EP0249677B1 - Schnellfliegender Flugkörper - Google Patents

Schnellfliegender Flugkörper Download PDF

Info

Publication number
EP0249677B1
EP0249677B1 EP87101159A EP87101159A EP0249677B1 EP 0249677 B1 EP0249677 B1 EP 0249677B1 EP 87101159 A EP87101159 A EP 87101159A EP 87101159 A EP87101159 A EP 87101159A EP 0249677 B1 EP0249677 B1 EP 0249677B1
Authority
EP
European Patent Office
Prior art keywords
missile
tip
telescopic
telescopic tube
tip casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87101159A
Other languages
English (en)
French (fr)
Other versions
EP0249677A1 (de
Inventor
Walter Kranz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Messerschmitt Bolkow Blohm AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messerschmitt Bolkow Blohm AG filed Critical Messerschmitt Bolkow Blohm AG
Publication of EP0249677A1 publication Critical patent/EP0249677A1/de
Application granted granted Critical
Publication of EP0249677B1 publication Critical patent/EP0249677B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/32Range-reducing or range-increasing arrangements; Fall-retarding means
    • F42B10/38Range-increasing arrangements
    • F42B10/42Streamlined projectiles
    • F42B10/46Streamlined nose cones; Windshields; Radomes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/60Steering arrangements
    • F42B10/62Steering by movement of flight surfaces

