EP0256450B1 - Pulvermetallurgisches Verfahren zur Herstellung eines grünen Presskörpers hoher Festigkeit und niedriger relativer Dichte aus einer warmfesten Aluminiumlegierung - Google Patents

Pulvermetallurgisches Verfahren zur Herstellung eines grünen Presskörpers hoher Festigkeit und niedriger relativer Dichte aus einer warmfesten Aluminiumlegierung Download PDF

Info

Publication number
EP0256450B1
EP0256450B1 EP87111463A EP87111463A EP0256450B1 EP 0256450 B1 EP0256450 B1 EP 0256450B1 EP 87111463 A EP87111463 A EP 87111463A EP 87111463 A EP87111463 A EP 87111463A EP 0256450 B1 EP0256450 B1 EP 0256450B1
Authority
EP
European Patent Office
Prior art keywords
powder
heat
aluminium alloy
relatively low
low density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87111463A
Other languages
English (en)
French (fr)
Other versions
EP0256450A1 (de
Inventor
Malcolm James Dr. Couper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0256450A1 publication Critical patent/EP0256450A1/de
Application granted granted Critical
Publication of EP0256450B1 publication Critical patent/EP0256450B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys

Definitions

  • Heat-resistant aluminum alloys which are made from powders obtained at high cooling rates by atomizing a melt. High content of alloy components not permitted under the usual solidification conditions, e.g. Fe and Cr.
  • the invention relates to the production of aluminum alloy powders and the production of moldings from these powders.
  • Aluminum alloys which are suitable for the production of powders from melts by means of gas jet atomization using very high cooling speeds (10 ° C./s and more) and can be used for the production of heat-resistant workpieces, have become known in numerous variations.
  • An important group are the polynary alloys of the type Al / Fe / X, which usually have relatively high iron contents, where X denotes at least one of the elements Ti, Zr, Hf, V, Nb, Cr, Mo, W.
  • the shape and size distribution of the powder particles play an important role in the production of compacts.
  • the result is closely related to the gaseous atomizing agent used.
  • Spherical powders result in low mechanical strength when compressed into green compacts, since the particles are only slightly deformed. At the same time, however, the density is relatively high, which makes it difficult to degas and expel unwanted foreign substances during further processing. In contrast, non-spherical powders provide green bodies of high strength combined with low density. However, the content of substances to be degassed (oxygen, water, hydrogen) is high.
  • the invention has for its object to provide a method for producing an aluminum alloy powder by atomizing a melt, which provides a green compact with the highest possible strength and at the same time low relative density (based on the theoretical maximum value of 100%) during compression.
  • the melt was atomized in a device by means of a gas stream to a powder with a maximum particle diameter of 50 ⁇ m.
  • Inert gases nitrogen, argon
  • oxygen oxygen
  • Example II Analogously to Example I, the melt was atomized into a powder in various ways and subsequently compacted. Samples for determining the compressive strength and the relative density were worked out from the compact. The results are as follows:
  • the green pressed bodies of the above exemplary embodiments were also subjected to a degassing process. It was found that the degassing times of the powders produced with inert atomizing gas with the addition of oxygen were between those with inert atomizing gas and those with air. Before the final thermomechanical treatment (hot pressing, extrusion), in which they reach their full, 100% density, the green pressed bodies should advantageously be degassed at a temperature of 350 to 400 ° C. for 1 to 10 hours.
  • the atomizing gas can be an inert gas such as nitrogen, argon or helium, to which 0.5 to 2% by volume of oxygen is added. It can also be a mixture of at least two of the aforementioned gases.
  • the method is preferably carried out in such a way that in the first step (atomization in the gas stream) a powder is produced which contains relatively small proportions of coarser, non-spherical particles and comparatively high proportions of fine spherical particles.
  • This can be achieved by a suitable choice of the gas composition, in particular the addition of oxygen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Dental Preparations (AREA)
  • Materials For Medical Uses (AREA)

