EP0263427A2 - Matériau composite céramo-métallique et procédé pour sa fabrication - Google Patents

Matériau composite céramo-métallique et procédé pour sa fabrication Download PDF

Info

Publication number
EP0263427A2
EP0263427A2 EP87114248A EP87114248A EP0263427A2 EP 0263427 A2 EP0263427 A2 EP 0263427A2 EP 87114248 A EP87114248 A EP 87114248A EP 87114248 A EP87114248 A EP 87114248A EP 0263427 A2 EP0263427 A2 EP 0263427A2
Authority
EP
European Patent Office
Prior art keywords
aluminum oxide
composite material
material according
titanium
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87114248A
Other languages
German (de)
English (en)
Other versions
EP0263427B1 (fr
EP0263427A3 (en
Inventor
Bruce M. Kramer
David M. Dombrowski
Denis Gonseth
Minyang Yang
Stephen P. Kohler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UFEC-Universal Fusion Energie Co SA
Original Assignee
Stellram SA
UFEC-Universal Fusion Energie Co SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stellram SA, UFEC-Universal Fusion Energie Co SA filed Critical Stellram SA
Priority to AT87114248T priority Critical patent/ATE92971T1/de
Publication of EP0263427A2 publication Critical patent/EP0263427A2/fr
Publication of EP0263427A3 publication Critical patent/EP0263427A3/fr
Application granted granted Critical
Publication of EP0263427B1 publication Critical patent/EP0263427B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/04Pretreatment of the fibres or filaments by coating, e.g. with a protective or activated covering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/08Iron group metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments

Definitions

  • the present invention relates to a ceramic-metallic composite material based on aluminum oxide and to a process for the manufacture of this material.
  • Aluminum oxide has the characteristics of excellent wear resistance. This material is used in cutting tools for metals or for wear-resistant surfaces.
  • Aluminum oxide in the form of a coating on conventional carbide tools is formed by vapor deposition or by sputtering. It is known that the mechanical properties of aluminum oxide can be improved by forming solid solutions with other oxides such as chromium oxide, or by forming multiphase compositions with other oxides such as that of zirconium. . In addition, it is known to form cutting tools by sintering or by a hot pressing process.
  • Aluminum oxide compositions may also include additives for fixing the grain boundaries, such as magnesium oxide, titanium oxide or titanium carbide.
  • Aluminum oxide tools are too fragile for most steel cutting operations, and their use is limited to finishing cuts, due to their lack of ductility leading to an inability to resist loads or vibrations even averages between the tool and the workpiece without risk of breakage. Tests have been carried out to produce ceramic-metallic materials based on aluminum oxide for cutting tools, so far with very little success, this because of the difficulty of bonding aluminum oxide to metals. Thus, previous attempts to significantly increase the breaking strength of composite materials have not been successful.
  • the object of the present invention therefore consists in completely eliminating the interfacial oxide phases and thus in increasing the tensile strength.
  • the ceramic-metallic composite material according to the present invention aimed at achieving the goal mentioned above, has the characteristics mentioned in claim 1.
  • the second phase or matrix preferably containing approximately 20% by weight of additional ingredients in addition to the metal and the titanium carbide, is therefore made non-reactive with respect to aluminum oxide by inclusion of a sufficient amount of titanium carbide at the interface between the aluminum oxide and this matrix, in order to prevent any chemical reaction at this interface between this matrix and the aluminum oxide particles, during the phase of consolidation at liquidus temperature, i.e. at sintering temperature.
  • the structure obtained is characterized by the absence of brittle or weak resistance interfacial phase and by the absence of an interface consisting of reaction compounds such as oxides.
  • the composite material according to the invention contains an amount of less than about 30% by volume of the matrix metal phase, and more particularly it contains between about 70 and 90% by volume of aluminum oxide.
  • the material according to the invention is also useful for the manufacture of structural parts having good resistance to abrasion and to chemical wear, including to oxidation, and then contains the metallic phase in a concentration up to approximately 40% by volume, more particularly it contains between approximately 50 and 70% by volume of aluminum oxide.
  • Another object of the present invention consists of a process for the manufacture of the ceremonial-metallic composite material defined above, which has the characteristics mentioned in the Claim 12.
  • the sintering reaction of the constituent elements is therefore carried out by controlling the partial pressure of carbon monoxide, and preferably in a non-oxidizing atmosphere, for example under vacuum or under an inert atmosphere. It can be combined with hot pressing or with isostatic hot pressing.
  • all the parts of titanium carbide present at the interface can be provided by coating the aluminum oxide component in the form of particles with titanium carbide, before the phase of consolidation of the particles by sintering. for the formation of an article.
  • the material according to the invention is prepared by consolidation or sintering of a mixture of microscopic homogeneous powders with an aluminum oxide and / or of a solid solution containing one or more constituents of aluminum oxide and (b) a matrix phase.
  • This matrix phase comprises a metal capable of retaining relatively high concentrations of titanium and carbon and a source of titanium and carbon.
  • the relative concentrations of titanium and carbon should be such that they can form titanium carbide in an amount sufficient to prevent reaction at the interface between the matrix phase and the aluminum oxide phase. Such a reaction must be eliminated, since it results in the formation of interface compositions which may be harmful.
  • Suitable temperatures for consolidation by sintering the homogeneous mixture to form an article are between the minimum temperature at which the metallic component forms a liquid with the appropriate concentration of titanium and carbon up to the temperature of the melting point of aluminum oxide. Preferably, this temperature is between approximately 1300 and approximately 1600 ° C.
  • the mixture is subjected to an elevated temperature for a period sufficient for the titanium and carbon constituents to dissolve in the metal matrix, so that the titanium and carbon are retained in this matrix in the form of a liquid solution. It is believed that the presence of titanium carbide at the interface delays or prevents a reaction at the interface of the metal matrix and aluminum oxide.
  • compositions prepared by the process according to the invention contain between approximately 70 and 90% by volume of aluminum oxide.
  • the composite material according to the present invention contains more than about 50% by volume. aluminum oxide, preferably between about 50 and 70% by volume.
  • Al2O3 + 3TiC Al4C3 + 3 TiO2
  • Al2O3 + 3 TiC 5 (Al 0.4 Ti 0.6 ) + 3CO ⁇
  • Al2O3 + (a + y) TiC Al x Ti y + Ti a O b + (a + y) CO ⁇ (3)
  • b [1.5 x - (a + y)]
  • the partial pressure of CO during sintering is maintained in a range of about 10 ⁇ 5 to 10 ⁇ 2 Torr (1.33.10 ⁇ 3 to 1.33 Pa), and preferably about 10 ⁇ 4 to 10 ⁇ 3 Torr (1.33.10 ⁇ 2 to 1, 33.10 ⁇ 1 Pa).