Definitions

  • the invention relates to a fast-flying missile, in particular a grenade flying at supersonic speeds, according to the preamble of claim 1.
  • a fast-flying missile in the form of a grenade to be fired from a tube is known from US Pat. No. 3,292,879, in which a tail-tail unit is extended after the launch to stabilize the flight and to reduce pendulum vibrations.
  • This tail unit is received in the shell of the grenade when it is launched and is connected to the piston of a cylinder-piston unit which extends along the central axis of the grenade.
  • a small pyrotechnic charge is detonated at the bottom of the tail unit, the propellant gases of which flow through a channel inside the piston into the cylinder space and, when the piston is acted on, the tail unit connected to it extend out of the shell of the grenade to the rear.
  • the aerodynamic pressure point of the grenade viewed from the missile tip, is moved relatively far behind the center of gravity of the grenade, as a result of which the aerodynamic flight stability is increased.
  • the grenade reacts to disturbing aerodynamic transverse forces only relatively slowly, so that it maintains the ballistic predetermined trajectory relatively reliably and, in addition, pendulum vibrations around the pitch axis are noticeably reduced.
  • a missile which contains an active control, which consists in that the missile tip is articulated to the missile housing and can be pivoted with the aid of actuators in the form of cylinder-piston units. This pivoting takes place e.g. on the basis of the signals from a target-searching sensor, the tip of the missile then being pivoted with the aid of the actuators in such a way that it points to the target to be targeted. After swiveling the tip, the remaining grenade housing is retightened until the center axis of the tip and the grenade coincide again.
  • the invention has for its object to provide a structurally simple aerodynamic stabilizing device for a missile, with which a pendulum of the missile is counteracted.
  • a stabilized device serves as a mass-balanced, freely movable tip shell of the missile, the center of gravity of which essentially coincides with the bearing point.
  • the pressure point lies behind the bearing point in order to keep the tip cover aerodynamically stable. Due to the pressure distribution, the tip cover is directed into the wind during flight, i.e. in the direction of flow and therefore does not generate any significant moments around the missile axis. This stabilizes the missile and pulls it into the wind when the usual pressure distribution behind the tip shell in connection with the center of gravity of the missile creates a stabilizing moment and when the disturbing torques on the tip shell - which are largely due to what is happening behind and in it - are low.
  • the construction and storage of the tip cover are relatively simple, in any case the caliber of the missile is not enlarged by the tip cover, so that it can be easily launched as a fast-flying grenade without swirl from a launch tube.
  • the tip cover is advantageously mounted at the front end of a telescopic cylinder, which is only extended a certain time after the missile has been launched, when the inflow conditions on the tip cover no longer have a destabilizing effect on it.
  • the telescopic cylinder can be extended mechanically or pyrotechnically according to claim 5.
  • Figures la to c each show a section through a grenade tip with a tip casing which is brought with the aid of a telescopic cylinder from a rest position according to FIG. 1a through an intermediate position according to FIG. 1b into the active position according to FIG. 1c, in which it is used to stabilize the grenade serves.
  • a grenade 1 flying at supersonic speed has a cylindrical housing 2 with a longitudinal axis 3, only partially indicated in the figures, to which a thin-walled, conical tip shell 4 adjoins as the missile tip.
  • a balancing core 5 is located, which penetrates the target upon impact.
  • the cylindrical grenade housing 2 is closed off from the tip shell 4 by a partition 6 which carries a guide body 7 which is designed in the manner of a truncated cone and projects into the tip shell 4.
  • the balancing core 5 penetrating the partition 6 is surrounded over part of its length with a guide sleeve 8.
  • a first telescopic tube 9 slides between this fixed guide sleeve and the truncated cone guide body, which carries a stop 10 at the rear end facing the partition 6, to which a corresponding stop 11 on the guide body 7 is assigned at a distance.
  • a second extendable telescopic tube 12 is mounted.
  • the extension length of this telescopic tube 12 is limited by two stops 13 and 14 on the two telescopic tubes 12 and 9, respectively.
  • the telescopic tube 12 has at its front end a tip 15 located on the longitudinal axis 3, which is opposite a recess 16 with a triangular cross section in a front insert part of the tip cover 4.
  • the tip cover 4 In the rest position of the tip cover 4 according to FIG. 1a, the tip cover 4 is supported on the one hand by the guide body 7 in the region of the partition and on the other on an outer front shoulder 17 on the telescopic tube 9.
  • the tip 15 and the recess 16 do not interlock.
  • an annular gas generator 18 is located adjacent to the partition 6, the pyrotechnic propellant charge of which can be ignited by a mass ring 19.
  • the gas generator is connected via several channels 20 to the telescopic cylinder formed from the guide body 7, guide sleeve 8 and the two telescopic tubes 9 and 12, the channels 20 opening into the telescopic cylinder behind the stop 10 of the telescopic tube 9.
  • further channels 21 extend from the gas generator 18 and open into the space between the guide body 7 and the tip cover 4.
  • the mass ring 19 is accelerated due to its inertia in the direction of the pyrotechnic charge of the gas generator and ignites it. Gas now flows through the channels 20 into the telescopic cylinder and presses on the stop 10 of the first telescopic tube 9. This is pushed forward until the stop 10 hits the stop 11 on the guide body 7.
  • an annular slot 22 is released between the stop 10 of the telescopic tube 9 and the guide sleeve 8, so that the gas from the gas generator can now flow into the interior of the telescopic tube 9 and thereby push the second extendable telescopic tube 12 forward.
  • its tip 15 runs into the recess 16 of the tip cover, so that this in the manner of a tip bearing at the point of contact, i.e. H. is supported at bearing point 23.
  • the inner telescopic tube 12 is extended further, the positive connection of the tip cover 4 on the shoulder 17 of the first telescopic tube is released.
  • the stops 13 and 14 come into contact on the inner and outer telescopic tube, the tip cover 4 has reached a position according to FIG.
  • the bearing point 23 is selected so that it lies before the aerodynamic pressure point. In the state shown in FIG. 1 c, the tip sheath 4 can be directed into the incoming wind.
  • the described delayed release of the tip cover 4 takes place only after a sufficiently large distance between the rear edge 24 and the partition 6 has been reached, so that asymmetrical suction effects from the inside of the tip cover or backflow asymmetries in the region of the rear edge 24, which are caused by drawn-in air currents could be kept to a minimum. These disturbances are also kept low by blowing gas into the tip sheath via the channels 21. If the disturbances occurring when the rear edge 24 is detached from the support on the support body 7 are only slight, the tip cover 4 can also be pushed forward by jointly extending the two telescopic tubes 9 and 12. In such a case it is e.g. B. possible to extend the telescopic cylinder using a mechanical spring.
  • the grenade 1 in the position of the tip casing shown in FIG. 1c, flows parallel to the axis during the flight, it remains in the ideal flight state in which the direction of flight and the direction of the longitudinal axis 3 coincide. However, if this inflow changes due to an oscillation of the grenade, the freely movable tip cover 4 is directed into the wind, so that the tip cover axis no longer coincides with the longitudinal axis 3 of the grenade 1. This results in different flow conditions on opposite sides in the area of the grenade housing 2, so that it is pulled into the wind, so to speak. This counteracts the swinging of the grenade and stabilizes the grenade.
  • the tip bearing between the inner telescopic tube 12 and the tip cover 4 can of course by other bearings, for. B. be replaced by a ball guide of the tip cover on the telescopic tube.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Toys (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Escalators And Moving Walkways (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