Description

    Pulvermetallurgisches Verfahren zur Herstellung eines grünen Presskörpers hoher Festigkeit und niedriger relativer Dichte aus einer warmfesten Aluminiumlegierung Technisches Gebiet:
  • Warmfeste Aluminiumlegierungen, welche aus mit hoher Abkühlungsgeschwindigkeit durch Zerstäuben einer Schmelze gewonnenen Pulvern hergestellt werden. Hoher Gehalt an unter sonst üblichen Erstarrungsbedingungen nicht zu­lässigen Legierungsbestandteilen wie z.B. Fe und Cr.
  • Die Erfindung bezieht sich auf die Erzeugung von Alumi­niumlegierungspulvern und die Herstellung von Formkörpern aus diesen Pulvern.
  • Insbesondere betrifft sie ein pulvermetallurgisches Ver­fahren zur Herstellung eines grünen Presskörpers hoher Festigkeit und niedriger relativer, auf den porenlosen Zustand bezogener Dichte aus einer warmfesten Aluminium­legierung des Typs Al/Fe/X oder Al/Cr/X, wobei X = Ti, Zr, Hf, V, Nb, Cr, Mo, W sein kann.
  • Stand der Technik:
  • Aluminiumlegierungen, welche sich für die Erzeugung von Pulvern aus Schmelzen mittels Gasstrahlzerstäubung unter Anwendung sehr hoher Abkühlungsgeschwindigkeiten (10⁵°C/s und mehr) eignen und für die Herstellung warmfester Werk­stücke verwenden lassen, sind in zahlreichen Variationen bekannt geworden. Eine bedeutende Gruppe stellen die polynären, meist relativ hohe Eisengehalte aufweisenden Legierungen des Typs Al/Fe/X dar, wobei X mindestens eines der Elemente Ti, Zr, Hf, V, Nb, Cr, Mo, W bedeutet.
  • Bei der Herstellung von Presskörpern spielt unter anderem die Form und die Grössenverteilung der Pulverpartikel eine wichtige Rolle. Das Ergebnis hängt eng mit dem ver­wendeten gasförmigen Zerstäubungsmittel zusammen.
  • Wird ein inertes Gas (N, Ar, He) verwendet, wird die Oxydation und die Aufnahme von Wasser und Wasserstoff weitgehend unterdrückt. Es werden vorwiegend sphärische Partikel erzeugt.
  • Wird dagegen Luft als Zerstäubungsmittel verwendet, dann erfolgt eine beträchtliche Oxydation und Hydratation der Pulverpartikel. Letztere haben vorwiegend längliche und verzweigte unregelmässige, nicht-sphärische Form (Vergl. J. Meunier, ASTM Symposium on Rapidly Solidified Powder Aluminium Alloys, Philadelphia, 1984; Y.W. Kim, W.M. Griffith, F.H. Froes, J. of Metals, August 1985, 27.; G. Stanieck, Aluminium 60, 1984, 3; R.F. Singer, W. Oliver, W.D. Nix, Met. Trans. 11A, 1980, 1985; S.T. Morgan et al. in: M.S. Koczak und G.J. Hildeman, High Strength Powder Metallurgy Aluminium Alloys, 1982, TMS-­AIME).
  • Sphärische Pulver ergeben bei der Verdichtung zu grünen Presskörpern geringe mechanische Festigkeit, da die Par­tikel nur wenig verformt werden. Gleichzeitig ist aber die Dichte verhältnismässig hoch, was die Entgasung und Austreibung unerwünschter Fremdstoffe bei der Weiterver­arbeitung erschwert. Demgegenüber liefern nicht-sphäri­sche Pulver grüne Körper hoher Festigkeit kombiniert mit geringer Dichte. Dabei ist jedoch der Gehalt an zu entgasenden Stoffen (Sauerstoff, Wasser, Wasserstoff) hoch.
  • Aus dem oben Gesagten geht hervor, dass die Pulverher­stellung nach den bekannten Methoden im Hinblick auf die anzustrebenden Eigenschaften der fertigen Werkstücke zu wünschen übrig lassen. Entweder ist die mechanische Festigkeit der grünen Presskörper zu gering oder deren Gehalte an eingeschlossenen Schadstoffen zu hoch. Bei­des führt im Verlauf der Weiterverarbeitung zu Werkstücken mit ungenügenden, zum mindesten nicht mit den angestreb­ten Werten vereinbarten Festigkeitseigenschaften.
  • Es besteht daher ein grosses Bedürfnis nach einer Ver­besserung der Herstellungsverfahren für Pulver, welche zu besseren Endprodukten führen.
  • Darstellung der Erfindung:
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Erzeugung eines Aluminiumlegierungspulvers durch Zerstäuben einer Schmelze anzugeben, welches bei der Verdichtung einen grünen Presskörper mit möglichst hoher Festigkeit und gleichzeitig niedriger relativer Dichte (bezogen auf den theoretischen Höchstwert von 100%) liefert.