  • the composite material according to the invention is characterized by a microstructure which is substantially composed of a ceramic phase of aluminum oxide separated and agglomerated by a ductile metallic matrix phase.
  • the interface between the aluminum oxide phase and the metallic matrix phase is mainly composed of titanium carbide.
  • This composite material has a breaking strength (or stress intensity factor K IC ) of 8 to 15 MN / m3 / 2, therefore much higher in comparison with the 4 to 5 MN / m3 / 2 of the compositions based commercially available alumina.
  • the various constituents intended to form the composite material according to the invention are mixed and ground by techniques such as ball milling, air milling, or the like, before subjecting the mixture to a temperature and a pressure. high.
  • Representative sources of titanium are metallic titanium and titanium carbide.
  • Representative sources of carbon are carbon, as well as titanium carbides, molybdenum, tungsten, vanadium, carbide, chromium, tantalum, niobium, zirconium, and hafnium.
  • the first suitable metal components which are relatively non-reactive by compared to aluminum oxide, titanium and titanium carbide, include nickel, iron, cobalt or mixtures thereof.
  • the solubility of titanium and carbon in the metallic matrix phase can be increased by adding a third component in an amount generally between about 5 and 30% by weight, relative to the weight of said first metallic component, such as carbide molybdenum, tungsten carbide, vanadium carbide, ruthenium, rhodium, rhenium and osmium.
  • a third component such as carbide molybdenum, tungsten carbide, vanadium carbide, ruthenium, rhodium, rhenium and osmium.
  • any available form of aluminum can be used in the present invention, including a powder of particles between about 0.1 and 100 microns in diameter, wiskers, fibers or other solid forms.
  • the present invention can also be used to bond solid aluminum oxide components to each other or to metallic components.
  • the aluminum oxide particles are pre-coated with titanium carbide, titanium oxicarbons or titanium, before being mixed with the metallic matrix phase.
  • Suitable coating techniques include chemical vapor deposition, simple or combined with plasma or laser technique, sputtering, physical vapor deposition, vacuum evaporation or reduction of titanium oxide coating on the surface of the aluminum oxide particles.
  • the above-mentioned coating methods can be carried out in a reaction chamber which is surrounded by an induction coil electrically connected to a frequency oscillator radio.
  • the chamber is provided with inlets and outlets at its axial ends for the flow of the gaseous medium.
  • the untreated powder is placed in the reaction chamber and subjected to the desired coating temperatures by use of the radio frequency oscillator.
  • titanium carbide layers are formed on aluminum oxide particles in the reaction chamber by entraining the particles in a gaseous mixture of titanium tetrachloride, from a source of carbon gas, such as than methane, and hydrogen, and by heating the particles to a temperature between about 800 and about 1800 ° C, preferably around 1000 ° C.
  • the reaction can be described by the following equation, although hydrogen is often added to ensure that the reaction takes place in a reducing environment: TiCl4 + CH4 ⁇ TiC + 4 HCl ⁇
  • the mixture containing the particles is kept at the reaction temperature until the desired coating thickness is obtained.
  • a routine test is carried out to determine the value of the growth in thickness of the coating at a particular value of the gas flow rate and at a determined temperature.
  • Typical preferred coatings are on the order of 100 to 1,000 angstroms, and preferably 200 to 500 angstroms.
  • Alumina powders were placed in pyrex glass tubes for chromatography having a tapered end to which a porous sintered glass plate has been attached. Argon was introduced into the tubes and passed through the sintered glass and the powder bed. By precisely controlling the gas flow, by means of a micrometric valve, only fine particles were entrained in the gas stream and introduced into the reaction chamber either at the bottom of it in the gas inlet or directly in plasma by attaching an elongated alumina tube to the normal gas and powder inlet. The powder was collected by reducing the speed of the gas stream in an enlarged chamber and by filtering the gas through stainless steel filters. After the generator was operated at full power, argon was introduced into the reaction chamber until a flow rate of 750 ml / min was obtained.
  • the gas mixture of TiCl4 + CH4 + H2 was introduced.
  • argon gas was slowly introduced through the powder bed. Then the gas flow was increased until it can be seen that fine powder leaves the fluidization chamber and enters the plasma chamber.
  • the powders were ground for 24 hours in containers containing about 1.3 cm alumina beads as a means of grinding.
  • the powder mixtures were then placed in a mold and pressed uniaxially at around 100 Kpsi (700 MPa) to form compact samples.
  • These compact samples were sintered under vacuum for one hour at 1370 ° C.
  • the sintered samples based on alumina were encapsulated in steel containers and isostatically pressed at 45 Kpsi (310MPa) and 1370 ° C for samples 1 and 4, and at 35 Kpsi (242MPa) and at 1315 ° C for samples 2,3,5 and 6. These samples thus treated were cut by means of diamond blades, polished and mounted so as to examine their microstructure.
  • compositions 1, 2 and 3 the alumina phase is aggregated and continuous, and the metal phase is distributed in pockets isolated by the alumina phase, indicating that the incomplete wetting results in apparent sintering in the solid state of the powders. alumina.
  • the alumina phase is surrounded by the metal phase which appears to be continuous.
  • the size distribution of the alumina particles appears to be similar, but the TiC coated alumina particles are more uniformly dispersed in the metal binder than the uncoated alumina particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