  • Die Erfindung bezieht sich auf einen schnellfliegenden Flugkörper, insbesondere eine mit Überschallgeschwindigkeit fliegende Granate gemäß dem Oberbegriff des Patentanspruches 1.
  • Aus der US-A 3 292 879 ist ein schnellfliegender Flugkörper in Form einer aus einem Rohr abzuschie- ßenden Granate bekannt, bei der nach dem Abschuß zur Stabilisierung des Fluges und zur Verminderung von Pendelschwingungen ein heckseitiges Leitwerk ausgefahren wird. Dieses Leitwerk ist beim Abschuß im Gehäuse der Granate aufgenommen und mit dem Kolben einer Zylinder-Kolbeneinheit verbunden, die sich entlang der Mittelachse der Granate erstreckt. Beim Abschuß wird eine kleine pyrotechnische Ladung am Boden des Leitwerkes gezündet, dessen Treibgase durch einen Kanal innerhalb des Kolbens in den Zylinderraum strömen und durch Beaufschlagung des Kolbens das mit diesem verbundene Leitwerk aus dem Gehäuse der Granate nach hinten ausfahren. Durch diese Maßnahme wird der aerodynamische Druckpunkt der Granate von der Flugkörperspitze aus betrachtet relativ weit hinter den Massenschwerpunkt der Granate verlegt, wodurch die aerodynamische Flugstabilität erhöht wird. Die Granate reagiert auf störende aerodynamische Querkräfte nur relativ träge, so daß sie die ballistisch vorgegebene Flugbahn relativ sicher einhält und zudem Pendelschwingungen um die Nickachse merklich reduziert werden.
  • Mit der bekannten Konstruktion ist es jedoch nicht möglich, schnell auf auch kurzfristige Querkräfte zu reagieren; insbesondere kann bei dieser Konstruktion der Granate keine Gegenkraft erzeugt werden, die eine störende Querkraft kompensiert. Die Flugbahn der Granate wird daher mehr oder minder von der ballistisch vorgegebenen Flugbahn abweichen.
  • Aus der WO A-82/03453 ist ein Flugkörper bekannt, der eine aktive Steuerung enthält, die darin besteht, daß die Flugkörperspitze gelenkig an dem Flugkörpergehäuse befestigt und mit Hilfe von Aktuatoren in Form von Zylinder-Kolbeneinheiten verschwenkt werden kann. Diese Verschwenkung erfolgt z.B. aufgrund der Signale eines zielsuchenden Sensors, wobei die Spitze des Flugkörpers dann mit Hilfe der Aktuatoren so verschwenkt wird, daß sie auf das anzufliegende Ziel weist. Nach dem Verschwenken der Spitze wird das übrige Granatengehäuse nachgezogen, bis die Mittelachse der Spitze und der Granate wieder zusammenfallen.
  • Dieses aktive System könnte zwar auch eine automatische Kompensation von auf den Flugkörper wirkenden Querkräften ermöglichen, jedoch wären hierzu zusätzliche Sensoren notwendig. Die durch die aktive Steuerung des Flugkörpers bereits notwendig komplizierte Konstruktion würde daher noch aufwendiger.
  • Der Erfindung liegt die Aufgabe zugrunde, eine konstruktiv einfache aerodynamische Stabilisiervorrichtung für einen Flugkörper anzugeben, mit der einer Pendelung des Flugkörpers entgegen gewirkt wird.
  • Diese Aufgabe ist gemäß der Erfindung durch die im kennzeichnenden Teil des ersten Patentanspruchs angegebenen Merkmale gelöst.
  • Demnach dient als Stabilisiervorrichtung eine massenausgeglichen allseitig frei bewegbare Spitzenhülle des Flugkörpers, deren Schwerpunkt im wesentlichen mit dem Lagerpunkt zusammenfällt. Deren Druckpunkt liegt hinter dem Lagerpunkt, um die Spitzenhülle aerodynamisch stabil zu halten. Aufgrund der Druckverteilung richtet sich die Spitzenhülle während des Fluges in den Wind, d.h. in die Anströmrichtung und erzeugt somit keine wesentlichen Momente um die Flugkörperachse. Hierdurch wird der Flugkörper stabilisiert und in den Wind gezogen, wenn die übliche Druckverteilung hinter der Spitzenhülle im Zusammenhang mit dem Flugkörperschwerpunkt ein stabilisierendes Moment erzeugt und wenn die Störmomente auf die Spitzenhülle - die weitgehend bedingt sind vom Geschehen hinter und in ihr-gering sind.