  • Diese Aufgabe wird dadurch gelöst, dass beim eingangs erwähnten Verfahren eine entsprechende Legierungsschmelze mittels eines Gasstrahls bestehend aus einem inerten Gas, welchem 0,5 bis 2 Vol.-% Sauerstoff beigemengt ist, zu feinen Partikeln zerstäubt wird und dass das derart erzeugte Pulver einer Verdichtung unterworfen wird.
  • In diesem Zusammenhang wird darauf hingewiesen, dass die vollständige Entfernung des Wassers und des Wasser­stoffs aus den hydrolysierten Al₂O₃-Oberflächenschich­ten der Pulverpartikel bei ca. 400°C während des Ent­gasungsvorganges im Falle der erfindungsgemässen Ver­wendung eines mit Sauerstoff dotierten Zerstäubungsgases bei der Pulvererzeugung schneller vor sich geht als im Falle konventioneller Zerstäubung mit Luft.
  • Weg zur Ausführung der Erfindung:
  • Die Erfindung wird anhand der nachfolgenden Ausführungs­beispiele erläutert.
  • Ausführungsbeispiel I:
  • Es wurde eine Aluminiumlegierung der nachfolgenden Zu­sammensetzung erschmolzen:
    Figure imgb0001
  • Die Schmelze wurde in einer Vorrichtung mittels eines Gasstromes zu einem Pulver von maximal 50 µm Partikel­durchmesser zerstäubt. Als Zerstäubungsgase wurden inerte Gase (Stickstoff, Argon) mit und ohne Sauerstoffzusatz verwendet.
  • Einige Hundert Gramm des Pulvers wurden in einen Gummi­ beutel abgefüllt, verschlossen und kalt verdichtet. Aus dem grünen Presskörper wurde ein zylindrischer Prüfkörper von 20 mm Durchmesser und 30 mm Höhe herausgearbeitet und einem Druckversuch unterworfen. Desgleichen wurde die jeweilige Dichte bezogen auf den theoretischen Wert bestimmt.
  • Es kann gezeigt werden, dass die aus Pulvern mit Sauer­stoffzusatz hergestellten grünen Presskörper bei ver­gleichsweise geringerer Dichte wesentlich höhere Festig­keiten aufwiesen als diejenigen aus Pulvern ohne Sauer­stoffzusatz (reine inerte Zerstäubungsgase).
  • Ausführungsbeispiel II:
  • Es wurde eine Legierung der nachfolgenden Zusammensetzung erschmolzen:
    Figure imgb0002
  • Analog Beispiel I wurde die Schmelze auf verschiedene Art und Weise zu einem Pulver zerstäubt und nachher ver­dichtet. Aus dem Presskörper wurden Proben zur Bestimmung der Druckfestigkeit und der relativen Dichte herausge­arbeitet. Die Resultate stellen sich wie folgt:
    Figure imgb0003
  • Ausführungsbeispiel III:
  • Es wurde eine Legierung der nachfolgenden Zusammensetzung erschmolzen:
    Figure imgb0004
  • Es gelang nicht, aus dem mit inertem Gas erzeugten Pulver einen Presskörper durch Kaltpressen herzustellen.
    Figure imgb0005
  • Die grünen Presskörper der vorstehenden Ausführungsbei­spiele wurden ausserdem einem Entgasungsprozess unter­worfen. Dabei zeigte sich, dass die Entgasungszeiten der mit inertem Zerstäubungsgas mit Sauerstoffzusatz erzeugten Pulver zwischen denjenigen mit inertem Zer­stäubungsgas und denjenigen mit Luft lagen. Vorteilhafter­weise sollen die grünen Presskörper vor der endgültigen thermomechanischen Behandlung (Heisspressen, Strangpres­sen), bei welcher sie ihre volle, 100%ige Dichte errei­chen, während 1 bis 10 h bei einer Temperatur von 350 bis 400°C entgast werden.
  • Die Erfindung ist nicht auf die Ausführungsbeispiele beschränkt. Sie lässt sich grundsätzlich auf alle warm­festen Aluminiumlegierungen des Typs Al/Fe/X oder Al/Cr/X anwenden, wobei X = Ce, Ti, Zr, Hf, V, Nb, Cr, Mo, W bedeutet.
  • Das Zerstäubungsgas kann ein inertes Gas wie Stickstoff, Argon oder Helium sein, dem 0,5 bis 2 Vol.-% Sauerstoff beigemengt sind. Es kann sich auch um eine Mischung von mindestens zweier der vorgenannten Gase handeln.
  • Das Verfahren wird vorzugsweise so geführt, dass im er­sten Schritt (Zerstäubung im Gasstrom) ein Pulver erzeugt wird, welches verhältnismässig geringe Anteile gröberer, nicht-sphärischer Partikel und verhältnismässig hohe Anteile feiner sphärischer Partikel enthält. Dies kann durch geeignete Wahl der Gaszusammensetzung insbesondere des Sauerstoffzusatzes erzielt werden.