La présente invention concerne un matériau composite céramo-métallique comportant une première phase, consistant essentiellement en particules d'oxyde d'aluminium, ou d'une solution solide à base d'oxyde d'aluminium, et répartie uniformément dans une seconde phase matrice. Cette matrice consiste essentiellement en un premier métal et en carbure de titane et n'est pas réactive avec l'oxyde d'aluminium. La quantité de carbure de titane présente à l'interface entre la première et la seconde phase est telle qu'elle empéche la réaction chimique entre ces phases à la température du frittage. Ce matériau composite peut être préparé par frittage des différents constituants, à 1300 - 1600°C et en maintenant les pressions partielles du CO formé entre 1,33.10⁻² et 1,33.10⁻¹ Pa.

Description

  • La présente invention se rapporte à un matériau composite céramo-métallique à base d'oxyde d'aluminium et à un procédé pour la fabrication de ce matériau.
  • L'oxyde d'aluminium présente les caractéristiques d'une excellente résistance à l'usure. Ce matériau est utilisé dans les outils de coupe pour métaux ou pour surfaces résistantes à l'usure. L'oxyde d'aluminium sous la forme de revêtement sur des outils en carbure conventionnels est formé par déposition en phase vapeur ou par sputtering. On sait que les propriétés mécaniques de l'oxyde d'aluminium peuvent être améliorées en formant des solutions solides avec d'autres oxydes tel que l'oxyde de chrome, ou en formant des compositions multiphasées avec d'autres oxydes tel que celui de zirconium. En outre, il est connu de former des outils de coupe par frittage ou par un procédé de pressage à chaud. Des compositions d'oxyde d'aluminium peuvent également comprendre des additifs de fixation des joints de grains, tels que de l'oxyde de magnésium, de l'oxyde de titane ou du carbure de titane. Les outils en oxyde d'aluminium sont trop fragiles pour la plupart des opérations de coupe d'acier, et leur usage est limité à des coupes de finition, à cause de leur manque de ductilité conduisant à une incapacité de résister à des charges ou vibrations même moyennes entre l'outil et la pièce usinée sans risque de rupture. Des essais ont été effectués pour produire des matériaux céramo-métalliques à base d'oxyde d'aluminium pour des outils de coupe, jusqu'à présent avec très peu de succès, ceci à cause de la difficulté de lier l'oxyde d'aluminium à des métaux. Ainsi, les tentatives préalables pour augmenter de manière significative la résistance à la rupture de matériaux composites n'ont pas réussies.
  • Les mélanges pressés à chaud d'oxyde d'aluminium et de carbure de titane, ainsi que d'oxyde d'aluminium et de whiskers de carbure de silicium, constituent les céramiques disponibles à base d'oxyde les plus solides.
  • Il a été proposé dans le brevet U.S. 4,217,113 de former des compositions métalliques contenant de l'oxyde d'aluminium destinées à être utilisées pour des outils de coupe dans des conditions pour former une phase d'oxyde de métal réactive à l'interface de l'oxyde d'aluminium, qui est formé à partir d'un métal dérivé de la phase métallique, et de l'oxyde d'aluminium. Toutefois, étant donné que peu d'oxydes surpassent l'oxyde d'aluminium en ce qui concerne la dureté et la résistance à des températures élevées, il a été constaté que des défectuosités dans ces compositions se produisent au niveau de l'oxyde de métal formé à l'interface entre l'oxyde d'aluminium et le métal. Jusqu'à présent, l'art antérieur s'est concentré sur la formation d'un interface d'oxyde de métal réactif entre la matrice métallique et l'oxyde d'aluminium afin d'augmenter la résistance à la rupture des compositions d'oxyde d'aluminium.
  • Le but de la présente invention consiste donc à éliminer complétement les phases d'oxyde interfaciales et ainsi d'augmenter la résistance à la rupture. Le matériau composite céramo-métallique selon la présente invention, visant à atteindre le but précité, présente les caractéristiques mentionnées dans la revendication 1.
  • La seconde phase ou matrice, contenant de préférence environ 20% en poids d'ingrédients additionnels en plus du métal et du carbure de titane, est donc rendue non réactive vis-à-vis de l'oxyde d'aluminium par inclusion d'une quantité suffisante de carbure de titane à l'interface entre l'oxyde d'aluminium et cette matrice, afin d'empécher toute réaction chimique au niveau de cette interface entre cette matrice et les particules d'oxyde d'aluminium, durant la phase de consolidation à la température du liquidus, c'est-à-dire à la température du frittage. La structure obtenue est caractérisée par l'absence de phase interfaciale cassante ou à faible résistance et par l'absence d'un interface constitué de composés de réaction tels que des oxydes.
  • Lorsqu'il est destiné à être utilisé comme outil de coupe, le matériau composite selon l'invention contient une quantité inférieure à environ 30% en volume de la phase métallique matrice, et plus particulièrement il contient entre environ 70 et 90 % volume d'oxyde d'aluminium. Le matériau selon l'invention est également utile pour la fabrication de parties structurelles présentant une bonne résistance à l'abrasion et à l'usure chimique, y compris à l'oxydation, et contient alors la phase métallique en une concentration jusqu'à environ 40 % en volume, plus particulièrement il contient entre environ 50 et 70 % en volume d'oxyde d'aluminium.
  • Un autre objet de la présente invention consiste en un procédé pour la fabrication du matériau composite cérémo-métallique défini précédemment, qui présente les caractéristiques mentionnées dans la revendication 12. La réaction de frittage des éléments constitutifs est donc effectuée en contrôlant la pression partielle de monoxyde de carbone, et de préférence en atmosphère non oxydante, par exemple sous vide ou sous atmosphère inerte. Elle peut étre combinée avec un pressage à chaud ou avec un pressage isostatique à chaud.
  • Selon une forme préférée du procédé, toutes les parties de carbure de titane présentes à l'interface peuvent étre fournies par revêtement du composant oxyde d'aluminium sous la forme de particules avec du carbure de titane, avant la phase de consolidation des particules par frittage pour la formation d'un article.
  • Plus particulièrment, le matériau selon l'invention est préparé par consolidation ou frittage d'un mélange de poudres homogènes microscopiques à un oxyde d'aluminum et/ou d'une solution solide contenant un ou plusieurs constituants de l'oxyde d'aluminium et (b) une phase matrice. Cette phase matrice comprend un métal susceptible de retenir des concentrations relativement élevées de titane et de carbone et une source de titane et de carbone. Les concentrations relatives de titane et de carbone doivent être telles qu'elles puissent former du carbure de titane en une quantité suffisante pour empêcher une réaction à l'interface entre la phase matrice et la phase oxyde d'aluminium. Une telle réaction doit être éliminée, étant donné qu'elle aboutit à la formation de compositions d'interface qui peuvent être nuisibles. Des températures appropriées pour la consolidation par frittage du mélange homogène pour former un article sont comprises entre la température minimale à laquelle le composant métallique forme un liquide avec la concentration appropriée de titane et de carbone jusqu'à la température du point de fusion de l'oxyde d'aluminium. De préférence, cette température est comprise entre environ 1300 et environ 1600°C. Le mélange est soumis à une température élevée pendant une période suffisante pour que les constituants titane et carbone se dissolvent dans la matrice métallique, de telle sorte que le titane et le carbone soient retenus dans cette matrice sous forme d'une solution liquide. On pense que la présence de carbure de titane à l'interface retarde ou empêche une réaction à l'interface de la matrice métallique et de l'oxyde d'aluminium.
  • Pour la réalisation d'outils de coupe ou autres surfaces résistantes à l'usure, les compositions préparées par le procédé selon l'invention contiennent entre environ 70 et 90 % en volume d'oxyde d'aluminium. Pour la réalisation d'articles résistant à l'abrasion tels que des soupapes, des constituants de pompes à combustibles, des parties structurales de moteurs, ou les similaires, le matériau composite selon la présente invention contient plus d'environ 50 % en volume d'oxyde d'aluminium, de préférence entre environ 50 et 70 % volume.
  • Les réactions possibles de Al₂O₃ et TiC peuvent être représentées par les trois équations suivantes :

    2Al₂O₃ + 3TiC = Al₄C₃ + 3 TiO₂      (1)

    Al₂O₃ + 3 TiC = 5(Al0,4Ti0,6) + 3CO↑      (2)
    Figure imgb0001
    Al₂O₃ + (a+y) TiC = AlxTiy + TiaOb + (a+y)CO↑      (3)