  • Die Konstruktion und Lagerung der Spitzenhülle sind relativ einfach, auf jeden Fall wird durch die Spitzenhülle das Kaliber des Flugkörpers nicht vergrößert, so daß dieser als schnellfliegende Granate ohne Drall aus einem Abschußrohr einfach abgeschossen werden kann. Die Spitzenhülle ist gemäß Anspruch 2 vorteilhaft am vorderen Ende eines Teleskopzylinders gelagert, der erst gewisse Zeit nach dem Abschuß des Flugkörpers ausgefahren wird, wenn die Anströmverhältnisse an der Spitzenhülle auf diese nicht mehr destabilisierend wirken.
  • Der Teleskopzylinder kann mechanisch oder pyrotechnisch gemäß Anspruch 5 ausfahrbar sein.
  • Weitere Ausgestaltungen gehen aus den Unteransprüchen hervor. Die Erfindung ist in einem Ausführungsbeispiel anhand der Zeichnung näher erläutert:
  • Figuren la bis c zeigen jeweils einen Schnitt durch eine Granatenspitze mit einer Spitzenhülle die mit Hilfe eines Teleskopzylinders aus einer Ruheposition gemäß Figur 1 a über eine Zwischenposition gemäß Figur 1 b in die Wirkstellung gemäß Figur 1 c gebracht wird, in der sie zum Stabilisieren der Granate dient.
  • Eine mit Überschallgeschwindigkeit fliegende Granate 1 weist ein in den Figuren nur teilweise angedeutetes zylindrisches Gehäuse 2 mit einer Längsachse 3 auf, an das sich als Flugkörperspitze eine dünnwandige kegelige Spitzenhülle 4 anschließt. In der Längsachse 3 der Granate ist ein Wuchtkern 5 gelegen, der das Ziel beim Aufschlag durchdringt. Das zylindrische Granatengehäuse 2 ist zur Spitzenhülle 4 durch eine Trennwand 6 abgeschlossen, die einen in Art eines Kegelstumpfes ausgebildeten, in die Spitzenhülle 4 hineinragenden Führungskörper 7 trägt. Der die Tennwand 6 durchdringende Wuchtkern 5 ist über einen Teil seiner Länge mit einer Führungshülse 8 umgeben. Zwischen dieser feststehenden Führungshülse und dem Kegelstumpf-Führungskörper 7 gleitet ein erstes Teleskoprohr 9, welches am hinteren, der Trennwand 6 zugewandten Ende einen Anschlag 10 trägt, dem im Abstand ein korrespondierender Anschlag 11 an dem Führungskörper 7 zugeordnet ist. In dem ersten ausfahrbaren Teleskoprohr 9 ist ein zweites ausfahrbares Teleskoprohr 12 gelagert.
  • Die Ausfahrlänge dieses Teleskoprohres 12 ist durch zwei Anschläge 13 und 14 an den beiden Teleskoprohren 12 bzw. 9 begrenzt. Das Teleskoprohr 12 trägt an seinem vorderen Ende eine auf der Längsachse 3 gelegene Spitze 15, der in einem vorderen Einsatzteil der Spitzenhülle 4 eine im Querschnitt dreieckförmige Ausnehmung 16 gegenüberliegt.
  • In der Ruheposition der Spitzenhülle 4 gemäß Figur 1a wird die Spitzenhülle 4 einmal durch den Führungskörper 7 im Bereich der Trennwand und zum anderen auf einer äußeren vorderen Schulter 17 am Teleskoprohr 9 abgestützt. Die Spitze 15 und die Ausnehmung 16 greifen nicht ineinander.
  • In dem Führungskörper 7 ist benachbart zu der Trennwand 6 ein kreisringförmiger Gasgenerator 18 gelegen, dessen pyrotechnische Treibladung durch einen Massenring 19 gezündet werden kann. Der Gasgenerator steht über mehrere Kanäle 20 mit dem aus Führungskörper 7, Führungs -hülse 8 und den beiden Teleskoprohren 9 und 12 gebildeten Teleskopzylinder in Verbindung, wobei die Kanäle 20 hinter dem Anschlag 10 des Teleskoprohres 9 in den Teleskopzylinder münden. Außerdem gehen vom Gasgenerator 18 noch weitere Kanäle 21 aus, die in dem Zwischenraum zwischen Führungskörper 7 und Spitzenhülle 4 münden.