Claims (4)

1. Pulvermetallurgisches Verfahren zur Herstellung eines grünen Presskörpers hoher Festigkeit und niedriger relativer, auf den porenlosen Zustand bezogener Dichte aus einer warmfesten Aluminiumlegierung des Typs Al/Fe/X oder Al/Cr/X, wobei X = Ti, Ce, Zr, Hf, V, Nb, Cr, Mo, W sein kann, dadurch gekennzeichnet, dass eine entsprechende Legierungsschmelze mittels eines Gasstrahls bestehend aus einem inerten Gas, welchem 0,5 bis 2 Vol.-% Sauerstoff beigemengt sind, zu feinen Partikeln zerstäubt wird und dass das derart erzeugte Pulver einer Verdichtung unterworfen wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als inertes Gas Stickstoff, Argon oder Helium oder eine Mischung mindestens zweier dieser Gase ver­wendet wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass im ersten Schritt ein Pulver erzeugt wird, das verhältnismässig geringe Anteile gröberer nicht-sphä­rischer Partikel und verhältnismässig hohe Anteile feiner sphärischer Partikel enthält.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der grüne Presskörper während 1 bis 10 h bei einer Temperatur von 350 bis 400°C entgast wird.
EP87111463A 1986-08-12 1987-08-07 Pulvermetallurgisches Verfahren zur Herstellung eines grünen Presskörpers hoher Festigkeit und niedriger relativer Dichte aus einer warmfesten Aluminiumlegierung Expired - Lifetime EP0256450B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3230/86 1986-08-12
CH3230/86A CH673240A5 (de) 1986-08-12 1986-08-12

Publications (2)

Publication Number Publication Date
EP0256450A1 EP0256450A1 (de) 1988-02-24
EP0256450B1 true EP0256450B1 (de) 1991-01-30

Family

ID=4251456

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87111463A Expired - Lifetime EP0256450B1 (de) 1986-08-12 1987-08-07 Pulvermetallurgisches Verfahren zur Herstellung eines grünen Presskörpers hoher Festigkeit und niedriger relativer Dichte aus einer warmfesten Aluminiumlegierung

Country Status (7)

Country Link
US (2) US4758405A (de)
EP (1) EP0256450B1 (de)
JP (1) JPS6347304A (de)
CH (1) CH673240A5 (de)
DE (1) DE3767807D1 (de)
DK (1) DK415687A (de)
NO (1) NO873364L (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH673240A5 (de) * 1986-08-12 1990-02-28 Bbc Brown Boveri & Cie
EP0451093A1 (de) * 1990-04-04 1991-10-09 Alusuisse-Lonza Services Ag Hochschmelzende, metallische Verbindung
US5114470A (en) * 1990-10-04 1992-05-19 The United States Of America As Represented By The Secretary Of Commerce Producing void-free metal alloy powders by melting as well as atomization under nitrogen ambient
JPH0625782A (ja) * 1991-04-12 1994-02-01 Hitachi Ltd 高延性アルミニウム焼結合金とその製造法及びその用途
JP2790935B2 (ja) * 1991-09-27 1998-08-27 ワイケイケイ株式会社 アルミニウム基合金集成固化材並びにその製造方法
US5368657A (en) * 1993-04-13 1994-11-29 Iowa State University Research Foundation, Inc. Gas atomization synthesis of refractory or intermetallic compounds and supersaturated solid solutions
US6010583A (en) * 1997-09-09 2000-01-04 Sony Corporation Method of making unreacted metal/aluminum sputter target
US8603213B1 (en) 2006-05-08 2013-12-10 Iowa State University Research Foundation, Inc. Dispersoid reinforced alloy powder and method of making
US7699905B1 (en) 2006-05-08 2010-04-20 Iowa State University Research Foundation, Inc. Dispersoid reinforced alloy powder and method of making
US20090263273A1 (en) * 2008-04-18 2009-10-22 United Technologies Corporation High strength L12 aluminum alloys
US8778098B2 (en) * 2008-12-09 2014-07-15 United Technologies Corporation Method for producing high strength aluminum alloy powder containing L12 intermetallic dispersoids
US8778099B2 (en) * 2008-12-09 2014-07-15 United Technologies Corporation Conversion process for heat treatable L12 aluminum alloys
US20100143177A1 (en) * 2008-12-09 2010-06-10 United Technologies Corporation Method for forming high strength aluminum alloys containing L12 intermetallic dispersoids
WO2010087605A2 (ko) * 2009-01-28 2010-08-05 자동차부품연구원 내열 알루미늄 합금 및 그 제조방법
US20100226817A1 (en) * 2009-03-05 2010-09-09 United Technologies Corporation High strength l12 aluminum alloys produced by cryomilling
US20100254850A1 (en) * 2009-04-07 2010-10-07 United Technologies Corporation Ceracon forging of l12 aluminum alloys
US20100252148A1 (en) * 2009-04-07 2010-10-07 United Technologies Corporation Heat treatable l12 aluminum alloys
US9611522B2 (en) * 2009-05-06 2017-04-04 United Technologies Corporation Spray deposition of L12 aluminum alloys
US9127334B2 (en) * 2009-05-07 2015-09-08 United Technologies Corporation Direct forging and rolling of L12 aluminum alloys for armor applications
US20110044844A1 (en) * 2009-08-19 2011-02-24 United Technologies Corporation Hot compaction and extrusion of l12 aluminum alloys
US8728389B2 (en) * 2009-09-01 2014-05-20 United Technologies Corporation Fabrication of L12 aluminum alloy tanks and other vessels by roll forming, spin forming, and friction stir welding
US8409496B2 (en) * 2009-09-14 2013-04-02 United Technologies Corporation Superplastic forming high strength L12 aluminum alloys
US20110064599A1 (en) * 2009-09-15 2011-03-17 United Technologies Corporation Direct extrusion of shapes with l12 aluminum alloys
US9194027B2 (en) * 2009-10-14 2015-11-24 United Technologies Corporation Method of forming high strength aluminum alloy parts containing L12 intermetallic dispersoids by ring rolling
US20110091346A1 (en) * 2009-10-16 2011-04-21 United Technologies Corporation Forging deformation of L12 aluminum alloys
US8409497B2 (en) * 2009-10-16 2013-04-02 United Technologies Corporation Hot and cold rolling high strength L12 aluminum alloys
US20110091345A1 (en) * 2009-10-16 2011-04-21 United Technologies Corporation Method for fabrication of tubes using rolling and extrusion

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2967351A (en) * 1956-12-14 1961-01-10 Kaiser Aluminium Chem Corp Method of making an aluminum base alloy article
US3462248A (en) * 1956-12-14 1969-08-19 Kaiser Aluminium Chem Corp Metallurgy
US2963780A (en) * 1957-05-08 1960-12-13 Aluminum Co Of America Aluminum alloy powder product
DE1758844A1 (de) * 1968-08-19 1971-03-04 Gerliwanow Wadim G Verfahren zum Gewinnen von feindispersen Metall- und Legierungspulvern
US3954458A (en) * 1973-11-12 1976-05-04 Kaiser Aluminum & Chemical Corporation Degassing powder metallurgical products
US4347076A (en) * 1980-10-03 1982-08-31 Marko Materials, Inc. Aluminum-transition metal alloys made using rapidly solidified powers and method
US4647321A (en) * 1980-11-24 1987-03-03 United Technologies Corporation Dispersion strengthened aluminum alloys
US4464199A (en) * 1981-11-20 1984-08-07 Aluminum Company Of America Aluminum powder alloy product for high temperature application
US4435213A (en) * 1982-09-13 1984-03-06 Aluminum Company Of America Method for producing aluminum powder alloy products having improved strength properties
DE3481322D1 (de) * 1983-12-02 1990-03-15 Sumitomo Electric Industries Aluminiumlegierungen und verfahren zu ihrer herstellung.
US4661172A (en) * 1984-02-29 1987-04-28 Allied Corporation Low density aluminum alloys and method
JPS6148551A (ja) * 1984-08-13 1986-03-10 Sumitomo Light Metal Ind Ltd 高温強度に優れたアルミニウム合金成形材
CH673242A5 (de) * 1986-08-12 1990-02-28 Bbc Brown Boveri & Cie
CH673240A5 (de) * 1986-08-12 1990-02-28 Bbc Brown Boveri & Cie

Also Published As

Publication number Publication date
EP0256450A1 (de) 1988-02-24
NO873364D0 (no) 1987-08-11
DK415687D0 (da) 1987-08-10
US4832741A (en) 1989-05-23
JPS6347304A (ja) 1988-02-29
CH673240A5 (de) 1990-02-28
US4758405A (en) 1988-07-19
NO873364L (no) 1988-02-15
DK415687A (da) 1988-02-13
DE3767807D1 (de) 1991-03-07

Similar Documents

Publication Publication Date Title
EP0256450B1 (de) Pulvermetallurgisches Verfahren zur Herstellung eines grünen Presskörpers hoher Festigkeit und niedriger relativer Dichte aus einer warmfesten Aluminiumlegierung
DE69920621T2 (de) Verfahren zur herstellung von sinterteilen
DE69915797T2 (de) Verfahren zur herstellung dichter teile durch uniaxiales pressen agglomerierter kugelförmiger metallpulver.
WO2005080618A1 (de) Verfahren zur herstellung einer molybdän-legierung
DE2362499C2 (de) Verfahren zur pulvermetallurgischen Herstellung von Strangprßkörpern
DE2625213A1 (de) Verfahren zur herstellung von gesinterten formkoerpern
CH646999A5 (de) Gegenstand aus einer hochfesten aluminiumlegierung und verfahren zu seiner herstellung.
DE2258485A1 (de) Verfahren und vorrichtung zur herstellung von guss- und pressformen
DE2200670B2 (de)
EP0045985B1 (de) Verfahren zur Herstellung einer Kupferbasis-Gedächtnislegierung
EP0545145B1 (de) Herstellung eines Poren enthaltenden Kupferwerkstoffes als Halbzeug das einer Zerspanungsbehandlung unterworfen wird
DE3717048C1 (de) Verfahren zur Herstellung von Legierungspulvern fuer Dentalamalgame
DE2049546B2 (de) Verfahren zur pulvermetallurgischen Herstellung eines dispersionsverfestigten Legierungskörpers
DE4019305A1 (de) Pulver und produkte von tantal, niob und deren legierungen
DE2814553B2 (de) Pulvermetallurgisch hergestellte, gänzlich dichte Erzeugnisse aus Nickel-Superlegierungen
EP0207268B1 (de) Aluminiumlegierung, geeignet für rasche Abkühlung aus einer an Legierungsbestandteilen übersättigten Schmelze
EP0256449B1 (de) Pulvermetallurgische Herstellung eines Werkstücks aus einer warmfesten Aluminiumlegierung
EP0327064A2 (de) Verfahren zur Herstellung pulvermetallurgischer Gegenstände, insbesondere langgestreckter Gegenstände, wie Stangen, Profile, Rohre od. dgl.
DE3313736A1 (de) Hochfester formkoerper aus einer mechanisch bearbeitbaren pulvermetall-legierung auf eisenbasis, und verfahren zu dessen herstellung
DE2102980A1 (de) Dispersionsgehartete Metalle und Me tall Legierungen und Verfahren zu ihrer Herstellung
DE3308409C2 (de)
DE60212363T2 (de) Verfahren zur herstellung von verstärktem platinmaterial
DE102019104492B4 (de) Verfahren zur herstellung einer kristallinen aluminium-eisen-silizium-legierung
EP0868956B1 (de) Verfahren zur Herstellung von Metallkörpern mit innerer Porosität
DE2826301A1 (de) Kupferlegierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19880715

17Q First examination report despatched

Effective date: 19900314

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910130

REF Corresponds to:

Ref document number: 3767807

Country of ref document: DE

Date of ref document: 19910307

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
EN Fr: translation not filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910716

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910719

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910831

Ref country code: CH

Effective date: 19910831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920808

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920807

EUG Se: european patent has lapsed

Ref document number: 87111463.3

Effective date: 19930307