        où b =[1,5 x - (a+y)]
  • Afin de s'assurer que la réaction (2) ci-dessus se produise de préférence aux deux autres, et ainsi de supprimer la formation d'oxyde de titane non souhaitée, il est important que la pression partielle de CO durant le frittage soit maintenue dans un domaine d'environ 10⁻⁵ à 10⁻² Torr (1,33.10⁻³ à 1,33 Pa), et de préférence d'environ 10⁻⁴ à 10⁻³ Torr (1,33.10⁻² à 1,33.10⁻¹ Pa).
  • Le matériau composite selon l'invention est caractérisé par une microstructure qui est substantiellement composée d'une phase céramique d'oxyde d'aluminium séparée et agglomérée par une phase matrice métallique ductile. L'interface entre la phase oxyde d'aluminium et la phase matrice métallique est principalement composée de carbure de titane. Ce matériau composite présente une résistance à la rupture (ou facteur d'intensité de contrainte KIC) de 8 à 15 MN/m³/2, donc beaucoup plus élevée en comparaison avec les 4 à 5 MN/m³/2 des compositions à base d'alumine disponibles commercialement. De préférence, les différents constituants destinés à former le matériau composite selon l'invention sont mélangés et broyés par des techniques telles que le broyage à billes, le broyage à air, ou les similaires, avant de soumettre le mélange à une température et une pression élevées.
  • Des sources représentatives de titane sont le titane métallique et le carbure de titane. Des sources représentatives de carbone sont le carbone, ainsi que les carbures de titane, molybdène, tungstène, vanadium, carbure, chrome, tantale, niobium, zirconium, et hafnium. Les premiers composants métalliques appropriés qui sont relativement non réactifs par rapport à l'oxyde d'aluminium, au titane et au carbure de titane, comprennent le nickel, le fer, le cobalt ou les mélanges de ceux-ci. La solubilité du titane et du carbone dans la phase matrice métallique peut être augmentée par addition d'un troisième composant en une quantité généralement comprise entre environ 5 et 30% en poids, par rapport au poids dudit premier composant métallique, tels que du carbure de molybdéne, du carbure de tungstène, du carbure de vanadium, du ruthénium, du rhodium, du rhénium et de l'osmium.
  • Toute forme disponible d'aluminium peut être utilisée dans la présente invention, y compris une poudre de particules de dimensions comprises entre environ 0,1 et 100 microns de diamètre, des wiskers, des fibres ou d'autres formes solides. La présente invention peut également être utilisée pour lier des composants oxyde d'aluminium solides les uns avec les autres ou à des composants métalliques.
  • Selon une variante préférée de l'invention, les particules d'oxyde d'aluminium sont pré-revêtues avec du carbure de titane, des oxicarbures de titane ou du titane, avant d'être mélangées avec la phase matrice métallique. Des techniques de revêtement appropriées comprennent la déposition chimique en phase vapeur, simple ou combinée avec la technique du plasma ou du laser, le sputtering, la déposition physique en phase vapeur, l'évaporation sous vide ou la réduction de revêtement d'oxyde de titane sur la surface des particules d'oxyde d'aluminium.
  • Les procédés de revêtement mentionnés ci-dessus peuvent être mis en oeuvre dans une chambre de réaction qui est entourée d'une spire d'induction électriquement reliée à un oscillateur à fréquences radio. La chambre est munie d'entrées et de sorties à ses extrémités axiales pour le flux du milieu gazeux. La poudre non traitée est placée dans la chambre de réaction et soumise aux températures de revêtement souhaitées par mise en oeuvre de l'oscillateur à fréquences radio.
  • A titre d'exemple, des couches de carbure de titane sont formées sur des particules d'oxyde d'aluminium dans la chambre de réaction en entraînant les particules dans un mélange gazeux de tétrachlorure de titane, d'une source de carbone gazeuse, telle que le méthane, et d'hydrogène, et en chauffant les particules à une température comprise entre environ 800 et environ 1800° C, de préférence aux environs de 1 000°C. La réaction peut être décrite par l'équation suivante, bien que de l'hydrogène soit souvent ajouté pour assurer que la réaction se produise dans un environnement réducteur :
        TiCl₄ + CH₄ → TiC + 4 HCl↑
  • Le mélange contenant les particules est maintenu à la température réactionnelle jusqu'à ce que l'épaisseur de revêtement désirée soit obtenue. Un test de routine est effectué pour déterminer la valeur de la croissance en épaisseur du revêtement à une valeur particulière du débit gazeux et à une température déterminée. Des revêtements préférés typiques ont une épaisseur de l'ordre de 100 à 1 000 angstroms, et de préférence de 200 à 500 angstroms.
  • La présente invention sera maintenant décrite plus en détail en référence à l'exemple illustratif suivant :
  • Exemple
  • Des poudres d'alumine ont été disposées dans des tubes de verre pyrex pour chromatographie ayant une extrémité effilée à laquelle a été fixée une plaque de verre fritté poreux. De l'argon a été introduit dans les tubes et passé à travers le verre fritté et le lit de poudre. En contrôlant avec précision le débit de gaz, au moyen d'une vanne micrométrique, seules des fines particules ont été entraînées dans le courant gazeux et introduites dans la chambre de réaction soit au fond de celle-ci dans l'entrée de gaz soit directement dans le plasma en joignant un tube d'alumine allongé à l'entrée normale de gaz et de poudre. La poudre a été recueillie par réduction de la vitesse du courant gazeux dans une chambre élargie et par filtration du gaz à travers des filtres en acier inoxydable. Après que le générateur ait été mis en oeuvre à pleine puissance, de l'argon a été introduit dans la chambre réactionnelle jusqu'à ce qu'un débit de 750 ml/mn soit obtenu. A ce moment, le mélange gazeux de TiCl₄ + CH₄ + H₂ a été introduit. Après qu'un plasma composé du réactif ait été amené au paramètre de débit désiré, de l'argon gazeux a été lentement introduit à travers le lit de poudre. Puis le débit de gaz a été augmenté jusqu'à ce que l'on puisse constater que de la poudre fine quitte la chambre de fluidisation et entre dans la chambre de plasma.
  • Après qu'une quantité suffisante de poudre revêtue ait été obtenue, six échantilons ont été préparés, et trois composites céramiques commerciaux supplémentaires ont également été préparés pour comparaison. La composition chimique des différents échantillons préparés pour l'expérimentation est décrite dans le tableau 1.
  • Les poudres ont été broyées pendant 24 heures dans des récipients contenant des billes d'alumine d'environ 1,3 cm comme moyen de broyage. Les mélanges de poudres ont ensuite été disposés dans un moule et pressés uniaxialement à environ 100 Kpsi (700 MPa) pour former des échantillons compacts. Ces échantillons compacts ont été frittés sous vide pendant une heure à 1370°C. Les échantillons frittés à base d'alumine ont été encapsulés dans des récipients en acier et pressés de manière isostatique 45 Kpsi (310MPa) et 1370°C en ce qui concerne les échantillons 1 et 4, et à 35 Kpsi (242MPa) et à 1315°C en ce qui concerne les échantillons 2,3,5 et 6. Ces échantillons ainsi traités ont été coupés au moyen de lames diamentées, polis et montés de manière à examiner leur microstructure.
  • Dans les compositions 1, 2 et 3, la phase alumine est agrégée et continue, et la phase métallique est distribuée dans des poches isolées par la phase alumine, indiquant que le mouillage incomplet abouti à un frittage apparent à l'état solide des poudres d'alumine.
  • Dans les compositions à base d'alumine revêtues par du TiC, à savoir les échantillons 4, 5 et 6 avec une teneur élevée en métal, la phase alumine est entourée par la phase métallique qui apparait être continue. La distribution selon les dimensions des particules d'alumine apparait être similaire, mais les particules d'alumine revêtues par du TiC sont plus uniformément dispersées dans le liant métallique que les particules d'alumine non revêtues.
  • Les résultats de la dureté Hv et de la résistance à la fissuration W sont donnés dans le tableau II, de même que le module d'élasticité et le facteur d'intensité de contrainte KIC et les valeurs de l'énergie de propagation des fissures GIC calculées. Les valeurs de KIC et GIC ont été déterminées en utilisant 1a technique dit de Palmquist.
    Figure imgb0002
    Figure imgb0003

