvorrichtung ein.
  • Die Schlauchleitung 26 ist mit dem Ventil 13 verbunden und führt über das Ventil 13 das Gemisch aus synthetischer Kieselsäure und Preßluft in die Spritzdüse 5.
  • Zusätzlich sind die Zweigleitungen 19 und 20 mit den Absperrklappen 27 und 28 versehen. Die Absperrklappen 27 und 28 sind mit den Leitungen 29 und 30 verbunden, die in der Leitung 31 gemeinsam weitergeführt werden und mit dem Vorratsbehälter 10 verbunden sind.
  • Die Einspeisung der synthetischen Kieselsäure in den Preßluftstrom erfolgt wechselseitig über die Absperrklappen 17 und 18 in die Zweigleitungen 19 und 20.
  • Gleichzeitig werden die Absperrklappen 21 und 22 sowie die Absperrklappen 27 und 28 betätigt.
  • Wenn die synthetische Kieselsäure über die geöffnete Absperrklappe 17 in die Zweigleitung 19 eingeführt wird, ist die Absperrklappe 22 geschlossen und die Absperrklappe 28 geöffnet. Die Rückschlagklappe 25 ist geschlossen.
  • Der Überdruck beim Befüllen der Rohrleitung 19 wird über die Leitungen 30 und 31 in den Vorratsbehälter 10 ausgeglichen.
  • Der Preßluftstrom wird gleichzeitig über die geöffnete Absperrklappe 21 und die geöffnete Rückschlagklappe 24 in die Schlauchleitung 26 durch die Zweigleitung 20 an der Zweigleitung 19 vorbeigeführt. Die Absperrklappen 18 und 27 sind dabei geschlossen.
  • Beim folgenden Taktwechsel werden gleichzeitig alle Absperrklappen und Rückschlagklappen betätigt.
  • Die Klappe 22 wird dabei geöffnet und der Preßluftstrom befördert die synthetische Kieselsäure aus der Zweigleitung 19 über die geöffnete Rückschlagklappe 25 in die Schlauchleitung 26.
  • Gleichzeitig wird die Zweigleitung 20 über die geöffnete Absperrklappe 18 mit synthetischer Kieselsäure gefüllt.
  • Der geschwindigkeitsbestimmende Schritt ist die Befüllung der Zweigleitungen 19 oder 20 mit synthetischer Kieselsäure.
  • Gemäß Figur 3 wird die synthetische Kieselsäure aus dem Vorratsbehälter 10 mittels der Pumpe 14 in die Rohrleitungen 32, 33, 34 und 35 gepumpt.
  • Die Zufuhr der synthetischen Kieselsäure zu den Zweigleitungen 36, 37, 38 und 39 erfolgt über die Absperrventile 40, 41, 42 und 43.
  • Die Preßluftzufuhr zu den Zweigleitungen 36, 37, 38 und 39 erfolgt über die Absperrventile 44, 45, 46 und 47.
  • Der Überdruck, der beim Befüllen der Zweigleitungen 36, 37, 38 und 39 mit synthetischer Kieselsäure anfällt, wird über die Absperrventile 48, 49, 50 und 51 und die Leitungen 52, 53, 54, 55 und 56 in den Vorratsbehälter 10 ausgeglichen.
  • Die Preßluftzufuhr vom Kompressor erfolgt über die Leitung 57.
  • Die Absperrung der Zweigleitungen 36, 37, 38 und 39 während des Befüllens mit synthetischer Kieselsäure erfolgt durch die Rückschlagklappen 58, 59, 60 und 61.
  • Das Gemisch aus Preßluft und synthetischer Kieselsäure wird über die Leitung 62 aus der Einspeisvorrichtung herausgeführt.
  • Die Vorrichtung gemäß Figur 3 hat gegenüber der Vorrichtung gemäß der Figur 2 anstatt zwei, vier Zweigleitungen, die mit synthetischer Kieselsäure gefüllt werden können.
  • Da die Befüllung mit synthetischer Kieselsäure der geschwindigkeitsbestimmende Schritt ist, kann durch die Vorrichtung gemäß Figur 3 eine schnellere Beschickung der Preßluft mit synthetischer Kieselsäure erzielt werden.
  • Um eine gleichmäßige Beschickung der Preßluft mit synthetischer Kieselsäure zu erzielen, wird die Vorrichtung gemäß Figur 3 im 4-Takt-Betrieb gefahren.
  • Als synthetische Kieselsäure kann man bei dem erfindungsgemäßen Verfahren Kieselsäuren einsetzen, die in Winnacker-Küchler, Chemische Technologie, Band 3, Anorganische Technologie II, 4. Auflage, Carl Hauser Verlag München, Wien 1983, Seite 75 bis 90 beschrieben werden.
  • Von besonderer Bedeutung sind pyrogene Kieselsäuren, die auf dem Wege des Flammenhydrolyse hergestellt wurden sowie Fällungskieselsäuren, wobei bei dem erfindungsgemäßen Verfahren den Fällungskieselsäuren der Vorzug gegeben wird.
  • Die Fällungskieselsäuren können unvermahlen oder dampfstrahlvermahlen bzw. sprühgetrocknet oder sprühgetrocknet und vermahlen eingesetzt werden.
  • Beispielhaft können die folgenden Fällungskieselsäuren eingesetzt werden, wobei der Fällungskieselsäure FK 320 DS den Verzug gegeben wird.
    Figure imgb0001
    Figure imgb0002
    Figure imgb0003
  • Die Bestimmung der physikalisch-chemischen Kenndaten erfolgt nach den folgenden Methoden:
  • pH-Wert (nach DIN 53 200)
  • Der pH-Wert wird elektrometrisch mit einer Glaselektrode und einem pH-Meter ermittelt. Der pH-Wert von Kieselsäuren liegt im allgemeinen im neutralen, der von Silikaten im schwach alkalischen Bereich.
  • Siebrückstand (nach DIN 53 580)
  • Eine Kennzahl für die Feinteiligkeit ist der Siebrückstand. Zur Erfassung der in kleinsten Mengen in Fällungskieselsäuren und Silikaten vorkommenden Anteile nicht oder schwerdispergierbarer Anteile, wird der Siebrückstand nach Mocker bestimmt. Bei diesem Verfahren wird eine Kieselsäuresuspension mit 4 bar Wasserdruck durch das Sieb gespült. Das Sieb wird anschließend getrocknet und der Siebrückstand ausgewogen. Zur Anwendung kommen 45 Micrometer-Siebe, die 325 mesh (nach ASTM) entsprechen.
  • Oberfläche nach BET (DIN 66 131)
  • Die Oberfläche von Kieselsäuren und Silikaten wird nach der BET-Methode in m²/g gemessen.
  • Das Verfahren beruht auf der Adsorption von gasförmigem Stickstoff bei der Temperatur des flüssigen Stickstoffs. Die Areameter-Methode nach Haul und Dümbgen kann vorteilhaft angewandt werden. Eine Eichung ist erforderlich. Es wird sowohl die "innere" als auch die "äußere" Oberfläche erfaßt.
  • Mittlere Größe der Primärteilchen
  • Die mittlere Größe der Primärteilchen läßt sich über elektronenmikroskopische Aufnahmen bestimmen. Hierzu werden die Durchmesser von ca. 3.000 - 5.000 Teilchen bestimmt, deren arithmetisches Mittel errechnet wird. Die einzelnen Primärteilchen liegen im allgemeinen nicht isoliert vor, sondern sind zu Aggregaten und Agglomeraten vereinigt. Die "Agglomerat"-Teilchengröße von Fällungskieselsäuren und Silikaten hängt vom Vermahlungsprozeß ab.
  • Stampfdichte (nach DIN 53 194)
  • Es handelt sich um eine Maßangabe für das Gewicht des pulverförmigen Produktes. Ca. 200 ml Kieselsäure werden in dem Meßzylinder des Stampfvolumeters 1.250 mal gestampft. Aus der Einwaage und dem Volumen wird die Stampfdichte berechnet und in g/l angegeben.
  • Trocknungsverlust (nach DIN 55 921)
  • Die Fällungsprodukte enthalten einen kleinen Anteil physikalisch gebundenen Wassers. Nach 2 Stunden Trocknung im Trockenschrank bei 105 °C ist die Hauptmenge des physikalisch gebundenen Wassers entfernt.
  • Glühverlust (nach DIN 55 921)
  • Nach 2 Stunden Glühzeit bei 1000 °C ist auch das chemisch in Form von Silanolgruppen gebundene Wasser entfernt. Der Glühverlust wird an der 2 h bei 105 °C getrockneten Substanz bestimmt.
  • Die Fällungskieselsäure FK 320 DS ist eine Fällungskieselsäure, die nach der Drehrohrtrocknung dampfstrahlvermahlen wurde.
  • Die Fällungskieselsäure Durosil ist eine unvermahlene drehrohrgetrocknete Fällungskieselsäure.
  • Die Fällungskieselsäure Sipernat 22 ist eine sprühgetrocknete Fällungskieselsäure.
  • Die Fällungskieselsäure Sipernat 22 S ist eine sprühgetrocknete und vermahlene Fällungskieselsäure.

Claims (2)

  1. Verfahren zum kontinuierlichen Dosieren von pulverförmigen Stoffen mittels Preßgas, dadurch gekennzeichnet, daß man in einer mehrfach, mindestens zweifach geführten, Preßgas führenden Leitung alternierend die Preßgaszufuhr in einer Zweigleitung unterbricht, den pulverförmigen Stoff in die Zweigleitung einfüllt und anschließend den pulverförmigen Stoff mittels des Preßgases weiterbefördert.
  2. Vorrichtung zur Durchführung des Verfahrens gemäß Anspruch 1, dadurch gekennzeichnet, daß eine mehrfach, mindestens zweifach geführte Leitung, die nach der Verzweigung wieder zusammengeführt wird, in den Zweigleitungen (19,20) jeweils in Strömungsrichtung des Preßgases mit einer Absperrklappe (21,22) und einer Rückschlagklappe (24,25) versehen ist, wobei die Zweigleitungen (19,20) über jeweils eine Absperrklappe (17,18,27,28) zum einen mit einem Vorratssilo (10) für den pulverförmigen Stoff und zum anderen mit einem Entlüftungsrohr (31) verbunden sind.
EP88102609A 1987-04-30 1988-02-23 Verfahren und Vorrichtung zum kontinuierlichen Dosieren von pulverförmigen Stoffen mittels Pressgas Expired - Lifetime EP0289721B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88102609T ATE71573T1 (de) 1987-04-30 1988-02-23 Verfahren und vorrichtung zum kontinuierlichen dosieren von pulverfoermigen stoffen mittels pressgas.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3714387 1987-04-30
DE19873714387 DE3714387A1 (de) 1987-04-30 1987-04-30 Verfahren und vorrichtung zum kontinuierlichen dosieren von pulverfoermigen stoffen mittels pressgas

Publications (3)

Publication Number Publication Date
EP0289721A2 EP0289721A2 (de) 1988-11-09
EP0289721A3 EP0289721A3 (en) 1990-10-31
EP0289721B1 true EP0289721B1 (de) 1992-01-15

Family

ID=6326565

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88102609A Expired - Lifetime EP0289721B1 (de) 1987-04-30 1988-02-23 Verfahren und Vorrichtung zum kontinuierlichen Dosieren von pulverförmigen Stoffen mittels Pressgas

Country Status (7)

Country Link
US (1) US4815860A (de)
EP (1) EP0289721B1 (de)
JP (1) JPS63287541A (de)
AT (1) ATE71573T1 (de)
DE (2) DE3714387A1 (de)
ES (1) ES2027714T3 (de)
IN (1) IN169895B (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO162848C (no) * 1987-09-11 1990-02-28 Elkem As Fremgangsmaate for tilsetning av silica stoev til en toerr sproeyte-betongblanding.
JPH07103691B2 (ja) * 1990-06-20 1995-11-08 東亞合成株式会社 急結性吹付材の吹付工法
DE4232112A1 (de) * 1992-09-25 1994-03-31 Celcommerz High Chem Produkte Verfahren und Vorrichtung zum Zugeben von Füll- und Verstärkungsstoffen zu hochviskosem Material
DE4329568C2 (de) * 1993-09-02 1997-04-17 Kraus Hans Bernd Vorrichtung zur Förderung eines trockenen, streufähigen Baustoffes und Verfahren zur Anwendung dieser Vorrichtung im Lehmbau
DE4414233A1 (de) * 1994-04-23 1995-10-26 Wuerschum Gmbh Vorrichtung zum Zumessen von pulver- oder granulatförmigem Wägegut
NO962925L (no) * 1996-03-29 1997-09-30 Olav Geir Tjugum Akselerator for spröytebetong, og fremgangsmåte og utstyr for tilsetning til spröytebetong
US6123484A (en) * 1997-01-29 2000-09-26 Fujita; Takatoyo Soil pile and method for constructing the same
DE10023170B4 (de) * 2000-05-11 2006-04-27 Kurt Wolf VELCO Gesellschaft für Förder-, Spritz- und Silo-Anlagen mbH Vorrichtung zur Befeuchtung von trockenen Spritzmassen in der Förderleitung
DE10308722A1 (de) * 2003-02-28 2004-09-09 Degussa Ag Homogenisierung von nanoskaligen Pulvern
DE102005006601A1 (de) * 2005-02-11 2006-08-24 Harro Höfliger Verpackungsmaschinen GmbH Verfahren und Vorrichtung zum Transportieren von pulverförmigem Füllgut durch eine Leitung
US7942566B1 (en) * 2005-10-11 2011-05-17 Flyashdirect, Ltd. Fly ash treatment system and method of use thereof
US7938571B1 (en) 2005-10-11 2011-05-10 Flyashdirect, Ltd. Fly ash treatment system and method of use thereof
US9540281B2 (en) * 2013-11-07 2017-01-10 Air Krete, Inc. Progressive bubble generating system used in making cementitious foam
BR112016015156B1 (pt) * 2014-01-24 2021-01-26 F. Hoffmann-La Roche Ag elemento de teste de diagnóstico, composição de revestimento, método para a fabricação de um elemento de teste de diagnóstico, método para determinar a quantidade de um analito
CN104213927B (zh) * 2014-08-26 2016-05-04 班珊珊 速凝剂粉气发生器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1684370A (en) * 1928-09-11 Art of transporting mixed materials
US3625724A (en) * 1968-09-23 1971-12-07 Altrona Corp Cellular concrete and method for producing the same
DE2130257C3 (de) * 1970-06-18 1975-04-03 Challenge-Cook Bros. Inc., Industry, Calif. (V.St.A.) Verfahren zum Spritzen von Beton od.dgl. sowie Vorrichtung zur Durchführung des Verfahrens
US3779519A (en) * 1971-06-07 1973-12-18 Tetradyne Corp Concrete placement
DE7131296U (de) * 1971-08-16 1971-12-09 Wibau Gmbh Vorrichtung zur anteiligen zuteilung von pulverfoermigen erstarrungsbeschleunigern zu stroemendem zementbeton
US3840186A (en) * 1972-10-24 1974-10-08 J Broadfoot Unit for feeding difficult to feed materials
US4292351A (en) * 1978-04-28 1981-09-29 Yasuro Ito Method of blasting concrete
JPS593368B2 (ja) * 1978-10-02 1984-01-24 極東開発工業株式会社 粉粒体の定重、定容量供給装置
US4234272A (en) * 1978-10-06 1980-11-18 Laseter Douglas E Material conveyor
US4298288A (en) * 1980-01-25 1981-11-03 Anthony Industries, Inc. Mobile concreting apparatus and method
JPS56124465A (en) * 1980-03-05 1981-09-30 Gijutsu Shigen Kaihatsu Kk Method and apparatus for spraying cement mortar, etc.
JPS6026506A (ja) * 1983-07-25 1985-02-09 Kawasaki Heavy Ind Ltd 粉体分配装置
JPS6040570U (ja) * 1983-08-22 1985-03-22 芦沢 七郎 密閉式水道貯水槽
DE3703761A1 (de) * 1987-02-07 1988-08-25 Hochtief Ag Hoch Tiefbauten Vorrichtung zum auftragen einer spritzbetonschicht

Also Published As

Publication number Publication date
JPS63287541A (ja) 1988-11-24
EP0289721A3 (en) 1990-10-31
ES2027714T3 (es) 1992-06-16
DE3867693D1 (de) 1992-02-27
EP0289721A2 (de) 1988-11-09
US4815860A (en) 1989-03-28
ATE71573T1 (de) 1992-02-15
JPH0448493B2 (de) 1992-08-06
DE3714387A1 (de) 1988-11-10
IN169895B (de) 1992-01-04

Similar Documents

Publication Publication Date Title
EP0289721B1 (de) Verfahren und Vorrichtung zum kontinuierlichen Dosieren von pulverförmigen Stoffen mittels Pressgas
Thewes et al. Soil conditioning with foam during EPB tunnelling
EP0354359B1 (de) Spülblock
EP0289720B1 (de) Verfahren zum Auftragen einer Spritzbetonschicht
WO2005065906A1 (de) Verfahren zum verarbeiten von spritzbeton mittels einer spritzmaschine und spritzmaschine
WO2018149899A1 (de) Verfahren zur herstellung eines betonbaustoffes
DE10229041A1 (de) Herstellung homogener Gasgemische
DE3602388C1 (de) Pulverbeschichtungseinrichtung
AT400468B (de) Vorrichtung zum auftragen einer spritzbetonschicht
DE1232052B (de) Verfahren und Vorrichtung zur Erhoehung des Fliessvermoegens von Moertel- oder Betonmassen
DE4010045A1 (de) Verfahren und vorrichtung zur kuehlung einer pulverfoermigen substanz
EP0358858A1 (de) Bitumengranulat und Verfahren zu seiner Herstellung
DE19843092C5 (de) Verfahren zur Herstellung einer Dichtwandmasse
AT410420B (de) Anlage zum fördern und trockenspritzen von baustoffgemischen
DE2610476C3 (de) Vorrichtung zum Einspritzen einer Dichtmasse in eine Stoßfuge o.dgl
EP1140726B2 (de) Aktiviertes tonmineralpulver, trocknungsverfahren zu seiner herstellung und seine verwendung
DE19541310A1 (de) Dosiervorrichtung für pulverförmigen Feststoff
DE1534170C3 (de) Verfahren zur Unschädlichmachung von ausgelaufenem Mineralöl und Strahl werfer zur Durchführung des Verfahrens
DE2843864A1 (de) Austragsduese
DE2146047A1 (de) Verfahren und anordnung zum mischen verschiedener gueter
EP1632461A1 (de) Verfahren zum Herstellen eines beschichteten Grundstoffes für eine hydraulische Zusammensetzung, beschichteter Grundstoff zur Betonherstellung, Zusatzmittel für die Betonherstellung und Verfahren zum Herstellen einer hydraulischen Zusammensetzung
DE4447887C2 (de) Verfahren zur Herstellung einer Werktrockenmischung und deren Verwendung
DE3019492A1 (de) Einrichtung zum beduesen von mischguet in einer mischtrommel
DE19637024A1 (de) Verfahren und Vorrichtung zum Herstellen von Sprengstoff und Befüllen von Spreng- und Bohrlöchern
DE2039135C3 (de) Verfahren zum Herstellen selbsttragender Dämme in untertägigen Grubenräumen u.dgl

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880223

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19910410

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 71573

Country of ref document: AT

Date of ref document: 19920215

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3867693

Country of ref document: DE

Date of ref document: 19920227

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2027714

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930113

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930120

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930121

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930205

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19930210

Year of fee payment: 6

Ref country code: AT

Payment date: 19930210

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930215

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930223

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930228

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940223

Ref country code: AT

Effective date: 19940223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940224

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940228

Ref country code: CH

Effective date: 19940228

Ref country code: BE

Effective date: 19940228

BERE Be: lapsed

Owner name: DEGUSSA A.G.

Effective date: 19940228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940901

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19941031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 88102609.0

Effective date: 19940910

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050223