EP0228734B1 - Dispositif d'asservissement de l'axe d'un système de guidage à champ variable à l'axe d'une lunette de visée - Google Patents

Dispositif d'asservissement de l'axe d'un système de guidage à champ variable à l'axe d'une lunette de visée Download PDF

Info

Publication number
EP0228734B1
EP0228734B1 EP86202171A EP86202171A EP0228734B1 EP 0228734 B1 EP0228734 B1 EP 0228734B1 EP 86202171 A EP86202171 A EP 86202171A EP 86202171 A EP86202171 A EP 86202171A EP 0228734 B1 EP0228734 B1 EP 0228734B1
Authority
EP
European Patent Office
Prior art keywords
guidance
axis
optical
centre
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86202171A
Other languages
German (de)
English (en)
Other versions
EP0228734A1 (fr
Inventor
Fernand Loy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cessione thomson - Trt Defense
Original Assignee
Telecommunications Radioelectriques et Telephoniques SA TRT
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telecommunications Radioelectriques et Telephoniques SA TRT, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Telecommunications Radioelectriques et Telephoniques SA TRT
Publication of EP0228734A1 publication Critical patent/EP0228734A1/fr
Application granted granted Critical
Publication of EP0228734B1 publication Critical patent/EP0228734B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/24Beam riding guidance systems
    • F41G7/26Optical guidance systems
    • F41G7/263Means for producing guidance beams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/32Devices for testing or checking
    • F41G3/326Devices for testing or checking for checking the angle between the axis of the gun sighting device and an auxiliary measuring device

Definitions

  • the invention relates to a device for controlling the guide axis of a guidance system with a variable field to the line of sight of a telescopic sight, the latter comprising a lens, a reticle and an eyepiece, said guidance system comprising an optical beam guidance emitter, a guidance field scanning or coding system the center of which is projected to infinity by means of a variable focal length or zoom lens along the guidance axis connecting the optical axis of the zoom to said center of the guide field.
  • This device is particularly applicable to missile guidance systems on laser beam in which the angular guidance field is variable according to a predetermined law depending on the distance of the missile.
  • Such systems generally use objectives with variable focal length to project the guide beam on the axis of which the missile controls its trajectory.
  • the ratio of the focal lengths of these objectives between the instant of ignition and that of the end of the flight can be greater than 100.
  • These objectives are zoom lenses, the variation of the focal distance of which is obtained by the translation of several groups of lenses along the mechanical axis of the objective.
  • One of the main difficulties in producing these optics is to keep an optical axis whose direction is fixed at all focal distances, this axis having to be parallel to the line of sight under all environmental conditions.
  • the present invention provides a simple structure servo device which takes into account to a greater extent the displacement of the optical members.
  • such a device comprises a blade with parallel faces taken as an optical reference piece and rigidly fixed on the telescope to adjust the line of sight of said telescope, by translation of the reticle in its plane up to so that the reticle and its image obtained by self-animation on said slide and observed through the eyepiece are combined, a deviation meter to identify any transverse displacement of the optical center of the zoom which causes an angular deviation of said guide axis, a deviation gauge composed of a symmetrical hole in said center of the guide field with respect to another blade with semi-transparent parallel faces, and a detector arranged in front of said hole so as to receive flux from the guide emitter after successive reflections on said blades , detector connected to the input of a deviation meter to deliver an error signal at its output measuring the deviation of the op axis tick of the zoom relative to its nominal position parallel to the line of sight and directed towards a correction element on the path of the laser beam to deflect this beam and the position of the center of said guide field so as to cancel said deviation
  • the single figure shows the block diagram of a device according to the invention.
  • the telescopic sight 1 defines the sight axis 2, it is adjusted by construction perpendicular to the blade with parallel faces 3 rigidly fixed on the telescopic sight 1. This adjustment is obtained for example by translation in its plane of the reticle 4 until the reticle and its sticker image on slide 3 are confused. The image is observed by the observer 5 through the eyepiece 6. For this adjustment, the reticle must be luminous or illuminated by a source not shown.
  • the guide projector comprises the laser beam 7, a scanning or coding system 8 for the guide field, the center of which is point 9, a projection lens with variable focal length 10.
  • the guide axis is axis 11.
  • This guide axis 11 must be stable at all the focal distances of the zoom 10 and parallel to the axis 2 despite the mechanical imperfections of the zoom (clearances, dilations, etc.).
  • the axis 11 passes through the optical center 12 of the zoom (represented here as a simple lens) and the center 9 of the guide field. Any transverse movement of 12 causes an angular deviation of the axis 11. This movement is identified by means of a distance meter composed of a hole 13 placed in front of a detector 14 which receives the flux emitted by the guide emitter after reflection on the blade 3 and the semi-transparent blade 15. The hole 13 is symmetrical with 9 in the blade 15. This assembly is rigid and non-deformable.
  • the detector 14 is provided with a deviation receiver 16 similar to that of the missile. We can thus measure at any time the deviation of the axis 11 from its nominal position.
  • the error signal is directed to a correction element 17 which will deflect the laser beam 7 and the position of the center of the field 9 so as to cancel the deviation.
  • the correction element 17 can, in certain cases, be incorporated into the scanning system 8 by acting directly on the scans of the field without additional deflection element.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Telescopes (AREA)
  • Control Of Position Or Direction (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