Claims (17)

1. Matériau composite céramo-métallique comportant une première phase, consistant essentiellemnt en particules d'oxyde d'aluminium, ou d'une solution solide à base d'oxyde d'aluminium, et répartie uniformément dans une seconde phase matrice, cette matrice consistant essentiellement en un premier métal et en carbure de titane et n'étant pas réactive avec l'oxyde d'aluminium, la quantité de carbure de titane présente à l'interface entre la première et la seconde phase étant telle qu'elle empéche la réaction chimique entre ces phases à la température du frittage.
2. Matériau composite selon la revendication 1, caractérisé par le fait que les particules d'oxyde d'aluminium sont sous la forme d'une poudre dont les grains ont un diamètre de 0,1 à 100 microns.
3. Matériau composite selon la revendication 1, caractérisé par le fait que les particules d'oxyde d'aluminium sont sous la forme de whiskers ou de filaments.
4. Matériau composite selon l'une des revendications 1 à 3, caractérisé par le fait que les particules d'oxyde d'aluminium sont revêtues de carbure de titane, d'oxycarbure de titane ou de titane.
5. Matériau composite selon la revendication 4, caractérisé par le fait que l'épaisseur du revêtement est de 100 à 1000 Å, de préférence de 200 à 500 Å.
6. Matériau composite selon l'une des revendications 1 à 5, caractérisé par le fait que ledit premier métal est choisi parmi le Ni,le Co, le Fe et les mélanges de ceux-ci.
7. Matériau composite selon l'une des revendications 1 à 6, caractérisé par le fait que la matrice comporte un troisième composant en une quantité inférieure à 30% en poids, ce troisième composant étant choisi de telle sorte qu'il rende le carbure de titane plus soluble dans ledit premier métal.
8. Matériau composite selon la revendication 7, caractérisé par le fait que le troisième composant est choisi parmi le groupe comprenant les carbures de Mo, Cr, W,V, Ta et Nb et les métaux Ru, Rh, Re et Os, ainsi que les mélanges et alliages de ceux-ci.
9. Matériau composite selon la revendication 7, caractérisé par le fait que le troisième composant est le Mo, le Mo₂C ou une combinaison de ceux-ci.
10. Matériau composite selon l'une des revendications 1 à 9 pour la réalisation d'articles résistants à l'abrasion, caractérisé par le fait qu'il contient entre environ 50 et 70% vol. de particules d'oxyde d'aluminium, ou de solution solide à base d'oxyde d'aluminium.
11. Matériau composite selon l'une des revendications 1 à 9 pour la réalisation d'articles résistant à l'usure tels que des outils de coupe, caractérisé par le fait qu'il contient entre environ 70 et 90% vol. de particules d'oxyde d'aluminium, ou de solution solide à base d'oxyde d'aluminium.
12. Procèdé pour la fabrication du matériau composite céramo-métallique selon l'une des revendications 1 à 11, caractérisé par le fait que les différents constituants sont frittés dans des conditions telles que la pression partielle de CO formé soit comprise entre 1,33.10⁻³ et 1,33 Pa.
13. Procèdé selon la revendication 12, caractérisé par le fait que le frittage est effectué sous vide ou atmosphère inerte, à une température comprise entre 1300 et 1600° et en maintenant la pression partielle de CO entre 1,33.10⁻² et 1,33.10⁻¹ Pa.
14. Procèdé selon la revendication 13, caractérisé par le fait que les particules sont pressées uniaxialement à environ 700 MPa.
15. Procèdé selon la revendication 13, caractérisé par le fait que les particules sont pressées de façon isostatique entre 242 et 310 MPa.
16. Procèdé selon l'une des revendications 12 à 15 pour la fabrication d'un composite selon la revendication 4, caractérisé par le fait qu'on dépose préalablement au frittage un revêtement de carbure ou d'oxycarbure de titane ou de titane, métallique sur les particules d'oxyde d'aluminium.
17. Procèdé selon la revendication 16, caractérisé par le fait que la déposition est effectuée par réduction chimique en phase gazeuse du TiCl₄ par l'hydrogène en présence d'une source de carbone, par exemple du méthane, à une température comprise entre 800 et 1200°C.
EP87114248A 1986-10-10 1987-09-30 Matériau composite céramo-métallique et procédé pour sa fabrication Expired - Lifetime EP0263427B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87114248T ATE92971T1 (de) 1986-10-10 1987-09-30 Metall-keramisches verbundmaterial und verfahren zu seiner herstellung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/917,577 US4792353A (en) 1986-10-10 1986-10-10 Aluminum oxide-metal compositions
US917577 1997-08-18

Publications (3)

Publication Number Publication Date
EP0263427A2 true EP0263427A2 (fr) 1988-04-13
EP0263427A3 EP0263427A3 (en) 1989-09-27
EP0263427B1 EP0263427B1 (fr) 1993-08-11

Family

ID=25438992

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87114248A Expired - Lifetime EP0263427B1 (fr) 1986-10-10 1987-09-30 Matériau composite céramo-métallique et procédé pour sa fabrication

Country Status (6)

Country Link
US (1) US4792353A (fr)
EP (1) EP0263427B1 (fr)
JP (1) JPS63134644A (fr)
AT (1) ATE92971T1 (fr)
DE (2) DE3786976D1 (fr)
ES (1) ES2002692A4 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0443659A1 (fr) * 1990-02-14 1991-08-28 Xycarb B.V. Procédé de revêtement de poudres et procédé de préparation d'articles métalliques à partir de cette poudre
US6669707B1 (en) 1998-07-21 2003-12-30 Lee L. Swanstrom Method and apparatus for attaching or locking an implant to an anatomic vessel or hollow organ wall

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391339A (en) * 1992-12-31 1995-02-21 Valenite Inc. Continuous process for producing alumina-titanium carbide composites
US5342564A (en) * 1992-12-31 1994-08-30 Valenite Inc. Rapid sintering method for producing alumina-titanium carbide composites
JP3719971B2 (ja) * 2001-11-06 2005-11-24 株式会社椿本チエイン 耐摩耗性被覆物を被覆したサイレントチェーン
DE10201405A1 (de) * 2002-01-15 2003-07-24 Siemens Ag Pumpe
JP4434762B2 (ja) 2003-01-31 2010-03-17 東京応化工業株式会社 レジスト組成物
JP2007244309A (ja) * 2006-03-16 2007-09-27 Yanmar Co Ltd コンバイン
US8147980B2 (en) * 2006-11-01 2012-04-03 Aia Engineering, Ltd. Wear-resistant metal matrix ceramic composite parts and methods of manufacturing thereof
CN104480364A (zh) * 2014-11-10 2015-04-01 沈阳理工大学 一种Al2O3-TiCN/Co-Ni金属陶瓷模具材料及其制备方法
CN104388793B (zh) * 2014-11-14 2016-05-25 苏州蔻美新材料有限公司 一种医用金属陶瓷材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB841576A (en) * 1956-09-24 1960-07-20 Immelborn Hartmetallwerk Process for manufacture of sintered bodies
US3723077A (en) * 1970-04-21 1973-03-27 Deutsche Edelstahlwerke Gmbh Sintered alloys
DE2919902A1 (de) * 1978-05-25 1979-11-29 Int Standard Electric Corp Verfahren und vorrichtung zum ueberziehen von pulver mit metall
EP0028885A1 (fr) * 1979-11-12 1981-05-20 Thorn Emi Plc Cermet électriquement conducteur, sa préparation et son utilisation
US4449039A (en) * 1981-09-14 1984-05-15 Nippondenso Co., Ltd. Ceramic heater
CH647813A5 (en) * 1981-07-03 1985-02-15 Stellram Sa Article made of sintered metal-ceramic and process for its manufacture
US4655830A (en) * 1985-06-21 1987-04-07 Tomotsu Akashi High density compacts

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB821596A (en) * 1957-09-07 1959-10-07 Immelborn Hartmetallwerk Highly wear-resistant material comprising alumina and heavy metal carbides and process for the production thereof
SU317716A1 (ru) * 1969-07-03 1971-10-19 Литой фрикционный сплав
JPS5141606A (ja) * 1974-10-07 1976-04-08 Sumitomo Electric Industries Taimaseichitankeishoketsubuhinno seizohoho
DE3444712A1 (de) * 1984-12-07 1986-06-12 Seilstorfer GmbH & Co Metallurgische Verfahrenstechnik KG, 8092 Haag Stahlmatrix-hartstoff-verbundwerkstoff