  • Beim Abschuß der Granate aus dem nicht gezeigten Abschußrohr, wird der Massering 19 aufgrund seiner Trägheit in Richtung auf die pyrotechnische Ladung des Gasgenerators beschleunigt und zündet diese. Ober die Kanäle 20 strömt jetzt Gas in den Teleskopzylinder und drückt auf den Anschlag 10 des ersten Teleskoprohres 9. Dieses wird nach vorn geschoben, bis der Anschlag 10 auf den Anschlag 11 am Führungskörper 7 aufläuft.
  • Während dieser Ausfahrbewegung wird die Spitzenhülle 4 weiterhin auf der Schulter 17 des Teleskoprohres abgestützt. Die Spitzenhülle 4 wird außerdem durch das aus den Kanälen 21 austretende Gas stabilisiert. Dieser Zwischenzustand ist in Figur 1 b gezeigt.
  • In diesen Zwischenzustand wird ein Ringschlitz 22 zwischen dem Anschlag 10 des Teleskoprohres 9 und der Führungshülse 8 freigegeben, so daß jetzt auch das Gas des Gasgenerators in das Innere des Teleskoprohres 9 strömen kann und dabei das zweite ausfahrbare Teleskoprohr 12 nach vorne schiebt. Zunächst läuft dessen Spitze 15 in die Ausnehmung 16 der Spitzenhülle, so daß diese in Art eines Spitzenlagers am Berührungspunkt, d. h. am Lagerpunkt 23 abgestützt wird. Beim weiteren Ausfahren des inneren Teleskoprohres 12 löst sich die formschlüssige Verbindung der Spitzenhülle 4 an der Schulter 17 des ersten Teleskoprohres. Wenn die Anschläge 13 und 14 am inneren und äußeren Teleskoprohr in Kontakt kommen, hat die Spitzenhülle 4 eine Lage gemäß Figur 1c erreicht, in der sie um den Lagerpunkt 23 in allen Richtungen frei schwenkbar ist. Um die Spitzenhülle aerodynamisch zu stabilisieren, ist der Lagerpunkt 23 so gewählt, daß er vor dem aerodynamischen Druckpunkt liegt. Die Spitzenhülle 4 kann sich in dem in Figur 1 c gezeigten Zustand in den anströmenden Wind richten.
  • Die geschilderte verzögerte Freigabe der Spitzenhülle 4 erfolgt erst, nachdem ein genügend großer Abstand zwischen deren Hinterkante 24 und der Trennwand 6 erreicht ist, so daß unsymmetrische Saugeffekte aus dem Inneren der Spitzenhülle bzw. Rückstauunsymmetrien im Bereich der Hinterkante 24, die durch eingezogene Luftströmungen verursacht werden könnten, auf ein Mindestmaß beschränkt bleiben. Diese Störungen werden auch durch das Einblasen von Gas in die Spitzenhülle über die Kanäle 21 gering gehalten. Wenn die beim Ablösen der Hinterkante 24 von der Auflage an dem Stützkörper 7 auftretenden Störungen nur gering sind, kann die Spitzenhülle 4 auch durch gemeinsames Ausfahren der beiden Teleskoprohre 9 und 12 nach vorne geschoben werden. In einem solchen Fall ist es z. B. möglich, den Teleskopzylinder mit Hilfe einer mechanischen Feder auszufahren.
  • Wird die Granate 1 in der in Figur 1c gezeigten Lage der Spitzenhülle während des Fluges achsparallel angeströmt, so verbleibt sie in dem idealen Flugzustand, in dem Flugrichtung und Richtung der Längsachse 3 zusammenfallen. Ändert sich jedoch diese Anströmung durch eine Pendelung der Granate, so richtet sich die frei bewegliche Spitzenhülle 4 in den Wind, so daß die Spitzenhüllenachse nicht mehr mit der Längsachse 3 der Granate 1 zusammenfällt. Hierdurch ergeben sich unterschiedliche Strömungsverhältnisse an entgegengesetzten Seiten im Bereich des Granatengehäuses 2, so daß dieses sozusagen in den Wind gezogen wird. Der Pendelung der Granate wird hierdurch entgegengewirkt, die Granate stabilisiert.
  • Es wäre im übrigen auch möglich, über die Kanäle 21 gesteuert Gas in den Innenraum der Spitzenhülle 4 zu blasen, um diese gewollt aus der mit dem Granatengehäuse 2 koaxialen Lage zu zwingen. Auch hierdurch ändern sich dann die Anströmverhältnisse im Bereich des Granatengehäuses 2. Auf diese Möglichkeit wäre in gewissen Grenzen eine Steuerung der Granate möglich.
  • Das Spitzenlager zwischen innerem Teleskoprohr 12 und Spitzenhülle 4 kann selbstverständlich durch andere Lager, z. B. durch eine Kugelführung der Spitzenhülle auf dem Teleskoprohr ersetzt werden.