  • L'invention concerne un dispositif d'asservissement de l'axe de guidage d'un système de guidage à champ variable à l'axe de visée d'une lunette de visée, celle-ci comportant un objectif, un réticule et un oculaire, ledit système de guidage comprenant un émetteur de guidage sur faisceau optique, un système de balayage ou de codage du champ de guidage dont le centre est projeté à l'infini au moyen d'un objectif à focale variable ou zoom suivant l'axe de guidage reliant l'axe optique du zoom audit centre du champ de guidage.
  • Ce dispositif s'applique particulièrement aux systèmes de guidage de missile sur faisceau laser dans lesquels le champ angulaire de guidage est variable selon une loi prédéterminée fonction de l'éloignement du missile.
  • De tels systèmes utilisent en général des objectifs à focale variable pour projeter le faisceau de guidage sur l'axe duquel le missile asservit sa trajectoire. Le rapport des distances focales de ces objectifs entre l'instant de la mise à feu et celui de la fin du vol peut être supérieur à 100. Ces objectifs sont des zoom dont la variation de la distance focale est obtenue par la translation de plusieurs groupes de lentilles le long de l'axe mécanique de l'objectif. Une des principales difficultés de réalisation de ces optiques est de conserver un axe optique dont la direction est fixe à toutes les distances focales, cet axe devant être parallèle à la ligne de visée dans toutes les conditions de l'environnement.
  • Pour remédier à ces difficultés, on a proposé dans le document de brevet français 2 358 674 de remplacer l'objectif à focale variable par un objectif dit "pseudozoom". Cependant cet objectif pseudo-zoom ne permet pas de satisfaire de manière continue et donc précise ladite loi prédéterminée.
  • Dans le document de brevet français 2 467 378, on suggère des moyens d' asservissement pour harmoniser des axes optiques. Ces moyens impliquent des mesures de grandeur mécanique de balayages qui ne tiennent pas compte des déplacements intempestifs des organes optiques.
  • La présente invention propose un dispositif d'asservissement de structure simple qui tient compte dans une plus large mesure du déplacement des organes optiques.
  • Pour cela, un tel dispositif est remarquable en ce que il comporte une lame à faces parallèles prise comme pièce optique de référence et fixée rigidement sur la lunette pour régler l'axe de visée de ladite lunette, par translation du réticule dans son plan jusqu' à ce que le réticule et son image obtenue par autocollimation sur ladite lame et observés à travers l'oculaire soient confondus, un écartomètre pour repérer tout déplacement transversal du centre optique du zoom qui entraîne une déviation angulaire dudit axe de guidage, écartomètre composé d'un trou symétrique dudit centre du champ de guidage par rapport á une autre lame à faces parallèles semi-transparente, et d'un détecteur disposé en face dudit trou de manière à recevoir flux issu de l'émetteur de guidage après réflexions successives sur lesdites lames, détecteur relié à l'entrée d'un récepteur d'écartométrie pour délivrer à sa sortie un signal d'erreur mesurant l'écart de l'axe optique du zoom par rapport à sa position nominale parallèle à l'axe de visée et dirigé vers un élément de correction sur le trajet du faisceau laser pour dévier ce faisceau et la position du centre dudit champ de guidage de façon à annuler ledit écart.
  • La description suivante en regard du dessin annexé, le tout donné à titre d'exemple, fera bien comprendre comment l'invention peut être réalisée.
  • La figure unique représente 1e schéma de principe d'un dispositif conforme à l'invention.
  • La lunette de visée 1 définit l'axe de visée 2, il est réglé par construction perpendiculaire à la lame à faces parallèles 3 fixée rigidement sur la lunette de visée 1. Ce réglage est obtenu par exemple par translation dans son plan du réticule 4 jusqu'à ce que le réticule et son image par autocollimaton sur la lame 3 soient confondus. L'image est observée par l'observateur 5 à travers l'oculaire 6. Pour ce réglage, le réticule doit être lumineux ou éclairé par une source non représentée.
  • Le projecteur de guidage comprend le faisceau laser 7, un système de balayage ou de codage 8 du champ de guidage dont le centre est le point 9, un objectif de projection à focale variable 10. L'axe de guidage est l'axe 11.
  • Cet axe de guidage 11 doit être stable à toutes les distances focales du zoom 10 et parallèle à l'axe 2 malgré les imperfections mécaniques du zoom (jeux, dilatations, etc...).
  • L'axe 11 passe par le centre optique 12 du zoom (représenté ici comme une lentille simple) et le centre 9 du champ de guidage. Tout déplacement transversal de 12 entraîne une déviation angulaire de l'axe 11. Ce déplacement est repéré au moyen d'un écartomètre composé d'un trou 13 placé devant un détecteur 14 qui reçoit le flux émis par l'émetteur de guidage après réflexion sur la lame 3 et la lame semi-transparente 15. Le trou 13 est symétrique de 9 dans la lame 15. Cet ensemble est rigide et indéformable.
  • Le détecteur 14 est muni d'un récepteur d'écartométrie 16 semblable à celui du missile. On peut ainsi mesurer à tout instant l'écart de l'axe 11 par rapport à sa position nominale.
  • Le signal d'erreur est dirigé vers un élément de correction 17 qui va dévier le faisceau laser 7 et la position du centre du champ 9 de façon à annuler l'écart.
  • L'élément de correction 17 peut être, dans certains cas, incorporé au système de balayage 8 en agissant directement sur les balayages du champ sans élément de déviation supplémentaire.
  • Le réglage initial de construction consiste à :
    • 1. régler l'axe 2 perpendiculaire à la lame 3
    • 2. harmoniser l'axe 11 par rapport à l'axe 2 au moyen d'un outillage de contrôle approprié pour une focale quelconque du zoom
    • 3. régler la position du trou 13 pour que l'écartomètre 16 donne un signal d'erreur nul
    • 4. brancher l'asservissement et vérifier que l'écart s'annule à toutes les distances focales du zoom.
  • Les avantages de ce schéma par rapport à un contrôle de l'axe 11 par un écartomètre extérieur sont les suivants :
    • Le grandissement entre les points 9 et 13 est toujours égal à l'unité quelle que soit la distance focale du zoom puisque celui-ci est traversé 2 fois.
    • Le flux traversant le trou 13 est constant. La dynamique de l'écartomètre peut être faible. La précision de mesure est optimale.
    • Le facteur de transmission des lames 3 et 15 est voisin de 95 %. On atténue faiblement le faisceau de guidage.
    • On utilise l'ouverture totale du faisceau de guidage, il n'y a pas de perte de résolution par diffraction due à une diaphragmation des faisceaux. La précision de mesure est optimale.
    • L'encombrement est minimal.

Claims (3)

  1. Dispositif d'asservissement de l'axe de guidage (11) d'un système de guidage à champ variable à l'axe de visée (2) d'une lunette de visée (1), celle-ci comportant un objectif, un réticule (4) et un oculaire (6), ledit système de guidage comprenant un émetteur de guidage sur faisceau optique (7), un système de balayage ou de codage (8) du champ de guidage dont le centre (9) est projeté à l'infini au moyen d'un objectif à focale variable ou zoom (10) suivant l'axe de guidage (11) reliant l'axe optique (12) du zoom audit centre (9) du champ de guidage, caractérisé en ce qu'il comporte une lame à faces parallèles (3) prise comme pièce optique de référence et fixée rigidement sur la lunette pour régler l'axe de visée de ladite lunette, par translation du réticule (4) dans son plan jusqu'à ce que le réticule et son image obtenue par autocollimation sur ladite lame et observés à travers l'oculaire soient coonfondus, un écartmètre (13,14,16) pour repérer tout déplacement transversal du centre optique du zoom qui entraîne une déviation angulaire dudit axe de guidage, écartomètre composé d'un trou (13) symétrique dudit centre (9) du champ de guidage par rapport à une autre lame (15) à faces parallèles semi-transparente, et d'un détecteur (14) disposé en face dudit trou de maniére à recevoir le flux issu de l'émetteur de guidage après réflexions successives sur lesdites lames, ledit détecteur étant relié à l'entrée d'un récepteur d'écartométrie (16) pour délivrer à sa sortie un signal d'erreur mesurant l'écart de l'axe optique du Zoom par rapport à sa position nominale paralléle à l'axe de visée et dirigé vers un élément de correction (17) sur le trajet du faisceau pour dévier ce faisceau et la position du centre dudit champ de guidage de façon à annuler ledit écart.
  2. Dispositif selon la revendication 1, caractérisé en ce que ledit faisceau optique de guidage est un faisceau laser.
  3. Dispositif selon l'une des revendications 1 ou 2, caractérisé en ce que ledit élément de correction est incorporé audit système de balayage en agissant sur les balayages du champ.
EP86202171A 1985-12-13 1986-12-04 Dispositif d'asservissement de l'axe d'un système de guidage à champ variable à l'axe d'une lunette de visée Expired - Lifetime EP0228734B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8518467 1985-12-13
FR8518467A FR2591767B1 (fr) 1985-12-13 1985-12-13 Procede d'asservissement de l'axe d'un systeme de guidage a champ variable a l'axe d'une lunette de visee

Publications (2)

Publication Number Publication Date
EP0228734A1 EP0228734A1 (fr) 1987-07-15
EP0228734B1 true EP0228734B1 (fr) 1991-03-13

Family

ID=9325746

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86202171A Expired - Lifetime EP0228734B1 (fr) 1985-12-13 1986-12-04 Dispositif d'asservissement de l'axe d'un système de guidage à champ variable à l'axe d'une lunette de visée

Country Status (5)

Country Link
US (1) US4741618A (fr)
EP (1) EP0228734B1 (fr)
JP (1) JPS62140118A (fr)
DE (1) DE3678128D1 (fr)
FR (1) FR2591767B1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3624128A1 (de) * 1986-07-17 1988-02-04 Messerschmitt Boelkow Blohm Verfahren zur parallelausrichtung
DE3911307C2 (de) * 1989-04-07 1998-04-09 Busch Dieter & Co Prueftech Verfahren zum Feststellen, ob zwei hintereinander angeordnete Wellen hinsichtlich ihrer Mittelachse fluchten oder versetzt sind
FR2793559B1 (fr) 1999-05-12 2001-07-27 Cit Alcatel Procede et dispositif pour detecter les erreurs d'harmonisation de l'axe d'un instrument optique
JP3395733B2 (ja) * 1999-10-05 2003-04-14 三菱電機株式会社 光波妨害装置
JP4446087B2 (ja) * 2004-03-01 2010-04-07 独立行政法人情報通信研究機構 光検出装置及びこれを用いた光検出システム
CN105091792B (zh) * 2015-05-12 2017-11-03 西安邮电大学 一种标定多光轴光学系统光轴平行度的装置及其标定方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2133176A5 (fr) * 1971-04-09 1972-11-24 Comp Generale Electricite
DE2426785C3 (de) * 1974-06-01 1979-02-01 Messerschmitt-Boelkow-Blohm Gmbh, 8000 Muenchen Vorrichtung zum Ausrichten der zwei optischen Achsen einer kombinierten Zielfernrohr/IR-Goniometer-Anlage
US4326799A (en) * 1975-08-06 1982-04-27 Raytheon Company Active-passive scanning system
US4100404A (en) * 1976-07-13 1978-07-11 Sanders Associates, Inc. Beam projector
US4179085A (en) * 1978-01-03 1979-12-18 The United States Of America As Represented By The Secretary Of The Army Optical boresight method for nutating system
DE2941627B1 (de) * 1979-10-13 1981-04-23 Eltro GmbH, Gesellschaft für Strahlentechnik, 6900 Heidelberg Verfahren und Vorrichtung zur Harmonisierung optischer Achsen
US4326800A (en) * 1980-05-05 1982-04-27 Hughes Aircraft Company Laser beam wavefront and line-of-sight error correction system
US4385834A (en) * 1980-07-28 1983-05-31 Westinghouse Electric Corp. Laser beam boresight system
DE3034922C2 (de) * 1980-09-16 1982-11-25 Siemens AG, 1000 Berlin und 8000 München Justier- und Prüfeinrichtung für ein Laserentfernungsmeßsystem
JPS5834420A (ja) * 1981-08-26 1983-02-28 Tech Res & Dev Inst Of Japan Def Agency 光学装置
GB2125162B (en) * 1982-07-26 1985-09-18 Atomic Energy Authority Uk Optical alignment system
US4662727A (en) * 1983-08-01 1987-05-05 Hughes Aircraft Company Two-axis optical inertial system using a gyro rotor as a stable reference

Also Published As

Publication number Publication date
FR2591767B1 (fr) 1988-02-19
FR2591767A1 (fr) 1987-06-19
EP0228734A1 (fr) 1987-07-15
US4741618A (en) 1988-05-03
DE3678128D1 (de) 1991-04-18
JPS62140118A (ja) 1987-06-23

Similar Documents

Publication Publication Date Title
US5613777A (en) Improvements relating to radiation thermometers
EP0087998B1 (fr) Appareil viseur, notamment pour réaliser un viseur de tête
EP1818645B1 (fr) Viseur amélioré à point rouge mobile
FR2458830A1 (fr) Systeme de representation optique muni d'un systeme de detection opto-electronique servant a determiner un ecart entre le plan image du systeme de representation et un second plan destine a la representation
EP3485218B1 (fr) Viseur à point rouge mobile et illuminateur
EP3153879A1 (fr) Instrument de mesure de distance électro-optique
EP0228734B1 (fr) Dispositif d'asservissement de l'axe d'un système de guidage à champ variable à l'axe d'une lunette de visée
US5410398A (en) Automatic boresight compensation device
EP0003085B1 (fr) Dispositif de conduite de tir
CN1862311A (zh) 全息瞄准器距离标尺装定机构与其装定方法
US4381150A (en) Laser beam pointing aid
FR2504668A1 (fr) Procede et dispositif d'asservissement d'une arme a une lunette de visee
US4881796A (en) Single-aperture multi-spectral reticle projector
RU161643U1 (ru) Автоколлимационная центрировочная труба
RU2224980C2 (ru) Способ измерения изгиба артиллерийского ствола
BE905352A (fr) Procede d'harmonisation entre une lunette de visee, une camera thermique et un projecteur de guidage.
EP0147894B1 (fr) Dispositif pour projeter l'image d'un réticule dans un système optique
FR2727755A1 (fr) Procede d'harmonisation d'un systeme jour/nuit de tir de missile guide sur faisceau laser
SU1679456A1 (ru) Оптическа визирна система
SU1582039A1 (ru) Устройство дл определени положени фокальной плоскости объектива
CZ308438B6 (cs) Triangulační snímač měření vzdálenosti
KR100355025B1 (ko) 오목 타원면 거울 형상 측정용 널 렌즈 광학계
RU2164662C2 (ru) Оптический датчик перемещений
JPH027035B2 (fr)
SU746178A1 (ru) Визирна труба

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19871118

17Q First examination report despatched

Effective date: 19890424

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 3678128

Country of ref document: DE

Date of ref document: 19910418

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19921222

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931122

Year of fee payment: 8

NLS Nl: assignments of ep-patents

Owner name: THOMSON-TRT DEFENSE TE PARIJS, FRANKRIJK.

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;THOMSON - TRT DEFENSE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19931231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931231

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 19940325

BERE Be: lapsed

Owner name: PHILIPS' GLOEILAMPENFABRIEKEN N.V.

Effective date: 19931231

Owner name: TELECOMMUNICATIONS RADIOELECTRIQUES ET TELEPHONIQU

Effective date: 19931231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941121

Year of fee payment: 9

Ref country code: DE

Payment date: 19941121

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941205

EAL Se: european patent in force in sweden

Ref document number: 86202171.4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950701

EUG Se: european patent has lapsed

Ref document number: 86202171.4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951204

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960903

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19991223

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051204