EP0238717B1 - Missile dirigible - Google Patents

Missile dirigible Download PDF

Info

Publication number
EP0238717B1
EP0238717B1 EP86115867A EP86115867A EP0238717B1 EP 0238717 B1 EP0238717 B1 EP 0238717B1 EP 86115867 A EP86115867 A EP 86115867A EP 86115867 A EP86115867 A EP 86115867A EP 0238717 B1 EP0238717 B1 EP 0238717B1
Authority
EP
European Patent Office
Prior art keywords
missile
rotor
console
control
control elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86115867A
Other languages
German (de)
English (en)
Other versions
EP0238717A1 (fr
Inventor
Walter Kranz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Messerschmitt Bolkow Blohm AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messerschmitt Bolkow Blohm AG filed Critical Messerschmitt Bolkow Blohm AG
Publication of EP0238717A1 publication Critical patent/EP0238717A1/fr
Application granted granted Critical
Publication of EP0238717B1 publication Critical patent/EP0238717B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/60Steering arrangements
    • F42B10/62Steering by movement of flight surfaces
    • F42B10/64Steering by movement of flight surfaces of fins

Definitions

  • the invention relates to a controllable missile according to the preamble of claim 1.
  • Such a missile is known from GB-A 2 019 335.
  • the missile in this case has a main body, from which a plurality of fixed arms extend, at the ends of which are arranged supports for control members which are parallel to the longitudinal axis of the missile.
  • These carriers have a part which is fixedly connected to the arms and a rotor which is connected to this part by means of bearings and which is held in a roll-stabilized manner by means of rotors.
  • the actuators are radially protruding duck rudders that can be operated with the help of servomotors based on signals from a seeker head. Due to the roll position stabilization of the rotors, the missile can also rotate about its longitudinal axis.
  • This missile is complex, particularly with regard to the control of the actuators with the aid of servomotors and the complicated roll position stabilization due to the gyroscope used.
  • a missile which can be controlled with the aid of a rotating thrust nozzle.
  • the thrust nozzle which generates a thrust jet in an approximately radial direction to the longitudinal axis of the missile, is supplied by ram air or, preferably, by a hot gas generator and is kept in rapid rotation.
  • a transverse force is exerted on the missile in that the thrust nozzle is retarded in its natural rotation until it stops with the aid of a braking system on the side of the missile, as a result of which the gas jet emerging from the thruster can be directed in a direction desired for controlling the missile.
  • the invention has for its object to design a missile of the type in question so that it can be controlled with rudder systems or spoiler systems with the least possible effort.
  • control of the missile takes place with the aid of two control parts, namely a control part between the missile and the driven rotor and a further control part on the rotor with which the actuators are actuated.
  • the control part for the actuators is actuated by the control part on the missile side.
  • the rotor actuation system has a console which can be rotated or pivoted about the longitudinal axis of the missile, parallel or at an angle thereto, and which carries the actuators for the generation of transverse force.
  • the actuators are actuated by their metered coupling to the missile via a control mechanism.
  • the direction of the transverse force is determined by the momentary angular position of the actuators relative to the environment during the coupling.
  • the transverse force level or the transverse pulse is determined by the coupling duration.
  • the energy for actuating the actuators is preferably taken normally from the rotary drive of the rotor.
  • the actuating elements are actuated by their dosed coupling to the missile via the control mechanism, whereby a further rotor can be located between the missile and the control mechanism (e.g. a rotation of the body is then unnecessary for the function of different variants).
  • Additional drives are possible, e.g. B. by a rudder with the help of a motor between the two rotors or by a rotor between the second rotor and the missile.
  • the measurement of the rotational position of individual parts is necessary for various systems in order to obtain the relation to the electrical command in the missile part.
  • the measurement option (by potentiometer, magnetic or optical tap) is not listed here.
  • the control part for the FK missile is the braking system E.
  • Command ZERO brake system E is not activated: rotor runs continuously, driven by e.g. B. crossed oars pair B.
  • Brake system is activated: Part C is braked compared to part A and rotates the rudder pair B via pin 8, so that a lateral force is generated.
  • Command zero brake system is not activated, rotor runs continuously, driven by crossed rudder pair B.
  • Brake system is activated: Part C is braked in relation to A and rotates rudder 2 via pin 8. The lateral force is created by the rudder pair, which is rotated on average. The rotary drive is also supported by the increased entanglement. The function is similar to that of the rotor positioning system according to FIG. 1.
  • the seeker head system essentially consists of the FK missile itself and a rotating unit A, consisting of an aerodynamic rotary drive with additional aileron action and the sensor system 1, 2, 3, and as a link between the missile and rotating unit, a braking system E.
  • the mode of operation is initially based on a drop rocket, i. H. based on a relatively slow flying missile (Fig. 4, 5).
  • the sensor system consists of a grommet 1 with a slit-shaped opening 2 (“acoustic tube”) and the acoustic sensor 3 itself, all of which rotate at an angle a to the x-axis, caused by the entangled pair of wings 4.
  • the sensor system scans the bottom region 5, which is highlighted in bold in FIG. 5, with the width and length corresponding to the spout slot 2 and forms the maximum scanning region AB.
  • Command zero ie no target is detected:
  • the rotating unit rotates freely due to the entangled pair of wings 4 by the braking system;
  • the scanning area AB decreases with decreasing distance from the missile to the ground.
  • the rotary drive is in the axis x-x (or parallel to it), so that no transverse forces can act on the missile FK; (Resistance reduction, simplification of the regulation, but at the expense of the increased effort for applying the lateral force in the event of a command; description of the function later).
  • the sensor picks up this noise and immediately initiates the braking process of the rotary drive against the missile.
  • the rotary unit After the rotary drive has low inertia relative to the missile, the rotary unit now rotates with the missile when the brakes are fully applied or even when the brakes are reduced. H. opposite to their original direction of rotation and also spatially opposite to the target, since the missile itself rotates in relation to the surroundings.
  • the senor loses the acoustic signal, i. H. the target again, the brake is released and the rotary drive rotates again in its original direction until the acoustic signal is detected again and the brake is switched on again.
  • This process is repeated continuously.
  • the rotating unit is spatially fixed with the axis a-a in the direction of the target, i. H. the pair of wings 4 (Fig. 1, 4) constantly generates shear force in the missile towards the target, until the acoustic signal is within the cone angle ⁇ . The result is zero command.
  • the inaccuracy is also determined by the angle .beta.
  • the angle .beta. serves primarily to avoid having to correct every missile wobble movement.
  • additional stabilization of the missile can be achieved at an angle ⁇ of almost 0, in particular if the adjustment is carried out with transverse forces less than the maximum transverse forces, as is shown in the solution according to FIGS. 2 and 3: here there is a forced rotation of the pair of wings 4 around the axis se ee (corresponds to increasing transverse force generation) when the braked brake disc 6 exerts force on the eccentrically arranged bolt 8 via part 7.
  • the resetting of the pair of wings to the "transverse force zero" position is carried out by the spring 9 or aerodynamic effects on the wings.
  • the sensor signal is routed via a grinder 10 to signal processing with amplification 11 and on to the brake coil 12.
  • the very simple system listed here can preferably be used for relatively slow targets, e.g. B. anti-tank missile, helicopter defense, ship targets etc, d. H. Attack from above; steered slide bomb; Lift mine.
  • targets e.g. B. anti-tank missile, helicopter defense, ship targets etc, d. H. Attack from above; steered slide bomb; Lift mine.
  • the rudder pair rotates about the axis e-e up to a stop which, for. B. can be realized by the tightly wrapped spring 9 to part 7. Then the rudder pair together with the console will turn in the opposite direction of rotation around the axis x-x if the missile itself turns in the opposite direction to the environment: This means the possibility of generating a full command in a defined spatial direction.
  • transverse force generator which are particularly inertial can be replaced by a transverse thrust nozzle according to DE-A 33 17 583, which is supplied with gas either by ram air, but preferably by a hot gas generator. Due to the reduced moment of inertia, the impeller rotary actuator now only requires smaller dimensions or is itself replaced by a torque-generating nozzle (rotating nozzle system).
  • the senor is e.g. B. a low-inertia laser receiver.
  • the command is given analogously to Figures 1 to 4: That is. with zero command, the rotating nozzle DD constantly blows into the inner wall I z. B. the grenade FK.
  • a gate KL is braked by the braking system, the rotating unit slides axially, in this case backwards in such a way that depending on the overlap at the edge K, more or less lateral force is generated to the outside in accordance with the duration of the command.
  • the sensor S is constructed as in FIGS. 4 and 5; the measurement signals are picked up by the slip ring 10.
  • a neutral outlet 13 is also provided for the rotary nozzle.
  • the mechanical separation is to be understood so that the sensor system can rotate quickly regardless of the transverse force generator, i. H. works autonomously. This means that a more precise command formation for the transverse force generator can take place in a computer from the signals of the target and the rotation of the missile relative to the sensor system.
  • an inertial console and low-inertia actuators are provided: With extreme commands (e.g. high braking), the rudder (pair) is rotated, and with maximum deflection, the console is turned by decoupled from the control elements (rudder pair): the console continues to run - expediently supported by a separate rotary drive -, the rudder pair "remains" spatially.
  • Shear force zero command The rotor remains in rotation due to the interlocked rudders (Fig. 9a); there is no lateral force, turning requires a minimum of energy.
  • This type of control can thus be used directly for roll-stabilized missiles.
  • F is the extension system for the console A; a slide piston of the extension system F acted upon by gas G from a gas generator is designated by 21; the braking system E is constructed as in FIG. 1; a separate roller drive by pivoted fixed wings 22 for the console is provided, which can also be used for the expansion wing solution according to FIG. 10; the rear fixed rudder is designated by 23, the front rudder by 24, which is also the actuator and rotary drive for the rotor. 8 has a non-rotatable brake magnet 25 with a brake disc 26 which acts on the control part C of the rotor.
  • FIG. 11 shows part of a missile FK with the missile longitudinal axis 41 indicated.
  • the missile tip forms the front part of the missile with a target seeker 42, the details of which are not shown further.
  • the tip runs on ball bearings 43 around the missile.
  • the rudder axis RA is radial.
  • At least two opposite rudders are shown around the circumference of the target seeker head, one of which, the one shown here, is adjustable.
  • the rudder has a transmission mandrel 45 projecting from the rudder axis, which is assigned to a transmission stop 46 of a brake disk 47.
  • the brake disc forms the control part for the rudder and works together with a ring magnet 48 on the missile side.
  • the parts 47 and 48 form a braking system, as already explained above. It can be seen from FIG. 12 that when the ring magnet is switched on, the brake disc remains behind the rotation of the seeker head or here a rotating part A located in the middle of the missile, so that the rudder is turned against the longitudinal axis of the missile. If the braking is released, the brake disc rotates freely again with the transmission mandrel; the rudder is brought into the starting position by a return spring, not shown here.
  • FIG. 13a A system similar to that shown in FIG. 11 is shown in FIG. 13a.
  • the same reference numerals are used, to which a (') is added.
  • the rudder 44 ' is, however, designed such that the pressure point 51 of the rudder lies in front of the radial rudder axis.
  • a further transmission mandrel 45 ′′ is provided, to which a brake disk 47 ′′ is assigned.
  • Another ring magnet 48 "works together with the brake disc.
  • the operation of these parts 45", 46 ", 47", 48 is like that of parts 45, 46, 47, 48.
  • rudders In the simplest case, four rudders are provided, three of which generate a torque via the inertial console.
  • the fourth rudder is steered impulsively.
  • the rotary drive takes place through the inclined rudder; however, this can also be done by a motor.
  • FIG 14 is a multiple rudder rotor system shown, in which several rudders with radial rudder axes are arranged on a rotating part A. Only one of the oars is shown here, usually four or more oars are used. All rudders are adjustable around their rudder axes. Each rudder is adjusted as in the exemplary embodiments according to FIGS. 11 to 13, the braking system consisting of magnets and brake disks being broken down into a plurality of, in this case eight pot magnets M1 to M8 and associated scenes K1 to K4 with corresponding scenery skids. These runners and the guide links are designed so that the rudder can be transferred from its rest position into the employed position with the angle a and can be returned from it.
  • the individual rudders are controlled in such a way that the desired control component is set in a fixed space sector, ie a smooth control of all rudders is provided.
  • the individual pot magnets are controlled accordingly. With this version, full command can be achieved almost during the entire rotation of the missile.
  • This multiple rudder system is based on the rotor rudder system II. Basically, the energy for deflecting the rudders is taken from the current. With the rudder not shown, the missile FK (front part, rear part) rotates in the direction of the arrow shown, the console A of the control system through the four rudders R1 to R4 (angle of attack a, rudder axis 61) in the opposite direction.
  • Each rudder has a runner K1 to K4 made of magnetic material, which are each guided in a guide link 62.
  • the runners are preferably designed so that two magnets M of eight pot magnets M1 to M8 located next to one another always trigger the rotary movement of the rudder when the two magnets are excited.
  • the rudders are returned either aorodynamically or preferably by a spring, not shown.
  • the mounting of console A in the missile is also not shown.
  • a missile roll drive can also be omitted.
  • a kinked bracket A is mounted in a missile tip FK, which has two rudders R which are interlocked in the part which projects forward and is kinked with respect to the missile longitudinal axis.
  • the control parts for the bent console and the control parts on the missile side are not shown.
  • This is a brake system as in FIG. 1, accordingly a brake disc connected to the rotating console and a brake magnet on the missile side. If the braking system is not activated, the bent console rotates freely around the longitudinal axis of the missile at high speed. If the bent console is stopped by the braking system, a lateral force corresponding to a pitching moment acts on the missile due to the off-center position of the rudder.
  • the system shown in FIG. 15 can be used in conjunction with a seeker head system according to FIG. 5.
  • the control part on the missile side is the brake magnet.
  • a slim console A is mounted in the missile tip FK, the axis of rotation of which is inclined relative to the longitudinal axis of the missile.
  • the console At its front end, which lies approximately in the longitudinal axis of the missile, the console carries a crossed pair of wings 71, so that the console is set into rapid rotation when the missile is flying.
  • the described arrangement practically avoids interference forces on the missile. If a transverse force is to be exerted on the missile in a certain direction, the console is stopped with a brake system E, which consists of a magnet and a toothed brake disc which meshes with a gear wheel on the missile end of the console.
  • a brake system E which consists of a magnet and a toothed brake disc which meshes with a gear wheel on the missile end of the console.
  • the pair of wings now held exerts a transverse force on the missile, the spatial direction of this transverse force being able to be determined in accordance with the held position of the console.
  • a brake magnet is provided as a control part on the missile side.
  • Command zero plane surface of the rudder pair aims through the missile's longitudinal axis (braking effect on the missile is low).
  • the plane of the rudder pair forms an angle with the longitudinal axis of the missile.
  • the command zero is 90 degrees.
  • the solution is simple.
  • the actual positioning system with the console, the entangled pair of wings and the magnet system is similar to the system shown in FIG. 16, so that a description is unnecessary.
  • This control system is in turn received in a rotating part 81, which forms part of the missile tip.
  • This rotating part is supported against the missile housing FK.
  • a ring magnet 82 is provided in the missile housing and is associated with a brake disk 83 on the side of the rotating part. Ring magnet and brake disc form another brake system.
  • the turned part itself must be kept in constant rotation by means of interlocked rudder R. These rudders are therefore only used for the rotor drive. With this rotor system, a fixed lateral force can be constantly exerted on the missile, even when the missile is rotating.
  • the entire tip is coupled to an additional control unit opposite the missile (brake magnet or electric motor drive). Otherwise, this system is similar to that in Figure 16. A pivoting movement is possible with an electric motor drive.
  • the necessary rudder area generally decreases with increasing distance from the center of gravity of the missile; this reduces the rudder moment of inertia and the switching process command - zero command command is faster; the lateral force otherwise provided by thrusters can also be reduced, d. H. a hot gas generator is not necessary for many applications. If the handrail, i.e. H. the console A after leaving z. B. the gun barrel pushed out, for. B. by delaying the grenade, the extended lever arm does not prevent the manipulation of the missile. It should be mentioned that the handrail itself generates lift, which additionally reduces the rudder surface.
  • a bracket A is mounted parallel to the missile longitudinal axis, which is set in rotation by an entangled spoiler pair 91 at the tip.
  • a gear 92 is provided which meshes with a toothed brake disk 93.
  • This brake disc forms a brake system E with a magnet 94, as described for FIGS. 16 and 17.
  • the entangled spoiler pair 91 is held in a plane parallel to the transverse plane of the missile in accordance with FIGS. 18a and 18b; with a zero command, the spoiler is held in the vertical plane of the missile (Fig. 18 c and d)
  • FIGS. 19a and 19b A top view of a missile tip FK is shown in FIGS. 19a and 19b, parts being broken away for reasons of clarity.
  • a spoiler 101 designed as a turned sheet metal strip is mounted on a spoiler carrier 102 and, in the position shown in FIG. 19a, is located on the outer circumference of the missile. The shape of the spoiler effects the rotary drive of the entire console system A.
  • a sprocket 103 which is designed as an armature and which rotates together about the axis of rotation D, is connected to the spoiler carrier.
  • the armature meshes in a gear 104, which is firmly connected to a missile brake magnet.
  • the brake magnetic poles 105 are also indicated.
  • the spoiler can be transferred from the position shown in FIG. 19a to the missile-centered position shown in FIG. This position corresponds to the zero command, the position according to Fig. 19a a full command.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Position Or Direction (AREA)
  • Braking Arrangements (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Claims (24)

1. Engin volant (FK) dirigeable comprenant des organes d'orientation (4, 23, 33, 34, 44, 44', R1, 71, 91, 101) pour influencer la trajectoire de l'engin volant, un rotor qui est en rotation par rapport au reste de l'engin volant et comporte une console (A) sur laquelle sont disposés les organes d'orientation réglables à l'aide d'un élément de commande (C, 45, 46, K, 92, 104) pour influencer la trajectoire de l'engin volant, caractérisé par le fait que le rotor présente un système d'entraînement en rotation (4, 22, 23, 44, R1, 71, 01, 101) qui l'entraîne, qu'un élément de commande supplémentaire (E) est prévu entre le rotor et le reste de l'engin volant pour influencer la rotation du rotor, et que cet élément de commande supplémentaire (E) présente des moyens qui actionnent l'élément de commande (C, 45, 46, K, 92, 104) pour les organes d'orientation sur la console.
2. Engin volant selon la revendication 1, caractérisé par le fait que l'élément de commande supplémentaire entre le rotor et l'engin volant est un système de freinage (E).
3. Engin volant selon la revendication 1, caractérisé par le fait que le système de freinage (E) présente côté engin volant un aimant (12, 25, 28, M, 82), de préférence un électro-aimant, et côté rotor un disque de freinage (6, 26, 47, K, 93, 103) servant d'armature à l'aimant.
4. Engin volant selon la revendication 1, caractérisé par le fait que la console (A) est un élément rotatif entraîné, qui présente un axe de rotation coaxial à l'axe longitudinal de l'engin volant et dans lequel est monté de façon également rotative et coaxiale l'élément de commande (C, 47, K1 à K4) pour les organes d'orientation (4, 24, 44, R), que l'élément de commande présente des butées (en 8, 46, en K1 à K4) et les organes d'orientation réglables présentent des entraîneurs (8, 45) correspondants, de sorte que l'élément de commande est entraîné par la rotation de l'élément rotatif, et que l'élément de commande supplémentaire (E, 48, M1 à M8) côté engin volant (FK) est un système de freinage agissant sur l'élément de commande pour les organes d'orientation, de sorte que, en cas de freinage de l'élément de commande pour les organes d'orientation, ceux-ci sont réglés par les butées et les entraîneurs, afin d'influencer la trajectoire de l'engin volant.
5. Engin volant selon la revendication 4, caractérisé par le fait que la console (A) dépasse, en tant qu'élément rotatif creux, vers l'avant à partir de la pointe de l'engin volant (FK) et porte ici les organes d'orientation (4) présentant chacun un entraîneur (8), qu'à l'intérieur de la console (A) est monté, en tant que partie de l'élément de commande (C) pour les organes d'orientation, un arbre qui porte à son extrémité tournée vers les organes d'orientation les butées associées aux entraîneurs et est relié par son extrémité tournée vers l'engin volant à un disque de frein (6), pouvant être actionné par le système de freinage (E), en tant que partie supplémentaire de l'élément de commande (C).
6. Engin volant selon la revendication 4, caractérisé par le fait que la console (A) est un élément rotatif ayant la circonférence de l'engin volant (FK), que les organes d'orientation (44, R) réglables sont disposés sur la circonférence de cet élément rotatif et coopèrent par leurs entraîneurs (45) avec des butées (46) d'une bague de commande (47) qui constitue l'élément de commande pour les organes d'orientation et est réalisée comme disque de frein pour le système de freinage (E).
7. Engin volant selon la revendication 6, caractérisé par le fait que la bague de commande comprend sur sa circonférence plusieurs coulisses (K1 à K4), que le système de freinage est divisé, côté engin volant, en plusieurs sous-systèmes (M1 à M8), de sorte que les coulisses peuvent être actionnées indépendamment les unes des autres.
8. Engin volant selon l'une quelconque des revendications 5 à 7, caractérisé par le fait que chaque organe d'orientation (44') comporte deux entraîneurs (45, 45") qui coopèrent avec des butées (46, 46") associées de deux disques de frein (47, 47") qui peuvent être actionnés par deux systèmes de freinage (E', E", 48', 48") fonctionnant indépendamment l'un de l'autre, de sorte que les organes d'orientation peuvent être amenés par un système de freinage dans une position pour influencer la trajectoire de l'engin volant et ramenés par l'autre système de freinage dans une position de repos n'influençant pas la trajectoire de l'engin volant.
9. Engin volant selon l'une quelconque des revendications 4 à 8, caractérisé par le fait que le système de freinage (E) présente côté engin volant un aimant (12, 48), de préférence un électro-aimant, et que le disque de frein (6, 47) de l'élément de commande (C) pour les organes d'orientation (4, 44, R) est une armature rotative pour l'aimant.
10. Engin volant selon l'une quelconque des revendications précédentes, caractérisé par le fait que les organes d'orientation sont des gouvernes (4, 44, R) réglables.
11. Engin volant selon l'une quelconque des revendications précédentes, caractérisé par le fait que, entre l'élément de commande (C) pour les organes d'orientation (4) et la console (A), il est prévu un dispositif de rappel pour ramener les organes d'orientation après leur actionnement dans une position de repos n'influençant pas la trajectoire de l'engin volant (FK).
12. Engin volant selon la revendication 11, caractérisé par le fait que le dispositif de rappel est un ressort (9), de préférence un ressort hélicoïdal, pouvant être tendu pendant l'actionnement des organes d'orientation (4), en raison de la rotation de la console (1).
13. Engin volant selon la revendication 8, caractérisé par le fait que, en cas d'utilisation de gouvernes (44) en tant qu'organes d'orientation, celles-ci présentent un axe de gouverne (R, A') radial et sont réalisées de telle manière que leur centre de poussée (51) se trouve, vu dans le sens de vol de l'engin volant (FK), en avant de l'axe de gouverne.
14. Engin volant selon l'une quelconque des revendications 1 à 3, caractérisé par le fait que sur la pointe de l'engin volant est prévue une unité rotative, faisant saillie vers l'avant, en tant que console qui porte en tant qu'organes d'orientation deux gouvernes (33, 34) inclinées en opposition qui peuvent par pivotement être amenées hors de l'unité rotative et rentrées dans celle-ci à l'aide d'une barre (35) déplaçable dans le sens longitudinal de l'unité rotative, en tant que partie de l'élément de commande pour les gouvernes.
15. Engin volant selon la revendication 1, caractérisé par le fait qu'une roue dentée (92, 104) est reliée de façon solidaire en rotation à la console (A) entraînée en rotation qui dépasse vers l'avant de la pointe de l'engin volant (FK) et qui porte les organes d'orientation (71, 91, 101) reliés à elle de manière solidaire en rotation, que cette roue dentée fait partie d'un train de roues dentées (92, 93, 103, 104), et qu'une roue (93, 103) de ce train est un disque de frein pour un système de freinage (E, 105) constituant l'élément de commande supplémentaire côté engin volant.
16. Engin volant selon la revendication 15, caractérisé par le fait que la console (A) dépasse vers l'avant de la pointe de l'engin volant (FK) dans une direction qui fait un angle avec l'axe de l'engin volant.
17. Engin volant selon la revendication 15, caractérisé par le fait que l'axe de rotation de la console (A) ne se trouve pas dans l'axe longitudinal de l'engin volant mais est parallèle à cet axe, et que la console (A) porte à sa pointe une paire de déflecteurs (91) inclinés en opposition.
18. Engin volant selon la revendication 15, caractérisé par le fait que le train de roues dentées (103, 104) comporte une roue dentée (103) qui est reliée à un support (102) pour un déflecteur (101) en tant qu'organe d'orientation, que cette roue dentée (103) tourne autour d'une roue dentée (104) reliée de manière solidaire en rotation au système de freinage (105), et que la roue dentée (103) reliée au support est réalisée comme disque de frein pour le système de freinage (105).
19. Engin volant selon l'une quelconque des revendications 15 à 18, caractérisé par le fait que le système de freinage (E) présente côté engin volant un aimant, de préférence un électro-aimant (94, 105), et que la roue dentée (93, 103) coopérant avec le système de freinage est réalisée comme armature pour l'aimant.
20. Engin volant selon l'une quelconque des revendications précédentes, caractérisé par le fait que l'entraînement en rotation pour le rotor est effectué par les organes d'orientation (4, 23, 24, 44, R, 71, 91, 101).
21. Engin volant selon l'une quelconque des revendications 1 à 19, caractérisé par le fait que l'entraînement en rotation du rotor est effectué par des gouvernes dynamiques ou déflecteurs de jet (4, 22 à 24, 71, 91, 101) inclinés en opposition.
22. Engin volant selon l'une quelconque des revendications 1 à 19, caractérisé par le fait que l'entraînement en rotation du rotor est effectué par un système d'entraînement disposé entre l'engin volant et le rotor, par exemple un moteur électrique, un système pneumatique ou hydraulique, un système d'entraînement à ressort ou par des tuyères de poussée ou systèmes à turbine générateurs de couple.
23. Engin volant selon l'une quelconque des revendications précédentes, caractérisé par le fait que des capteurs (10) d'angle de rotation sont prévus entre le rotor et l'engin volant.
24. Engin volant selon l'une quelconque des revendications précédentes, caractérisé par le fait que le rotor avec la console (A) portant les organes d'orientation (71) est monté dans un rotor supplémentaire (81) dont la vitesse de rotation peut être influencée par rapport à celle de l'engin volant (FK), de préférence à l'aide d'un système de freinage supplémentaire (82, 83).
EP86115867A 1986-02-27 1986-11-14 Missile dirigible Expired - Lifetime EP0238717B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3606423 1986-02-27
DE19863606423 DE3606423A1 (de) 1986-02-27 1986-02-27 Rotorsystem in verbindung mit flugkoerpersteuerungen

Publications (2)

Publication Number Publication Date
EP0238717A1 EP0238717A1 (fr) 1987-09-30
EP0238717B1 true EP0238717B1 (fr) 1990-08-01

Family

ID=6295103

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86115867A Expired - Lifetime EP0238717B1 (fr) 1986-02-27 1986-11-14 Missile dirigible

Country Status (3)

Country Link
US (3) US4927096A (fr)
EP (1) EP0238717B1 (fr)
DE (2) DE3645077C2 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3645077C2 (de) * 1986-02-27 1996-06-27 Daimler Benz Aerospace Ag Vorrichtung zum Steuern von Flugkörpern
DE3717688C1 (en) * 1987-05-26 1988-06-09 Messerschmitt Boelkow Blohm Rotating device for aerodynamically acting control surfaces which are mounted such that they can rotate
DE3742836C1 (de) * 1987-12-17 1989-07-13 Messerschmitt Boelkow Blohm Flugkoerper mit verstellbaren Steuerorganen
DE3826615C2 (de) * 1988-08-05 1995-06-08 Rheinmetall Gmbh Gierwinkelfreies Geschoß
DE3827590A1 (de) * 1988-08-13 1990-02-22 Messerschmitt Boelkow Blohm Flugkoerper
DE4024264C2 (de) * 1990-07-31 1996-02-01 Daimler Benz Aerospace Ag Vorrichtung zum Steuern eines Flugkörpers
US5201829A (en) * 1991-12-19 1993-04-13 General Dynamics Corporation Flight control device to provide directional control
DE4239589A1 (de) * 1992-11-25 1994-05-26 Deutsche Aerospace Vorrichtung zum Steuern von Flugkörpern mit einem aerodynamisch wirkenden Steuerkörper
IL107830A (en) * 1993-12-01 1998-07-15 Israel State Controlled scanner head missile
US5379968A (en) * 1993-12-29 1995-01-10 Raytheon Company Modular aerodynamic gyrodynamic intelligent controlled projectile and method of operating same
US6364248B1 (en) * 2000-07-06 2002-04-02 Raytheon Company Articulated nose missile control actuation system
US7278609B2 (en) * 2005-08-05 2007-10-09 Northrop Grumman Corporation Movable nose cap and control strut assembly for supersonic aircraft
DE102005043474B4 (de) * 2005-09-13 2011-04-07 Deutsch-Französisches Forschungsinstitut Saint-Louis, Saint-Louis Vorrichtung zum Steuern eines Geschosses
DE102006003638B4 (de) * 2006-01-26 2008-01-17 Deutsches Zentrum für Luft- und Raumfahrt e.V. Flugkörper für den Überschallbereich
US7963442B2 (en) 2006-12-14 2011-06-21 Simmonds Precision Products, Inc. Spin stabilized projectile trajectory control
US9040885B2 (en) * 2008-11-12 2015-05-26 General Dynamics Ordnance And Tactical Systems, Inc. Trajectory modification of a spinning projectile
US8434712B1 (en) * 2011-01-12 2013-05-07 Lockheed Martin Corporation Methods and apparatus for driving rotational elements of a vehicle
FR2980842B1 (fr) * 2011-10-03 2013-09-13 Nexter Munitions Projectile gyrostabilise comportant une paire d'ailettes et procede de pilotage d'un tel projectile
CN103407570A (zh) * 2013-07-12 2013-11-27 西北工业大学 用于控制大迎角细长体侧向力的涡流发生装置
GB2523097B (en) * 2014-02-12 2016-09-28 Jaguar Land Rover Ltd Vehicle terrain profiling system with image enhancement
US9429401B2 (en) * 2014-06-17 2016-08-30 Raytheon Company Passive stability system for a vehicle moving through a fluid
DE102018133216A1 (de) * 2018-12-20 2020-06-25 Rheinmetall Air Defence Ag Lenkflugkörper mit mehreren steuerbaren Flügeln und mit einer Antriebsanordnung mit einem drehbaren Rotor
CN115325889B (zh) * 2022-09-01 2023-09-29 北京中科宇航技术有限公司 一种叶面旋转栅格舵控制系统

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE694533C (de) * 1930-03-04 1940-08-03 Siemens App Einrichtung zur Steuerung von Raketen, insbesondere Raketengeschossen
DE1092313B (de) * 1958-02-28 1960-11-03 Ignaz V Maydell Dipl Ing Verfahren und Vorrichtung zur Beeinflussung der Bahn eines ferngelenkten oder ferngesteuerten fliegenden Koerpers
US3102437A (en) * 1960-11-23 1963-09-03 Gen Motors Corp Electromechanical actuator
DE1215554B (de) * 1961-08-29 1966-04-28 Gen Dynamics Corp Steuervorrichtung fuer ein Geschoss
US3111088A (en) * 1962-02-27 1963-11-19 Martin Marietta Corp Target seeking missile
US3154015A (en) * 1962-09-19 1964-10-27 Martin Marietta Corp Missile flight control system
US4037806A (en) * 1964-09-16 1977-07-26 General Dynamics Corporation Control system for rolling missile with target seeker head
US4512537A (en) * 1973-08-10 1985-04-23 Sanders Associates, Inc. Canard control assembly for a projectile
US4438893A (en) * 1973-08-10 1984-03-27 Sanders Associates, Inc. Prime power source and control for a guided projectile
GB2019335A (en) * 1978-03-01 1979-10-31 Bristol Aerojet Ltd Rocket vehicles
US4210298A (en) * 1978-08-01 1980-07-01 The United States Of America As Represented By The Secretary Of The Army Electro-mechanical guidance actuator for a missile
DE3047389A1 (de) * 1979-12-17 1981-09-17 Motorola, Inc., 60196 Schaumburg, Ill. Flugkoerper
US4373688A (en) * 1981-01-19 1983-02-15 The United States Of America As Represented By The Secretary Of The Army Canard drive mechanism latch for guided projectile
WO1982003453A1 (fr) * 1981-04-08 1982-10-14 Thomson Keith Donald Dispositif de commande directionnelle pour missiles se deplacant dans l'air ou dans l'eau
DE3317583C2 (de) * 1983-05-13 1986-01-23 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Vorrichtung mit einer von einer Treibmittelquelle versorgten Düsenanordnung
DE3429798C1 (de) * 1984-08-13 1985-12-12 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Vorrichtung zur Korrektur der Flugbahn eines Geschosses
US4565340A (en) * 1984-08-15 1986-01-21 Ford Aerospace & Communications Corporation Guided projectile flight control fin system
DE3645077C2 (de) * 1986-02-27 1996-06-27 Daimler Benz Aerospace Ag Vorrichtung zum Steuern von Flugkörpern
SE461750B (sv) * 1987-03-20 1990-03-19 Lars Johan Schleimann Jensen Foerfarande foer styrning av ett flygande objekt, saasom en projektil, mot ett maal och projektil foer foerfarandets genomfoerande
DE3742836C1 (de) * 1987-12-17 1989-07-13 Messerschmitt Boelkow Blohm Flugkoerper mit verstellbaren Steuerorganen

Also Published As

Publication number Publication date
EP0238717A1 (fr) 1987-09-30
US5083724A (en) 1992-01-28
DE3606423A1 (de) 1987-09-03
US4927096A (en) 1990-05-22
DE3645077C2 (de) 1996-06-27
US5065957A (en) 1991-11-19

Similar Documents

Publication Publication Date Title
EP0238717B1 (fr) Missile dirigible
DE3522448C2 (fr)
DE19640540C1 (de) Ruderstellsystem für einen Lenkflugkörper
DE2832082A1 (de) Turbinenluftstrahl-triebwerk
EP2157398A2 (fr) Lanceur de contre-mesures
DE2410255C2 (de) Kreuzrudersystem für eine Rakete
DE60200899T2 (de) Steuerungsgruppe für die Steuerungsflossen von Raketen oder Geschossen
DE3010903C2 (fr)
DE19949640A1 (de) Verfahren und Vorrichtung zum schnellen Umwenden eines Bewegungskörpers in einem fluiden Medium
DE1481524A1 (de) Stabilisierungseinrichtung fuer schnellfliegenden,entlasteten Drehfluegel-Rotor
DE917540C (de) Schnellaeufiges Windrad
DE3519892A1 (de) Brems- und freigabeeinrichtung fuer einen drehduesenkoerper
EP2417023B1 (fr) Aile d'un avion ou d'un vaisseau spatial comportant un corps d'écoulement mobile
DE102020105188B4 (de) Flugkörper-Finnenausklappeinrichtung, Flugkörper und Verfahren zum Betrieb eines Flugkörpers
EP0814315B1 (fr) Roquette
EP1108972B1 (fr) Dispositif pour le montage d'une ailette de guidage dans un missile
EP3594610B1 (fr) Missile
DE3645093C2 (en) Flying body steering system with connected motor
DE2813032C1 (de) Gleitgeschoss
DE3619652C1 (en) Jet aircraft manoeuvring aid - has three movable flaps each suspended from four point linkage
EP3086078A1 (fr) Gouverne de missile
DE1781098B2 (de) Lenkregelkreis
DE4024264A1 (de) Vorrichtung zum steuern eines flugkoerpers
DE3738107C1 (en) Device for deflecting a fluid jet with the aid of a jet control surface
DE3108283A1 (de) "lenkflugkoerper"

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH FR GB IT LI SE

17P Request for examination filed

Effective date: 19871113

17Q First examination report despatched

Effective date: 19890201

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH FR GB IT LI SE

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930217

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931021

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931108

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931116

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19931130

Ref country code: CH

Effective date: 19931130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941115

EAL Se: european patent in force in sweden

Ref document number: 86115867.3

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950731

EUG Se: european patent has lapsed

Ref document number: 86115867.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051114