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB841576A (en) * 1956-09-24 1960-07-20 Immelborn Hartmetallwerk Process for manufacture of sintered bodies
US3723077A (en) * 1970-04-21 1973-03-27 Deutsche Edelstahlwerke Gmbh Sintered alloys
DE2919902A1 (de) * 1978-05-25 1979-11-29 Int Standard Electric Corp Verfahren und vorrichtung zum ueberziehen von pulver mit metall
EP0028885A1 (fr) * 1979-11-12 1981-05-20 Thorn Emi Plc Cermet électriquement conducteur, sa préparation et son utilisation
CH647813A5 (en) * 1981-07-03 1985-02-15 Stellram Sa Article made of sintered metal-ceramic and process for its manufacture
US4449039A (en) * 1981-09-14 1984-05-15 Nippondenso Co., Ltd. Ceramic heater
US4655830A (en) * 1985-06-21 1987-04-07 Tomotsu Akashi High density compacts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0443659A1 (fr) * 1990-02-14 1991-08-28 Xycarb B.V. Procédé de revêtement de poudres et procédé de préparation d'articles métalliques à partir de cette poudre
US6669707B1 (en) 1998-07-21 2003-12-30 Lee L. Swanstrom Method and apparatus for attaching or locking an implant to an anatomic vessel or hollow organ wall

Also Published As

Publication number Publication date
DE3786976D1 (de) 1993-09-16
ATE92971T1 (de) 1993-08-15
US4792353A (en) 1988-12-20
DE263427T1 (de) 1988-09-01
ES2002692A4 (es) 1988-10-01
EP0263427B1 (fr) 1993-08-11
JPS63134644A (ja) 1988-06-07
EP0263427A3 (en) 1989-09-27

Similar Documents

Publication Publication Date Title
RU2161087C2 (ru) Режущий инструмент на основе поликристаллического кубического нитрида бора и способ его изготовления (варианты)
FR2715929A1 (fr) Synthèse d'un nitrure de bore cubique polycristallin.
EP0263427B1 (fr) Matériau composite céramo-métallique et procédé pour sa fabrication
CH625836A5 (fr)
CH634356A5 (fr) Piece metallique portant un revetement dur a base de carbure.
EP0368753A1 (fr) Dépôt électrophorétique anti-usure du type métallo-céramique consolidé par nickelage électrolytique
EP1313887A2 (fr) Procede d'elaboration d'un produit abrasif contenant du nitrure de bore cubique
LU86916A1 (fr) Carbone résistant à l'oxidation et procédé pour sa fabrication.
CH653055A5 (fr) Corps en carbure cemente.
EP0651067B1 (fr) Matériau composite céramo-métallique à haute ténacité et procédé pour sa fabrication
Ayers et al. Abrasive wear with fine diamond particles of carbide-containing aluminum and titanium alloy surfaces
JP2766661B2 (ja) ボロン処理硬質金属
WO2012119647A1 (fr) Materiau composite comprenant un metal precieux, procede de fabrication et utilisation d'un tel materiau
EP0591305B1 (fr) Cermets a base de borures des metaux de transition, leur fabrication et leurs applications
FR2499102A1 (fr) Nouvelles compositions dures, melanges precurseurs et procedes pour leur preparation
JPH03115571A (ja) 付着性にすぐれたダイヤモンド被覆焼結合金及びその製造方法
FR2559762A1 (fr) Procede pour coller de la ceramique
Pobol et al. Investigation of contact phenomena at cubic boron nitride-filler metal interface during electron beam brazing
BE833497A (fr) Corps abrasifs compacts
EP1206585B1 (fr) Materiau tungstene a haute densite fritte a basse temperature
JPH10310840A (ja) 超硬質複合部材とその製造方法
JP2001040446A (ja) ダイヤモンド含有硬質部材及びその製造方法
JP2539922B2 (ja) ダイヤモンド被覆超硬合金
CH647813A5 (en) Article made of sintered metal-ceramic and process for its manufacture
EP0298151A2 (fr) Matériau composite à haute ténacité

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

ITCL It: translation for ep claims filed

Representative=s name: ING. FERRAIOLO S.N.C.

GBC Gb: translation of claims filed (gb section 78(7)/1977)
TCNL Nl: translation of patent claims filed
TCAT At: translation of patent claims filed
DET De: translation of patent claims
PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19900203

17Q First examination report despatched

Effective date: 19910722

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930811

Ref country code: DE

Effective date: 19930811

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19930811

Ref country code: SE

Effective date: 19930811

Ref country code: NL

Effective date: 19930811

Ref country code: AT

Effective date: 19930811

REF Corresponds to:

Ref document number: 92971

Country of ref document: AT

Date of ref document: 19930815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3786976

Country of ref document: DE

Date of ref document: 19930916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930930

Ref country code: BE

Effective date: 19930930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19931122

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: UFEC - UNIVERSAL FUSION ENERGY COMPANY S.A.

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: UFEC UNIVERSAL FUSION ENERGIE COMPANY S.A.

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19930811

BERE Be: lapsed

Owner name: S.A. STELLRAM

Effective date: 19930930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: UFEC - UNIVERSAL FUSION ENERGY COMPANY S.A. -DANN

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000828

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20001204

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST