EP0285879A1 - Breitband-Polarisationsweiche - Google Patents

Breitband-Polarisationsweiche Download PDF

Info

Publication number
EP0285879A1
EP0285879A1 EP88104292A EP88104292A EP0285879A1 EP 0285879 A1 EP0285879 A1 EP 0285879A1 EP 88104292 A EP88104292 A EP 88104292A EP 88104292 A EP88104292 A EP 88104292A EP 0285879 A1 EP0285879 A1 EP 0285879A1
Authority
EP
European Patent Office
Prior art keywords
waveguide
inner conductor
switch according
polarizing switch
rectangular waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88104292A
Other languages
English (en)
French (fr)
Other versions
EP0285879B1 (de
Inventor
Eberhard Dr.-Ing. Schuegraf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT88104292T priority Critical patent/ATE90813T1/de
Publication of EP0285879A1 publication Critical patent/EP0285879A1/de
Application granted granted Critical
Publication of EP0285879B1 publication Critical patent/EP0285879B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer

Definitions

  • the invention relates to a broadband polarization switch for separating orthogonally linearly polarized electromagnetic microwaves with a branching device which divides a waveguide guiding the two orthogonal polarizations into two rectangular waveguide arms which each only carry one of these polarizations.
  • K / a the cross-sectional factor for the respective wave in the rectangular waveguide
  • Z o the field wave resistance of a plane wave in free space
  • ⁇ o the wavelength in free space
  • ⁇ k the respective critical wavelength, which is also called the cut-off wavelength of the wave type under consideration.
  • a broadband adjustment of the wave resistance jump between the lines is - in principle over large bandwidths of one octave and more - impossible.
  • the object of the invention is to provide a possibility with which the disturbing jumps in wave resistance in the case of broadband polarization switches to be used are reduced or completely eliminated.
  • this object is achieved in that measures are provided in the waveguide guiding the two polarizations, by means of which its originally about twice as large a characteristic impedance to the inherently equal characteristic impedances of the two Rectangular waveguide arms are approximated or adjusted in the best case, for which two conditions have to be met, namely on the one hand the approximation of the cross-sectional factors in the wave resistance equations of the waveguides to be matched and on the other hand the approximation of the cut-off frequencies of the wave types to be merged in these waveguides, and that remaining reactances in the Waveguides can be adapted by means of transformation measures requiring only short lengths.
  • the invention is based on the idea that the line wave resistances of the rectangular crossover waveguide arms with their aspect ratio a ⁇ 2 b are fixed, whereas the line wave resistance of the waveguide carrying the two orthogonal polarizations is not fixed and can therefore be freely selected.
  • This opens up the previously unused possibility of lowering the line wave resistance of the waveguide guiding the two orthogonal polarizations by the specified measures and thus at least approximating the line wave resistances of the rectangular waveguide arms.
  • Ideal adaptation conditions prevail if the line wave resistances of the waveguide carrying the two orthogonal polarizations are broadband matched to those of the rectangular waveguide arms.
  • the inner conductor 6 is easier to manufacture than the conductive webs 2, 3, 4 and 5 extending in the longitudinal direction of the waveguide.
  • the inner conductor 6 is in the arranged middle longitudinal axis of the outer conductor 1 and thus runs concentrically.
  • the inner conductor 1 is preferably fixed in the bifurcation zone of the three polarization switch waveguides with the outer conductor contours, i.e. conductive, connected. This specially created attachment can be used universally and can be used for reflection compensation of both polarizations.
  • the simplest form of an inner conductor 6 is the circular cross-sectional shape shown in the right-hand illustration of FIG. 1.
  • a significant expansion of the uniqueness range for the coaxial waveguide is also achieved, for which quantitative information will follow in the further course of the description.
  • the inner conductor 6 can be, for example, cruciform, and combinations with a round or square outer conductor 1 without or with conductive longitudinal webs 2, 3, 4 and 5 are also possible.
  • the inner conductor 6 causes very little additional losses and brings the following additional advantages.
  • the inner conductor 6, which is extended beyond the polarization switch, is suitable for improving the behavior of a consumer connected to the polarization switch, e.g. to improve the bandwidth of the low reflection of a grooved horn and its cross-polarization properties compared to horn feeding through a pure waveguide - i.e. without an inner conductor.
  • the inner conductor 6 can end in the horn neck, in the groove area or outside the horn aperture in a continuous, stepped or abrupt manner.
  • space can be created in a hollow inner conductor 6 for waves of the same or different type with the same or different frequency as those waves already present outside the inner conductor 6.
  • the interior of the inner conductor can in turn be suitably provided with conductive material or with a dielectric.
  • Coupling devices for waves can also be arranged in the interior of the inner conductor 6 and / or near its surface, which are coupled from the space outside the inner conductor to its interior and vice versa.
  • the inner conductor 6 predominantly increases the transverse capacitance in the wave resistance equivalent circuit diagram for H waves.
  • the wave resistance of the H11 wave or the H10 wave - as intended - and the associated cutoff wavelengths increase.
  • the coaxial waveguide with a circular inner and outer conductor 3 shows the quantitative relationship between the characteristic impedance of this coaxial waveguide and its diameter ratio d / D k from inner conductor diameter d to outer conductor diameter D k .
  • the measurements are carried out in such a way that, for coaxial waveguides with specific values of the diameter ratios (d / D K ) n , that rectangular waveguide with its aspect ratio (b / a) n is determined, which results in broadband adaptation at the abrupt transition between the respective coaxial waveguide and the rectangular waveguide.
  • the limit frequencies of the H10 wave in the rectangular waveguide and the H11 wave in the coaxial waveguide are made the same.
  • the diameter D o of the imaginary circular waveguide that determines the has the same H11 cutoff frequency as the coaxial waveguide.
  • the reactance remaining at the cross-sectional jump is broadband compensated by a suitable longitudinal offset of the beginning of the inner conductor relative to the jump point.
  • Such abrupt transitions from the rectangular waveguide to the coaxial waveguide require practically no overall length. They reach bandwidths of poor reflection up to an octave, and over 50% bandwidth their reflection is less than 1%.
  • An important basic component of wave resistance homogeneous polarization switches is thus available.
  • their theoretical uniqueness ranges are then determined in view of the E11 interference wave that occurs first with symmetrical H11 excitation.
  • the E11-following H31 interference wave according to Fig. 6 is also included in the observation.
  • the H31 interference wave is excited despite symmetrical excitation next to the H11 fundamental wave, because according to Fig. 6 e.g. the E-field strengths of the H13 wave at diametrically opposite points on the circumference in the coaxial waveguide always have the same direction as the E-fields of the H11 wave.
  • the range of uniqueness f kH31 / f kH11 is also expanded.
  • a broadband polarization filter of a two-band antenna system for the directional radio frequency ranges 3.58 to 4.2 GHz and 6.425 to 7.125 GHz is explained below with reference to FIG. 7.
  • the inevitable expansion of the unambiguity range succeeds with the introduction of an inner conductor 8, so that according to FIG. 7, for example from the article by E.
  • the E11 interference field of the double branch 9 is sufficiently attenuated; and - since the inner conductor 8 is extended into the vicinity of the first groove of a connected grooved horn - the E11 useful excitation in the groove region is decoupled from the horn waveguide with the aperiodic E11 damping as desired.
  • the shape of the inner conductor 8 has a very decisive influence on the horn reflection and also on the cross-polarization suppression, even with very small changes.
  • the rotationally symmetrical transformer offers many, easily implemented correction options that always have the same effect for both polarizations.
  • the polarization switch shown in the exemplary embodiment according to FIG. 7 has a very large useful bandwidth. Therefore, it is particularly suitable for the fact that on its rectangular waveguide arms 10 and 11 a crossover for two or more directional radio frequency ranges of different frequency positions are connected (directly).
  • the connection between the two rectangular waveguide arms 10 and 11 of the polarization crossover shown in FIG. 7 and the two crossovers can also be established by two long lines, which are designed, for example, as having corresponding transitions, overmoded, bendable rectangular waveguides and by all conceivable measures are suitable to expand their clear transmission frequency range, more than one directional radio range of the same polarization from the location of the crossovers, e.g. at the foot of the antenna tower, low attenuation, reflection and delay distortion to the broadband polarization switch arranged directly on the antenna, i.e. for example on the tower and vice versa.
  • the inner conductor shown in Figure 7 of the already mentioned article by E. Schuegraf in the magazine “NTZ”, Volume 38 (1985), No. 8 is not a round inner conductor in the sense of the invention, with which a wave resistance homogenization is achieved along the two passages of a polarization switch, but around a ⁇ / 4 transformer.
  • the inner conductor shown in FIGS. 2a and 2b of DE-PS 28 42 576 also represents a narrow-band ⁇ / 4 transformer network with additional reactances, specifically for good adaptation in two narrow frequency ranges that are relatively far apart (narrow octave ), specially tailored and cannot be compared with an inner conductor dimensioned according to the invention.
  • new polarization switches can now be dimensioned, each of which has two rectangular waveguide arms, for example, with the following aspect ratios (calculation table):
  • the coaxial waveguide is determined in each case which has the same H11 cutoff frequency and frequency-independent same waveguide resistances as the rectangular waveguide arms in the case of a round outer and inner conductor.
  • the respective d / D K value of the coaxial waveguide follows from Fig.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Filtration Of Liquid (AREA)
  • External Artificial Organs (AREA)
  • Networks Using Active Elements (AREA)
  • Waveguide Aerials (AREA)

Abstract

Es sind Maßnahmen im zwei orthogonale Linearpolarisationen führenden Wellenleiter (7) vorgesehen, z.B. das Einbringen eines Innenleiters (8) und/oder von symmetrisch angeordneten Metallängsstegen, wodurch dessen Leitungswellenwiderstand an die Leitungswellenwiderstände der beiden polarisationsselektiven Rechteckhohlleiterarme (10, 11) angenähert oder im Bedarfsfalle angeglichen wird. Es sind dabei zwei Bedingungen zu erfüllen, nämlich die Angleichung erstens der Querschnittsfaktoren in den Wellenwiderstandsgleichungen der aneinander anzupassenden Wellenleiter und zweitens der Grenzfrequenzen der ineinander überzuführenden Wellentypen. Verbleibende Reaktanzen in den Weichendurchgängen sind dann breitbandig ohne Schwierigkeiten auf kürzestem Raum anpaßbar. Die durch die Erfindung angegebenen Maßnahmen lassen sich bei Breitband-Polarisationsweichen für Satellitenfunk- und Richtfunkantennen anwenden.

Description

  • Die Erfindung bezieht sich auf eine Breitband-Polarisations­weiche zur Trennung orthogonal linear polarisierter elektro­magnetischer Mikrowellen mit einer Verzweigungseinrichtung, die einen die beiden orthogonalen Polarisationen führenden Wellen­leiter in zwei nur noch jeweils eine dieser Polarisationen führende Rechteckhohlleiterarme aufteilt.
  • Praktisch allen bekannten Polarisationsweichen fehlt die Grund­voraussetzung für eine echte Breitbandanpassung, nämlich die Wellenwiderstandshomogenität entlang den beiden Durchgängen einer solchen Weiche; denn zwischen jedem der beiden polari­sationsselektiven Weichenanschlüsse, die stets als Rechteck­hohlleiter mit dem Seitenverhältnis a ≈ 2b ausgebildet sind, und dem Hohlleiter kreisrunden oder quadratischen Querschnitts (a = b) besteht bei allen bekannten Polarisationsweichen nach der Wellenwiderstandsgleichung
    Figure imgb0001
    ein Wellenwiderstandssprung Zrund bzw. ZQuadrat / ZRechteck≈2. In der vorstehenden Gleichung ist Z der Leitungswellenwider­stand, b . K / a der Querschnittsfaktor für die jeweilige Welle im Rechteckhohlleiter, Zo der Feldwellenwiderstand einer ebenen Welle im freien Raum, λo die Wellenlänge im freien Raum und λk die jeweilige kritische Wellenlänge, die auch Grenzwellen­länge des betrachteten Wellentyps genannt wird. Eine breitban­dige Anpassung des Wellenwiderstandssprungs zwischen den Lei­tungen ist -jedenfalls über große Bandbreiten von einer Oktave und mehr - prinzipiell unmöglich.
  • Es ist versucht worden, mit stetigen Übergängen, mit Umlenk- ­und Kurzschlußblechen unterschiedlichsten Zuschnitts beider Stirnflächen, mit Blenden, Schraubenansammlungen und ähnlichem den diagnostizierten Wellenwiderstandssprung wenigstens schmal­bandig (bis ca. 20 %) reflektionsarm zu machen.
  • Aufgabe der Erfindung ist es, eine Möglichkeit anzugeben, mit welcher die störenden Wellenwiderstandssprünge bei breitbandig zu verwendenden Polarisationsweichen reduziert oder ganz eli­miniert werden.
  • Gemäß der Erfindung, die sich auf Breitband-Polarisationswei­chen der eingangs genannten Art bezieht, wird diese Aufgabe dadurch gelöst, daß Maßnahmen im die beiden Polarisationen führenden Wellenleiter vorgesehen sind, durch welche dessen ursprünglich etwa doppelt so großer Leitungswellenwiderstand an die in sich gleichen Leitungswellenwiderstände der beiden Rechteckhohlleiterarme angenähert oder im Bestfalle angeglichen wird, wozu zwei Bedingungen zu erfüllen sind, nämlich zum einen die Angleichung der Querschnittsfaktoren in den Wellenwider­standsgleichungen der aneinander anzupassenden Wellenleiter und zum anderen die Angleichung der Grenzfrequenzen der ineinander überzuführenden Wellentypen in diesen Wellenleitern, und daß verbleibende Reaktanzen in den Wellenleitern durch nur kurze Baulängen erfordernde Transformationsmaßnahmen angepaßt werden. Die Erfindung geht von dem Gedanken aus, daß die Leitungswel­lenwiderstände der rechteckigen Polarisationsweichen-Hohllei­terarme mit ihrem Seitenverhältnis a ≈ 2 b fest vorgegeben sind, wogegen der Leitungswellenwiderstand des die beiden Orthogonalpolarisationen führenden Wellenleiters nicht festge­legt und daher frei wählbar ist. Dies eröffnet die bislang ungenutzte Möglichkeit, den Leitungswellenwiderstand des die beiden orthogonalen Polarisationen führenden Wellenleiters durch die angegebenen Maßnahmen abzusenken und damit an die Leitungswellenwiderstände der Rechteckhohlleiterarme zumindest anzunähern. Ideale Anpassungsbedingungen herrschen, wenn die Leitungswellenwiderstände des die beiden orthogonalen Polari­sationen führenden Wellenleiters an diejenigen der Rechteck­hohlleiterarme breitbandig angeglichen sind. Durch die Erfül­lung der angegebenen beiden Bedingungen, nämlich zum einen der Angleichung der Querschnittsfaktoren in den Wellenwiderstands­gleichungen der aneinander anzupassenden Wellenleiter, z.B. nach der vorstehend angegebenen Wellenwiderstandsgleichung der Faktor b . K / a für die H₁₀-Welle im Rechteckhohlleiter, und der Angleichung der Grenzfrequenzen der ineinander überzufüh­renden Wellentypen, wird eine Angleichung der Wellenwiderstände über sehr große Bandbreiten erreicht. Beide Durchgänge solcher wellenwiderstandshomogenisierter Polarisationsweichen enthalten dann keinerlei Wellenwiderstandssprünge mehr, sondern nur noch Reaktanzen, die bekanntlich - im Gegensatz zu Wellenwider­standssprüngen - sehr breitbandig anpaßbar sind. Dieses Prinzip der Wellenwiderstandshomogenisierung ist auf praktisch alle be­kannten Polarisationsweichen anwendbar. Das Ergebnis ist stets eine gegenüber bisher wesentlich vergrößerte Bandbreite der Reflexionsarmut.
  • In den Unteransprüchen sind vorteilhafte und zweckmäßige Aus­führungsmöglichkeiten der Erfindung zur Erreichung einer Wel­lenwiderstandshomogenität entlang den beiden Durchgängen einer Breitband-Polarisationsweiche angegeben.
  • Die Erfindung und Ausführungsbeispiele davon werden im folgen­den anhand von sieben Figuren erläutert. Es zeigen
    • Fig. 1 zwei wellenwiderstandssenkende Maßnahmen im die beiden Orthogonalpolarisationen führenden Wellenleiter,
    • Fig. 2 eine Anzahl von Querschnittsmöglichkeiten bei einem die beiden Orthogonalpolarisationen führenden Wellen­leiter jeweils mit einem Innenleiter mit reduziertem Wellenwiderstand und erweiterten Frequenz-Eindeutig­keitsbereichen,
    • Fig.3 einen meßtechnisch gewonnenen, quantitativen Zusammen­hang zwischen dem Wellenwiderstand eines Koaxialwellen­leiters mit rundem Innenleiter und seinem Durchmesser­verhältnis von Innen- zu Außenleiterdurchmesser,
    • Fig. 4 ein Diagramm, bei dem für das Durchmesserverhältnis eines jeweils betrachteten Koaxialwellenleiters der Durchmesser desjenigen gedachten Rundhohlleiters er­ mittelt wird, der die gleiche H₁₁-Grenzfrequenz hat wie der Koaxialwellenleiter,
    • Fig. 5 ein Diagramm, in dem Frequenz-Eindeutigkeitsbereiche in Koaxialwellenleitern abhängig von ihrem Durchmesserver­hältnis dargestellt sind,
    • Fig. 6 in einer Querschnittsdarstellung eines Koaxialwellenlei­ters das E-Feld der H₃₁-Störwelle,
    • Fig. 7 in einer Schrägansicht die Struktur einer Zweiband-­Polarisationsweiche mit einem Innenleiter zur Reduzie­rung der Wellenwiderstandssprünge.
  • Zur angestrebten Wellenwiderstandssenkung in einem einen Außen­leiter 1 runden oder quadratischen Querschnitts aufweisenden, beide Orthogonalpolarisationen führenden Wellenleiter eignet sich nach der linken Darstellung entweder eine symmetrische Anordnung von wenigstens vier Metallstegen 2, 3, 4 und 5 an der Innenfläche der Wand des Außenleiters 1 oder/und, wie in der rechten Darstellung von Fig. 1 gezeigt ist, ein konzentrisch angeordneter Innenleiter 6. Der Innenleiter 6 ist in der Praxis leichter herzustellen als die sich in Hohlleiterlängsrichtung erstreckenden leitenden Stege 2, 3, 4 und 5. Der Innenleiter 6 ist in der mittleren Längsachse des Außenleiters 1 angeordnet und verläuft somit konzentrisch. Der Innenleiter 1 wird vor­zugsweise in der Gabelungszone der drei Polarisationsweichen­hohlleiter mit den Außenleiterkonturen fest, d.h. leitend, ver­bunden. Diese eigens dafür geschaffene Befestigung ist univer­sell einsetzbar und läßt sich zur Reflexionskompensation beider Polarisationen ausnützen.
  • Die einfachste Form eines Innenleiters 6 ist die in der rechten Darstellung von Fig. 1 gezeigte kreisrunde Querschnittsform. Damit wird neben der angestrebten Wellenwiderstandssenkung zu­sätzlich eine wesentliche Ausweitung des Eindeutigkeitsberei­ches beim Koaxialwellenleiter erreicht, wozu im weiteren Ver­lauf der Beschreibung noch quantitative Angaben folgen.
  • Für noch breitere Eindeutigkeitsbereiche fkE11 / fkH11, f kH31 / fkH11 und fkE21 / fkH10 sind günstigere Querschnittsformen des Innenleiters 6 möglich, die in Fig. 2 im einzelnen dargestellt sind. Danach läßt sich der Innenleiter 6 z.B. kreuzförmig ausbilden, und auch Kombinationen mit einem runden oder qua­dratischen Außenleiter 1 ohne oder mit leitenden Längsstegen 2, 3, 4 und 5 sind möglich.
  • Nach dem Aufsatz W. Baier: "Wellentypen in Leitungen recht­eckigen Querschnitts" aus der Zeitschrift "AEÜ", Band 22 (68), Heft 4, Seiten 184 ff. bewirkt der Innenleiter 6 sehr geringe Zusatzverluste und bringt folgende weitere Vorteile. Der über die Polarisationsweiche hinaus verlängerte Innenleiter 6 eignet sich dazu, das Verhalten eines an die Polarisationsweiche ange­schlossenen Verbrauchers zu verbessern, so z.B. die Bandbreite der Reflexionsarmut eines Rillenhorns und seine Kreuzpolarisa­tionseigenschaften gegenüber der Hornspeisung durch einen rei­nen Hohlleiter - also ohne Innenleiter - zu verbessern. Dabei kann der Innenleiter 6 im Hornhals, im Rillenbereich oder aus­serhalb der Hornapertur stetig, gestuft oder sprunghaft enden. Ferner kann in einem hohl gestalteten Innenleiter 6 Raum ge­schaffen werden für Wellen gleicher oder anderer Art mit glei­cher oder anderer Frequenz wie diejenigen außerhalb des Innen­leiters 6 bereits vorhandenen Wellen. Dazu kann der Innenraum des Innenleiters seinerseits in geeigneter Weise mit leitendem Material oder mit einem Dielektrikum versehen werden. Im Innen­raum des Innenleiters 6 und/oder nahe seiner Oberfläche können ferner Koppeleinrichtungen für Wellen angeordnet werden, die aus dem Raum außerhalb des Innenleiters in sein Inneres und umgekehrt gekoppelt werden.
  • Der Innenleiter 6 erhöht unabhängig von seiner jeweiligen Quer­schnittsform und derjenigen des zugehörigen Außenleiters 1 überwiegend die Querkapazität im Wellenwiderstandsersatzschalt­bild für H-Wellen. Somit sinkt der Wellenwiderstand der H₁₁-­Welle bzw. der H₁₀-Welle - wie beabsichtigt - und die zugehöri­gen Grenzwellenlängen steigen an.
  • Für den einfachen, praktisch interessanten Fall des koaxialen Wellenleiters mit einem kreisrunden Innen- und Außenleiter zeigt Fig. 3 den meßtechnisch gewonnenen, quantitativen Zusam­menhang zwischen dem Wellenwiderstand dieses Koaxialwellenlei­ters und seinem Durchmesserverhältnis d/Dk von Innenleiter­durchmesser d zu Außenleiterdurchmesser Dk. Die Messungen sind so ausgeführt, daß für Koaxialwellenleiter mit bestimmten Werten der Durchmesserverhältnisse (d/DK)n jeweils derjenige Rechteckhohlleiter mit seinem Seitenverhältnis (b/a)n ermittelt ist, der am sprunghaften Übergang zwischen dem jeweiligen Koaxialwellenleiter und dem Rechteckhohlleiter Breitband­anpassung ergibt. Hierbei sind zuvor die Grenzfrequenzen der H₁₀-Welle im Rechteckhohlleiter und der H₁₁-Welle im Koaxial­wellenleiter gleich gemacht. Dazu wird für das Durchmesserver­hältnis d/Dk des jeweils betrachteten Koaxialwellenleiters aus der Fig. 4 nach Meinke, Gundlach: "Taschenbuch der Hochfre­quenztechnik", 2. Auflage, Springer-Verlag, Seite 309 der Durchmesser Do desjenigen gedachten Rundhohlleiters ermittelt, der die gleiche H₁₁-Grenzfrequenz hat wie der Koaxialwellen­leiter. Mithin ergibt sich die Grenzwellenlänge des Koaxial­wellenleiters als λkH11 = 1,706 Do und daraus dann die gesuchte Breitseite a des Rechteckhohlleiters mit der ange­glichenen H₁₀-Grenzwellenlänge 2a = 1,706 Do.
  • Außerdem ist bei diesen Messungen die am Querschnittssprung verbleibende Reaktanz durch einen passenden Längsversatz des Innenleiteranfangs gegenüber der Sprungstelle breitbandig kompensiert. Solche sprunghaften Übergänge vom Rechteckwellen­leiter auf den Koaxialwellenleiter beanspruchen praktisch keine Baulänge. Sie erreichen Bandbreiten der Reflexionsarmut bis zu einer Oktave, und über 50 % Bandbreite ist ihre Reflexion klei­ner als 1 %. Damit ist eine wichtige Grundkomponente wellenwi­derstandshomogener Polarisationsweichen verfügbar.
  • Anhand der quantitativen Zusammenhänge der Durchmesserverhält­nisse d/Dk von Koaxialwellenleitern mit ihren Wellenwiderstän­den, dargestellt in Fig. 3, und ihren H₁₁-Grenzfrequenzen, dargestellt in Fig. 4, lassen sich zunächst für die zumeist gegebenen Rechteckhohlleiter mit a = 2b die hinsichtlich des Wellenwiderstands und der H₁₁-Grenzfrequenz dazu passenden Koaxialwellenleiter ermitteln. In diesem Zusammenhang wird auf die linke Spalte der am Schluß der Beschreibung angefügten Berechnungstabelle hingewiesen. Darüber hinaus ergeben sich ganz neue Konzeptperspektiven für die Realisierung von Polari­sationsweichen mit extrem großen Bandbreiten aufgrund der Ein­führung von niedrigeren Rechteckhohlleitern mit b < a/2 und den daran angepaßten Koaxialwellenleitern mit relativ dicken Innenleitern. Hierzu werden in der am Schluß der Beschreibung angegebenen Berechnungstabelle die Beispiele a = 3b und a = 4b ausgewertet. Zur Beurteilung der zugehörigen Koaxialwellenlei­ter werden sodann ihre theoretischen Eindeutigkeitsbereiche im Blick auf die bei symmetrischer H₁₁-Anregung zuerst auftretende E₁₁-Störwelle ermittelt. Quantitativ kennzeichnend hierfür sind die Grenzfrequenzverhältnisse fkE11 / fkH11 abhängig vom Durchmesserverhältnis d/Dk der Koaxialwellenleiter nach Fig. 5 aus Meinke, Gundlach: "Taschenbuch der Hochfrequenztechnik", Springer-Verlag, 2. Auflage, Seite 309. Es ergeben sich für niedriger gewählte Rechteckhohlleiter mit b < a/2 und die daran angepaßten Koaxialwellenleiter mit relaiv dicken Innenleitern Einideutigkeitsbereiche fkE11 / fkH11, die mit zunehmendem Durchmesserverhältnis d/Dk äüßerst rasch breiter werden und deren Breite für d/Dk → 1 gegen ∞ gehen.
  • Sodann wird auch die auf die E₁₁-folgende H₃₁-Störwelle nach Fig. 6 in die Betachtung einbezogen. Die H₃₁-Störwelle wird trotz symmetrischer Anregung neben der H₁₁-Grundwelle angeregt, weil nach Fig. 6 z.B. die E-Feldstärken der H₁₃-Welle an dia­metral gegenüberliegenden Stellen des Umfangs im Koaxialwellen­leiter stets die gleiche Richtung haben wie die E-Felder der H₁₁-Welle.
  • Mit der Einführung des Innenleiters wird neben der breitbandi­gen Angleichung der Wellenwiderstände auch die Erweiterung des Eindeutigkeitsbereiches fkH31 / fkH11 erreicht. Nach Fig. 5 hat der an den Rechteckhohlleiter mit a = 2b angepaßte Koaxialwel­lenleiter mit d/DK = 0,37 einen nutzbaren Eindeutigkeitsbereich fkH31 / fkH11 = 2,73 (gegenüber dem nutzbaren Eindeutigkeitsbe­reich fkE11 / fkH11 = 2,08 beim Rundhohlleiter ohne Innenlei­ ter). Wegen der notwendigen Abstände der Betriebsfrequenzen von den Grenzfrequenzen entspricht fkH31 / fkH11 = 2,73 einer nutz­baren Bandbreite von fh / fn = 2,5 maximal. Nach Fig. 5 er­reicht der Koaxialwellenleiter bei d/DK = 0,77 ein Maximum der Breite des Eindeutigkeitsbereiches bei fkH31 / fkH11 = 3,09 entsprechend einer nutzbaren Bandbreite von maximal fh / fn = 2,8.
  • Diese Zahlenwerte gelten für Koaxialwellenleiter mit runden In­nen- und Außenleitern. Noch größere Nutzbandbreiten sind mit Koaxialwellenleitern zu erwarten, deren Querschnittsvarianten in Fig. 2 skizziert sind. Die Gestaltung dieser Querschnitte zielt auf eine möglichst starke kapazitive Belastung der H₁₁-­Welle - also auf eine niedrige H₁₁-Grenzfrequenz - bei zugleich möglichst geringer kapazitiver Belastung der H₃₁-Welle und einer folglich hohen H₃₁-Grenzfrequenz. Mit diesen Methoden erscheint es möglich, z.B. die praktisch interessierende Kombi­nation der beiden Richtfunkbereiche von 3,4 bis 4,2 GHz und von 10,7 bis 11,7 GHz mit einer einzigen Polarisationsweiche zu beherrschen.
  • Als praktischer Anwendungsfall der Erfindung wird im folgenden anhand der Fig. 7 eine Breitband-Polarisationsweiche eines Zweiband-Antennensystems für die Richtfunkfrequenzbereiche 3,58 bis 4,2 GHz und 6,425 bis 7,125 GHz erläutert. Für diesen Frequenzquotienten fh / fn = 1,99 ist der Rundhohlleiter 7 wegen seiner "Mehrwelligkeit" über Frequenzbereiche, die einschließlich der notwendigen Grenzfrequenzabstände fkE11 / fkH11 = 2,08 erreichen, sowohl als Polarisationsweichenhohl­leiter wie auch als Hornhohlleiter untauglich. Die unumgäng­liche Erweiterung des Eindeutigkeitsbereiches gelingt mit der Einführung eines Innenleiters 8, so daß nach Fig. 7 an die z.B. aus dem Aufsatz von E. Schuegraf "Neuartige Mikrowellenweichen für Zweibandantennen" aus "NTZ", Band 38 (1985), Heft 8, Seiten 554 bis 560 bekannte Doppelverzweigung 9, die der E₁₁- und H₂₁-störwellenfreien Anregung beider Polarisationen dient, ein Koaxialwellenleiter, bestehend aus dem Innenleiter 8 und dem Außenleiter 7, angeschlossen ist. Sein Eindeutigkeitsbereich kann schon mit einem relativ dünnen Innenleiter 8 von d = 7,3 mm im Außenleiter 7 mit DK = 52,2 mm auf fkE11 / (11 % unter fn = 3,58 GHz) und fkE11 = 7,3 GHz, d.h. 2,5 % über fh = 7,125 GHz, bei der sich demnach eine ausreichende Stör­felddämpfung für die E₁₁-Welle ergibt. Somit wird einerseits das E₁₁-Störfeld der Doppelverzweigung 9 genügend gedämpft; und - da der Innenleiter 8 bis in die Nähe der ersten Rille eines angeschlossenen Rillenhorns verlängert ist - ist die E₁₁-Nutz­anregung im Rillenbereich vom Hornhohlleiter mit der aperiodi­schen E₁₁-Dämpfung erwünschtermaßen entkoppelt. Im übrigen hat die Gestalt des Innenleiters 8 auch bei sehr kleinen Änderungen einen ganz entscheidenden Einfluß auf die Hornreflexion und ebenso auf die Kreuzpolarisationsunterdrückung.
  • Die Rechteckhohlleiterzugänge 10 und 11 der in Fig. 7 darge­stellten Polarisationsweiche sind mit a = 2 b = 46 mm ausge­führt. Beide Hohlleitergabeln 12, 12ʹ und 13, 13ʹ und die Doppelverzweigung 9 sind wellenwiderstandshomogen, und der dazu passende Koaxialwellenleiter hat nach Fig. 3 und 4 DK = 43 mm und d = 16 mm. Diese Dimensionierung stellt den Prototyp der erfindungsgemäßen wellenwiderstandshomogenen Polarisationswei­che dar.
  • Bei der Anordnung in Fig. 7 ist der verbleibende Wellenwider­standssprung zwischen dem zuvor ermittelten Koaxialwellenleiter (d = 16 mm, DK = 43 mm) und dem zum Horn weiterführenden mit DK = 52,2 mm und d = 7,3 mm vorteilhafterweise auf 1,6 redu­ziert und wird durch λ H / 4-Transformationsstufen re­flexionsarm überbrückt. Der rotationssymmetrisch ausgeführte Transformator bietet viele, einfach ausführbare Korrekturmögli­chkeiten, die stets für beide Polarisationen gleiche Wirkung haben.
  • Die im Ausführungsbeispiel nach Fig. 7 dargestellte Polari­sationsweiche hat eine sehr große Nutzbandbreite. Daher ist sie besonders dazu geeignet, daß an ihre Rechteckhohlleiterarme 10 und 11 je eine Frequenzweiche für zwei oder mehr Richtfunk­ frequenzbereiche unterschiedlicher Frequenzlage angeschlossen wird (direkt). Außerdem kann die Verbindung zwischen den beiden Rechteckhohleiterarmen 10 und 11 der in Fig. 7 dargestellten Polarisationsweiche und den beiden Frequenzweichen auch durch zwei lange Leitungen hergestellt werden, die z.B. als mit ent­sprechenden Übergängen versehene, übermodierte, biegbare Recht­eckhohlleiter ausgebildet sind und die durch alle erdenklichen Maßnahmen zur Erweiterung ihres eindeutigen Übertragungsfre­quenzbereiches dazu geeignet sind, jeweils mehr als einen Richtfunkbereich gleicher Polarisation vom Ort der Frequenz­weichen, z.B. am Fuße des Antennenturms, dämpfungs-, refle­xions- und laufzeitverzerrungsarm zur unmittelbar an der An­tenne, d.h. also beispielsweise auf dem Turm angeordneten Breitband-Polarisationsweiche und umgekehrt zu übertragen.
  • Es wird noch darauf hingewiesen, daß es sich bei dem in Bild 7 des bereits erwähnten Aufsatzes von E. Schuegraf in der Zeit­schrift "NTZ", Band 38 (1985), Heft 8 dargestellten Innenlei­ter nicht um einen runden Innenleiter im Sinne der Erfindung handelt, mit dem eine Wellenwiderstandshomogenisierung entlang der beiden Durchgänge einer Polarisationsweiche erreicht wird, sondern um einen λ/4-Transformator. Auch der in den Figuren 2a und 2b der DE-PS 28 42 576 dargestellte Innenleiter stellt ein schmalbandiges λ/4-Trafo-Netzwerk mit Zusatzreaktanzen dar, das speziell auf eine gute Anpassung in zwei schmalen Frequenzbereichen, die relativ weit auseinander liegen (knappe Oktave), speziell zugeschnitten und mit einem gemäß der Erfin­dung bemessenen Innenleiter nicht vergleichbar ist.
  • Nach den erfindungsgemäßen Grundsätzen können nun neue Polari­sationsweichen dimensioniert werden, deren je zwei Rechteck­hohlleiterarme beispielsweise mit folgenden Seitenverhältnissen ausgestattet werden (Berechnungstabelle):
    Figure imgb0002
  • Dazu wird jeweils derjenige Koaxialwellenleiter ermittelt, der bei rundem Außen- und Innenleiter die gleiche H₁₁-Grenzfrequenz und frequenzunabhängig gleiche Welllenwiderstände aufweist wie die Rechteckhohlleiterarme. Aus dem b/a-Wert des Rechteckhohl­leiterarms folgt nach Fig. 3 das Durchmesserverhältnis des wellenwiderstandsgleichen Koaxialwellenleiters zu
    d/DK = 0,37 | 0,51 | 0,6
    Für den jeweiligen d/DK-Wert des Koaxialwellenleiters folgt aus Fig. 4 das Durchmesserverhältnis (DK / Do) mit Do als Durch­messer desjenigen Rundhohlleiters, der die gleiche H₁₁-Grenz­frequenz hat wie der jeweilige Koaxialwellenleiter
    DK / Do = 0,80 | 0,71 | 0,67
    Figure imgb0003
    DK = 0.983a | 0,83a | 0,803a
    Für den jeweiligen Koaxialwellenleiter mit d / DK ergibt sich nach Fig. 5 aus Meinke, Gundlach "Taschenbuch der Hochfrequenz­technik", 2. Auflage, Seite 309 der Eindeutigkeitsbereich fkE11 / fkH11 bzw. fkH31 / fkH11:
    Figure imgb0004
    Als konkretes Beispiel werden für den 4-GHz-Rechteckhohlleiter mit a = 58,17 mm und den obigen Seitenverhältnissen folgende vollständige Dimensionierungen angegeben.
    Figure imgb0005

Claims (17)

1. Breitband-Polarisationsweiche zur Trennung orthogonal linear polarisierter elektromagnetischer Mikrowellen mit einer Ver­zweigungseinrichtung, die einen die beiden orthogonalen Pola­risationen führenden Wellenleiter in zwei nur noch jeweils eine dieser Polarisationen führende Rechteckhohlleiterarme aufteilt,
dadurch gekennzeichnet, daß Maßnahmen im die beiden Polarisationen führenden Wellenleiter (7) vorgesehen sind, durch welche dessen ursprünglich etwa doppelt so großer Leitungswellenwiderstand an die in sich gleichen Leitungswellenwiderstände der beiden Rechteckhohl­leiterarme (10, 11) angenähert oder im Bestfalle angeglichen wird, wozu zwei Bedingungen zu erfüllen sind, nämlich zum einen die Angleichung der Querschnittsfaktoren in den Wellenwider­standsgleichungen der aneinander anzupassenden Wellenleiter und zum anderen die Angleichung der Grenzfrequenzen der ineinander überzuführenden Wellentypen in diesen Wellenleitern, und daß verbleibende Reaktanzen in den Wellenleitern durch nur kurze Baulängen erfordernde Transformationsmaßnahmen angepaßt werden.
2. Polarisationsweiche nach Anspruch 1,
dadurch gekennzeichnet, daß bei räumlich symmetrischer Anregung beider Linearpolarisa­tionen mit je einer elektrisch symmetrischen Rechteckhohllei­tergabel (12, 12ʹ, 13, 13ʹ) die Gabelteilarme mit der Hälfte der Höhe b der äußeren Zugänge zu den Rechteckhohlleiterarmen und mit unveränderter Breitseite a in den die beiden Orthogo­nalpolarisationen führenden Wellenleiter (7) münden.
3. Polarisationsweiche nach Anspruch 1,
dadurch gekennzeichnet, daß an der Innenfläche der kreisrund oder quadratisch ausgebildeten Außenwand (1) des Wellenleiters in Wellenleiterlängsrichtung wenigstens vier Metallstege (2, 3, 4, 5) symmetrisch ange­ordnet sind.
4. Polarisationsweiche nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß im Innenraum des Wellenleiteraußenleiters (1) kreisrunden oder quadratischen Querschnitts ein konzentrisch, d.h. in der mitt­leren Längsachse angeordneter Innenleiter (6) vorgesehen ist, der querschnittsmäßig so dimensioniert und möglicherweise abgestuft ist, daß die vorgegebenen Bedingungen zur homogenen Wellenwiderstandsnäherung oder -homogenisierung erfüllt sind.
5. Polarisationsweiche nach Anspruch 4,
dadurch gekennzeichnet, daß die Zugänge zu den beiden Rechteckhohlleiterarmen (10, 11) mit gegenüber der Normalhöhe b = a/2 wesentlich reduzierter Höhe ausgeführt sind und daß der Leitungswellenwiderstand des die beiden Orthogonalpolarisationen führenden Wellenleiters (7) an den Leitungswellenwiderstand dieser in der Hohlleiterhöhe reduzierten Rechteckhohlleiterarmzugänge durch verstärkte kapazitive Belastung mittels dickerem Innenleiter (8) im die beiden Orthogonalpolarisationen führenden Wellenleiter und/oder mit Metallängsstegen innen an dessen Außenwand angeglichen ist.
6. Polarisationsweiche nach den Ansprüchen 4 oder 5,
dadurch gekennzeichnet, daß der Innenleiter (8) in der Gabelungszone der drei Polarisa­tionsweichenwellenleiter, z.B. bei einer Doppelverzweigung (9), befestigt und dort mit den Wellenleiterkonturen fest, d.h. leitend verbunden ist.
7. Polarisationsweiche nach einem der Ansprüche 4 bis 6,
dadurch gekennzeichnet, daß der Innenleiter (8) einen kreisrunden Querschnitt aufweist.
8. Polarisationsweiche nach einem der Ansprüche 4 bis 6,
dadurch gekennzeichnet, daß der Innenleiter (6) einen kreuzförmigen Querschnitt aufweist.
9. Polarisationsweiche nach einem der Ansprüche 4 bis 6,
dadurch gekennzeichnet, daß der Innenleiter (6) einen Vierkantquerschnitt aufweist.
10. Polarisationsweiche nach einem der Ansprüche 4 bis 6,
dadurch gekennzeichnet, daß der Innenleiter (6) einen kreisrunden Querschnitt mit symmetrisch angeordneten Längsstegen aufweist.
11. Polarisationsweiche nach einem der Ansprüche 4 bis 10,
dadurch gekennzeichnet, daß der Innenleiter (8) im Außenleiter (7) kreisrunden oder quadratischen Querschnitts über den eigentlichen Polari­sationsweichenbereich in Richtung zum angeschlossenen Verbraucher hin verlängert ist.
12. Polarisationsweiche nach Anspruch 11,
dadurch gekennzeichnet, daß der Innenleiter im Verbraucher, z.B. einem Hornstrahler, insbesondere einem Rillenhornstrahler, im Hornstrahlerhals, im Rillenbereich oder außerhalb der Hornstrahlerapertur stetig, gestuft oder sprunghaft endet.
13. Polarisationsweiche nach einem der Ansprüche 4 bis 12,
dadurch gekennzeichnet, daß der Innenleiter hohl ausgebildet ist, so daß darin Wellen gleicher oder anderer Art mit gleicher oder unterschiedlicher Frequenz wie diejenigen außerhalb des Innenleiters bereits vorhandenen Wellen geführt werden können.
14. Polarisationsweiche nach Anspruch 13,
dadurch gekennzeichnet, daß der hohle Innenraum des Innenleiters seinerseits in geeigneter Weise mit leitendem und/oder dielektrischem Material versehen ist.
15. Polarisationsweiche nach Anspruch 12 oder 14,
dadurch gekennzeichnet, daß im hohlen Innenraum des Innenleiters und/oder nahe an seiner Oberfläche Koppeleinrichtungen für Wellen angeordnet sind, die aus dem Raum außerhalb des Innenleiters in sein Inneres und umgekehrt gekoppelt werden.
16. Polarisationsweiche nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß an beide polarisationsselektiven Rechteckhohlleiterarme (10, 11) je eine Frequenzweiche direkt angeschlossen ist.
17. Polarisationsweiche nach einem der Ansprüche 1 bis 15,
dadurch gekennzeichnet, daß an beide polarisationsselektiven Rechteckhohlleiterarme (10, 11) je eine Frequenzweiche über jeweils eine lange Leitung angeschlossen ist, die als mit entsprechenden Übergängen versehene, übermodierte Rechteckhohlleitung ausgebildet ist.
EP88104292A 1987-03-24 1988-03-17 Breitband-Polarisationsweiche Expired - Lifetime EP0285879B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88104292T ATE90813T1 (de) 1987-03-24 1988-03-17 Breitband-polarisationsweiche.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3709558 1987-03-24
DE3709558 1987-03-24

Publications (2)

Publication Number Publication Date
EP0285879A1 true EP0285879A1 (de) 1988-10-12
EP0285879B1 EP0285879B1 (de) 1993-06-16

Family

ID=6323816

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88104292A Expired - Lifetime EP0285879B1 (de) 1987-03-24 1988-03-17 Breitband-Polarisationsweiche

Country Status (4)

Country Link
EP (1) EP0285879B1 (de)
AT (1) ATE90813T1 (de)
AU (1) AU614279B2 (de)
DE (1) DE3881741D1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5109232A (en) * 1990-02-20 1992-04-28 Andrew Corporation Dual frequency antenna feed with apertured channel
EP0518218A1 (de) * 1991-06-11 1992-12-16 Siemens Aktiengesellschaft Mikrowellen-Kopplerpolarisator
FR2907601A1 (fr) * 2006-10-24 2008-04-25 Satimo Sa Coupleur a bande de fonctionnement ultra large de jonction a mode orthogonal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3871586D1 (de) * 1987-03-24 1992-07-09 Siemens Ag Breitbandige polarisationsweiche.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3150333A (en) * 1960-02-01 1964-09-22 Airtron Division Of Litton Pre Coupling orthogonal polarizations in a common square waveguide with modes in individual waveguides
DE2521956A1 (de) * 1975-05-16 1976-11-18 Siemens Ag Polarisationsweiche
GB2175145A (en) * 1979-07-24 1986-11-19 Thomson Csf Wide-band polarization diplexer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE58033T1 (de) * 1985-03-27 1990-11-15 Siemens Ag Polaristationsweiche fuer einrichtungen der hoechstfreqenztechnik.
DE3871586D1 (de) * 1987-03-24 1992-07-09 Siemens Ag Breitbandige polarisationsweiche.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3150333A (en) * 1960-02-01 1964-09-22 Airtron Division Of Litton Pre Coupling orthogonal polarizations in a common square waveguide with modes in individual waveguides
DE2521956A1 (de) * 1975-05-16 1976-11-18 Siemens Ag Polarisationsweiche
GB2175145A (en) * 1979-07-24 1986-11-19 Thomson Csf Wide-band polarization diplexer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, Band MTT-33, Nr. 2, February 1985, Seiten 143-145, IEEE, New York, US; R. TERAKADO: "Exact wave resistance of coaxial regular polygonal conductors" *
NACHRICHTENTECHNISCHE ZEITSCHRIFT, N.T.Z., Band 38, Nr. 8, August 1985, Seiten 554-560, Berlin, DE; E. SCHUEGRAF: "Neuartige Mikrowellenweichen für Zweibandantennen" *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5109232A (en) * 1990-02-20 1992-04-28 Andrew Corporation Dual frequency antenna feed with apertured channel
EP0518218A1 (de) * 1991-06-11 1992-12-16 Siemens Aktiengesellschaft Mikrowellen-Kopplerpolarisator
FR2907601A1 (fr) * 2006-10-24 2008-04-25 Satimo Sa Coupleur a bande de fonctionnement ultra large de jonction a mode orthogonal
WO2008049776A1 (fr) 2006-10-24 2008-05-02 Ste D'applications Technologiques De L'imagerie Micro-Onde Coupleur à bande de fonctionnement ultra large de jonction à mode orthogonal
US8125295B2 (en) 2006-10-24 2012-02-28 Ste D'applications Technologiques De L'imagerie Micro-Onde Orthogonal-mode coupler of the coaxial type having a branched central conductor

Also Published As

Publication number Publication date
ATE90813T1 (de) 1993-07-15
DE3881741D1 (de) 1993-07-22
AU614279B2 (en) 1991-08-29
AU1339988A (en) 1988-09-22
EP0285879B1 (de) 1993-06-16

Similar Documents

Publication Publication Date Title
DE69008116T2 (de) Ebene Antenne.
EP2830156B1 (de) Hohlleiter-Strahler, Gruppenantennen-Strahler und Synthetik-Apertur-Radar-Strahler
DE3013903A1 (de) Antenne fuer zwei frequenzbaender
DE2443166A1 (de) Systemweiche zur trennung zweier signale, die aus je zwei doppelt polarisierten frequenzbaendern bestehen
DE837404C (de) Verbindungsstueck zum Verbinden eines Erdsymmetrischen Stromkreises mit einem erdunsymmetrischen
DE102006057144B4 (de) Hohlleiter-Strahler
DE2136759C2 (de) Antenne mit metallischem Rahmen und den Rahmen erregendem Unipol
DE68917548T2 (de) Koaxialer Wellenleiterphasenschieber.
EP0196065B1 (de) Polaristationsweiche für Einrichtungen der Höchstfreqenztechnik
EP0154692A1 (de) Zweiband-Polarisationsweiche
DE3111106C2 (de)
DE2746376C2 (de) Koppelvorrichtung zwischen einer Koaxialleitung und einem Hohlleiter
EP0285879B1 (de) Breitband-Polarisationsweiche
DE2521956C3 (de) Polarisationsweiche
DE2703878A1 (de) Polarisationsweiche
DE2719283C2 (de) Antennenspeisesystem für Doppelpolarisation
DE2842576A1 (de) Polarisationsweiche
EP0284911B1 (de) Breitbandige Polarisationsweiche
DE2708271C2 (de) Polarisationsweiche
DE2541569C2 (de) Frequenzabhängiges Dämpfungsglied
DE2804132C2 (de) Wellentypenweiche
DE68927515T2 (de) Hybrider RF-Phasenschieber
DE2431278C2 (de) Vierpol-Filter
DE2135611B1 (de) Modenkoppler für Peilsysteme
EP0280151B1 (de) Mikrowellen-Polarisationsweiche

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19890126

17Q First examination report despatched

Effective date: 19910703

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19930616

Ref country code: FR

Effective date: 19930616

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19930616

Ref country code: BE

Effective date: 19930616

REF Corresponds to:

Ref document number: 90813

Country of ref document: AT

Date of ref document: 19930715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3881741

Country of ref document: DE

Date of ref document: 19930722

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930823

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88104292.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970224

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19970305

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970320

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970321

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970620

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980317

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980317

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19981001

EUG Se: european patent has lapsed

Ref document number: 88104292.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010312

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050317