Claims (6)

1. Schnellfliegender Flugkörper (1), insbesondere mit Überschallgeschwindigkeit fliegende Granate, mit einer während des Fluges des Flugkörpers (1) ausfahrbaren Vorrichtung (4, 9) zum Stabilisieren des Flugkörpers (1) und zur Verminderung von dessen Pendelung, dadurch gekennzeichnet, daß der Flugkörper (1) als Stabilisiervorrichtung im Bereich der Flugkörperspitze eine rotationssymmetrische, im wesentlichen kegelige Spitzenhülle (4) aufweist, die massenausgeglichen um einen auf der Flugkörper-Längsachse (3) gelegenen Lagerpunkt (23) allseitig frei schwenkbar gelagert ist.
2. Flugkörper nach Anspruch 1, dadurch gekennzeichnet, daß die Spitzenhülle am vorderen Ende (15) eines in Richtung der Flugkörperlängsachse (3) ausfahrbaren Teleskopzylinders (7, 8, 9, 12) gelagert ist, der auf seiner anderen Seite mit dem Gehäuse (2) des Flugkörpers verbunden ist.
3. Flugkörper nach Anspruch 2, dadurch gekennzeichnet, daß der Teleskopzylinder (7, 8, 9, 12) ein mit dem Flugkörpergehäuse (2) fest verbundenes (7, 8) und zwei nacheinander ausfahrbare Teleskoprohre (9, 12) aufweist, daß die Spitzenhülle (4) während des Ausfahrens des in dem feststehenden Teleskoprohr (7, 8) gleitenden, zuerst ausfahrbaren Teleskoprohres (9) auf einer vorderen Schulter (17) dieses Teleskoprohres (9) formschlüssig gehalten ist, und daß der Lagerpunkt (23) für die Spitzenhülle (4) an dem vorderen Ende (15) des zweiten anschließend unter Freigeben der formschlüssigen Verbindung zwischen Schulter (17) und Spitzenhülle (4) ausfahrbaren Teleskoprohres (12) vorgesehen ist.
4. Flugkörper nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß der Teleskopzylinder (7, 8, 9, 12) pneumatisch betätigbar ist.
5. Flugkörper nach Anspruch 4, dadurch gekennzeichnet, daß für die Betätigung des Teleskopzylinders (7, 8, 9, 12) ein Gasgenerator (18) vorgesehen ist.
6. Flugkörper nach Anspruch 5, dadurch gekennzeichnet, daß der Gasgenerator (18) zusätzlich mit Ausblasöffnungen (21) kommuniziert, die zwischen Teleskopzylinder und Innenwand der Spitzenhülle (4) rotationssymmetrisch um die Flugkörperlängsachse (3) angeordnet sind.
EP87101159A 1986-04-11 1987-01-28 Schnellfliegender Flugkörper Expired - Lifetime EP0249677B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3612175A DE3612175C1 (de) 1986-04-11 1986-04-11 Schnellfliegender Flugkoerper
DE3612175 1986-04-11

Publications (2)

Publication Number Publication Date
EP0249677A1 EP0249677A1 (de) 1987-12-23
EP0249677B1 true EP0249677B1 (de) 1990-05-09

Family

ID=6298446

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87101159A Expired - Lifetime EP0249677B1 (de) 1986-04-11 1987-01-28 Schnellfliegender Flugkörper

Country Status (4)

Country Link
US (1) US4756492A (de)
EP (1) EP0249677B1 (de)
DE (1) DE3612175C1 (de)
NO (1) NO161463C (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4998994A (en) * 1989-09-20 1991-03-12 The United States Of America As Represented By The Secretary Of The Army Aerodynamically compliant projectile nose
GB8925397D0 (en) * 1989-11-10 1992-11-04 Secr Defence Kinetic energy penetrator
DE4239589A1 (de) * 1992-11-25 1994-05-26 Deutsche Aerospace Vorrichtung zum Steuern von Flugkörpern mit einem aerodynamisch wirkenden Steuerkörper
US5794887A (en) * 1995-11-17 1998-08-18 Komerath; Narayanan M. Stagnation point vortex controller
FR2761769B1 (fr) * 1997-04-08 1999-07-02 Tda Armements Sas Dispositif de microgouverne pour la correction de trajectoire de munition stabilisee par rotation
US6389977B1 (en) * 1997-12-11 2002-05-21 Lockheed Martin Corporation Shrouded aerial bomb
US6845718B2 (en) 2002-12-18 2005-01-25 Lockheed Martin Corporation Projectile capable of propelling a penetrator therefrom and method of using same
US6796532B2 (en) * 2002-12-20 2004-09-28 Norman D. Malmuth Surface plasma discharge for controlling forebody vortex asymmetry
DE102006003638B4 (de) * 2006-01-26 2008-01-17 Deutsches Zentrum für Luft- und Raumfahrt e.V. Flugkörper für den Überschallbereich
US7834301B2 (en) * 2008-04-30 2010-11-16 The Boeing Company System and method for controlling high spin rate projectiles
IL210370A (en) * 2010-12-30 2015-08-31 Israel Aerospace Ind Ltd missile
CN102167162A (zh) * 2011-03-10 2011-08-31 洪瑞庆 一种用于飞行器的超高压流体喷射动力变轨系统及方法
US9132908B1 (en) * 2013-03-15 2015-09-15 The Boeing Company Expandable nose cone
US10928169B2 (en) * 2019-02-07 2021-02-23 Bae Systems Rokar International Ltd. Seal for a projectile guiding kit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3067682A (en) * 1960-02-18 1962-12-11 Aerojet General Co Gyro pull rocket
US3195462A (en) * 1961-05-17 1965-07-20 Aerojet General Co Pull rocket shroud
US3262655A (en) * 1963-12-26 1966-07-26 Jr Warren Gillespie Alleviation of divergence during rocket launch
US3292879A (en) * 1965-06-25 1966-12-20 Canrad Prec Ind Inc Projectile with stabilizing surfaces
IL46548A (en) * 1975-02-03 1978-06-15 Drori Mordeki Stabilized projectile with pivotable fins
US4579298A (en) * 1981-04-08 1986-04-01 The Commonwealth Of Australia Directional control device for airborne or seaborne missiles
US4399962A (en) * 1981-08-31 1983-08-23 General Dynamics, Pomona Division Wobble nose control for projectiles
DE3347005A1 (de) * 1983-12-24 1985-07-04 Dynamit Nobel Ag, 5210 Troisdorf Flugkoerper

Also Published As

Publication number Publication date
NO161463B (no) 1989-05-08
NO871505D0 (no) 1987-04-10
NO161463C (no) 1989-08-16
US4756492A (en) 1988-07-12
NO871505L (no) 1987-10-12
DE3612175C1 (de) 1987-10-08
EP0249677A1 (de) 1987-12-23

Similar Documents

Publication Publication Date Title
EP0249677B1 (de) Schnellfliegender Flugkörper
EP1813907B1 (de) Flugkörper für den Überschallbereich
DE3149735C2 (de)
EP0062750B1 (de) Verfahren zum Verteilen aktiver Wirkteile eines Trägerflugkörpers
EP0049005B1 (de) Einrichtung an einem Flugzeug zum Abwerfen von Gegenständen
EP1399706B1 (de) Artillerie-projektil mit austauschbarer nutzlast
DE3609092A1 (de) Geschoss fuer eine rohrwaffe zum bekaempfen aktiv und passiv reagierender sonderpanzerungen
DE1954540A1 (de) Spin- und rippenstabilisierte Rakete
EP3738876B1 (de) Marschflugkörper und verfahren zum steuern eines marschflugkörpers
EP0066715B1 (de) Drallstabilisierter Übungsflugkörper
DE10205043A1 (de) Aus einem Rohr zu verschließender Flugkörper mit überkalibrigem Leitwerk
DE2452053A1 (de) Einrichtung zum starten von raketengetriebenen flugkoerpern
DE3503041C1 (de) Schnellfliegender Flugkörper mit aerodynamischer Steuerung
DE3228461C2 (de) Endphasengelenkter Abwurfkörper
EP3667226A1 (de) Steuereinrichtung eines geschosses mit aktivierbarem bremselement
EP0255570A1 (de) Treibspiegelgeschoss, insbesondere Pfeilgeschoss
DE3534101C1 (de) Geschoß zur Bekämpfung mehrlagiger und gegebenenfalls auch aktiver Panzerungen
DE2856286A1 (de) Verfahren und vorrichtung zum stabilisieren und vermindern der pendelung eines mit ueberschallgeschwindigkeit fliegenden, laenglichen flugkoerpers
DE3700342C2 (de)
DE19845611A1 (de) Verfahren zur Flugbahnkorrektur von Flugkörpern
WO2020260009A1 (de) Geschoss
DE68911191T2 (de) Stabilisierungsvorrichtung für Geschosse von gezogenen Läufen.
DE10162136B4 (de) Aus einem Rohr zu verschießender Flugkörper mit überkalibrigem Leitwerk
DE2635676A1 (de) Leitwerk fuer raketen
DE19944379A1 (de) Patrone

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH FR GB LI SE

17P Request for examination filed

Effective date: 19871119

17Q First examination report despatched

Effective date: 19890417

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH FR GB LI SE

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 87101159.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951221

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960115

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960116

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960403

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19970131

Ref country code: CH

Effective date: 19970131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970930

EUG Se: european patent has lapsed

Ref document number: 87101159.9

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST