RU2224980C2 - Способ измерения изгиба артиллерийского ствола - Google Patents
Способ измерения изгиба артиллерийского ствола Download PDFInfo
- Publication number
- RU2224980C2 RU2224980C2 RU2001100880/28A RU2001100880A RU2224980C2 RU 2224980 C2 RU2224980 C2 RU 2224980C2 RU 2001100880/28 A RU2001100880/28 A RU 2001100880/28A RU 2001100880 A RU2001100880 A RU 2001100880A RU 2224980 C2 RU2224980 C2 RU 2224980C2
- Authority
- RU
- Russia
- Prior art keywords
- diaphragm
- barrel
- photodetector
- measurement
- reflector
- Prior art date
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
Abstract
Изобретение относится к контрольно-измерительной технике, в частности к методам измерения деформаций длинномерных конструкций, например артиллерийских стволов различных длин и калибров. В основу способа положено формирование в начале ствола модулированного светового пучка, направление его вдоль ствола, отражение светового пучка от размещенного на конце ствола отражателя и направление его через объектив на фотоприемник фотоприемного датчика. В плоскости диафрагмы, расположенной непосредственно перед отражателем, формируют световую зону с размерами, большими суммы размеров диафрагмы и диапазона измерений, в процессе измерения непрерывно отражают световой пучок в направлении, параллельном линии, соединяющей центры объектива и диафрагмы, формируют объективом изображение диафрагмы на фотоприемнике и измеряют линейное смещение диафрагмы относительно визирной оси фотоприемного датчика. Величину изгиба ствола определяют по результатам деления измеренной величины смещения диафрагмы на известное расстояние между ней и объективом фотоприемного датчика. Технический результат - повышение точности измерения, исключение погрешности, вызванной угловой нестабильностью отражателя. 1 ил.
Description
Изобретение относится к контрольно-измерительной технике, в частности к методам измерения деформаций длинномерных конструкций, например артиллерийских стволов различных длин в калибров.
Известен способ измерения угловых отклонений объектов, реализуемый устройством по а. с. 1060942, кл. G 01 В 11/00. Этот способ заключается в следующем: формируют параллельный пучок лучей с помощью диафрагмы и объектива, направляют этот пучок на полупрозрачное зеркало, модулируют его оптическим затвором, отражают полученный пучок зеркалом, расположенным на контролируемом объекте, и формируют объективом в плоскости фотоприемника изображения диафрагмы после отражения пучка от полупрозрачного зеркала и после отражения его от зеркала, расположенного на контролируемом объекте. По положению двух автоколлимационных изображений диафрагмы судят о результате измерения.
Недостатком данного способа, ограничивающим его применение, является наличие виньетирования световых потоков, неизбежно сопровождающего процесс измерения и влияющего на точность. Влияние виньетирования на процесс измерения возрастает при увеличении углов разворота зеркала и расстояния до контролируемого объекта. Традиционные методы борьбы с этим явлением - увеличение размеров объективов и отражателей. Как следствие - увеличение габаритов приборов и их веса. Этот путь не всегда приемлем, учитывая габаритные и весовые ограничения при проектировании измерительных приборов.
Наиболее близким по технической сущности к заявляемому изобретению является известный способ измерения изгиба артиллерийского отвода (см. "Зарубежная военная техника". Обзоры, серия "Оптика в средствах вооружения и военной технике", вып.20 (40), 1985 г., стр.87-88), который принят за прототип.
В основу данного способа положено формирование в начале ствола модулированного светового пучка, направление его вдоль ствола, отражение от размещенного на конце ствола зеркала и направление этого светового пучка на фотоприемник фотоприемного датчика. Причем световой пучок отражают зеркалом под углом к падающему пучку и по углу поворота пучка определяют угол поворота зеркала, величина которого соответствует величине изгиба.
В связи с тем, что при выстреле на конец ствола, а значит, и зеркало оказываются большие динамические воздействия, а также имеют место дополнительные угловые повороты зеркала, независящие от величины изгиба, а, например, от колебаний температуры, возникают дополнительные погрешности измерения. Кроме этого, в устройствах, реализующих данный способ, существует переменное виньетирование, которое приводит к изменению параметров информационного сигнала и, следовательно, к значительному усложнению процесса измерения, ухудшению точности измерения, увеличению габаритов и веса устройств.
Перед авторами стояла задача разработать способ точного измерения изгиба артиллерийского ствола при существовании угловой нестабильности отражателя.
Это достигается тем, что в способе измерения изгиба артиллерийского ствола, заключающемся в формировании в начале ствола модулированного светового пучка, направлении его вдоль ствола, отражении светового пучка от размещенного на конце ствола отражателя и направлении его через объектив на фотоприемник фотоприемного датчика, формируют в плоскости диафрагмы, расположенной непосредственно перед отражателем, световую зону с размерами, большими суммы размеров диафрагмы и диапазона измерений, непрерывно в процессе измерения отражают световой пучок в направлении, параллельном линии, соединяющей центры объектива и диафрагмы, формируют объективом изображение диафрагмы на фотоприемнике, измеряют линейное смещение диафрагмы относительно визирной оси фотоприемного датчика, величину изгиба ствола определяют по результатам деления измеренной величины смещения диафрагмы на известное расстояние между ней и объективом фотоприемного датчика.
Таким образом, отраженный световой пучок направляется в обратном направлении всегда по одному и тому же оптическому пути даже при угловой нестабильности отражателя, что обеспечивает попадание светового пучка в объектив фотоприемного датчика без виньетирования и, следовательно, более высокую точность измерения, а также исключение погрешности, вызванной угловой нестабильностью отражателя. Соответственно, в устройствах, реализующих заявляемый способ, показания фотоприемного датчика изменяются только при линейном смещении отражателя, вызванном деформацией ствола.
Сущность изобретения поясняется одним из вариантов устройства, реализующего способ, схема которого изображена на чертеже, где:
1 - ствол;
2 - диафрагма;
3 - отражатель;
4 - фотоприемный датчик;
5 - объектив;
6 - излучатель;
7 - фотоприемник;
8 - светоделитель;
9 - визирная ось фотоприемного датчика;
10 - световая зона.
1 - ствол;
2 - диафрагма;
3 - отражатель;
4 - фотоприемный датчик;
5 - объектив;
6 - излучатель;
7 - фотоприемник;
8 - светоделитель;
9 - визирная ось фотоприемного датчика;
10 - световая зона.
Диафрагма 2 и отражатель 3 размещены на конце ствола 1. Отражатель 3 выполнен с тремя отражательными взаимно перпендикулярными гранями (например, триппельпризма). Такой отражатель обладает свойством отражать световой пучок параллельно падающему. Фотоприемный датчик 4 размещен в начала ствола и содержит объектив 5, излучатель 6, фотоприемник 7 и светоделитель 8. Визирная ось 9 фотоприемного датчика 4 проходит через центр объектива 5 и фотоприемника 7. В плоскости диафрагмы 2 формируется световая зона 10, размеры которой больше суммы размеров диафрагмы 2 и диапазона измерений.
Способ измерения изгиба артиллерийского ствола осуществляется следующим образом.
Модулированный свет от излучателя 6, пройдя светоделитель 8, формируется объективом 5 в модулированный световой пучок, который направляется вдоль ствола 1 на диафрагму 2. Световой пучок освещает полностью всю диафрагму 2 при ее перемещениях относительно визирной оси 9. Это достигается тем, что световое пятно в плоскости диафрагмы 2 больше или равно величине, равной сумме габаритных размеров диафрагмы 2 и величины диапазона ее перемещения.
Пройдя диафрагму 2, световой пучок попадает на отражатель 3, от которого отражается в строго противоположном направлении, и, снова пройдя диафрагму 2, попадает на объектив 5, который формирует изображение диафрагмы 2 на фотоприемнике 7 фотоприемного датчика 4.
Изгиб ствола 1 всегда приводит к линейному смещению конца ствола 1 и, соответственно, диафрагмы 2 с определенной пропорцией. Это линейное смещение диафрагмы 2 относительно визирной оси 9 фотоприемного датчика 4 приводит к смещению изображения диафрагмы 2 на фотоприемнике 7. По величине этого смещения определяют величину смещения диафрагмы 2. Расстояние между объективом 5 и диафрагмой 2 известно. Таким образом, величину изгиба определяют по результатам деления величины смещения диафрагмы 2 на известное расстояние между ней и объективом 5 фотоприемного датчика 4.
При технической реализации устройства, использующего заявляемый способ, диафрагма может быть выполнена из металлической пластины с отверстием, форма которого зависит от типа фотоприемника и принципа построения фотоприемного датчика.
Отражатель может быть выполнен в виде трех взаимно перпендикулярных зеркал или триппельпризмы (например, М.М.Русинов и др. Вычислительная оптика, 1984 г., Л., с. 114, 115).
Фотоприемный датчик, основными элементами которого является объектив, фотоприемник и излучатель, может быть выполнен в разных вариантах. Фотоприемные датчики, содержащие эти элементы, описаны в разных источниках, например Д.А.Аникс, К.М.Константинович и др. Высокоточные угловые измерения. М.: Машиностроение, 1987 г., с. 339-346.
В силу использования при реализации этого способа отражателя с тремя отражательными гранями (например, триппельпризмы), который не отклоняет отраженные от него лучи при своем повороте, вышедший из диафрагмы после отражения пучок света пойдет по тому же пути, что и падающий, и всегда будет попадать в объектив. Поэтому угловая нестабильность отражателя относительно артиллерийского ствола не будет вызывать изменения в показаниях фотоприемного датчика и, следовательно, влиять на погрешность измерения. Изменение показаний фотоприемного датчика будет только при линейных смещениях диафрагмы совместно с отражателем относительно визирной оси, которое всегда пропорционально изгибу отвода. Диапазон измерения при этом способе определяется габаритами освещаемой зоны в плоскости диафрагмы. Габариты освещаемой зоны всегда можно выполнить гораздо большими, чем диаметр объектива. Виньетирование также практически отсутствует, что позволяет поддерживать постоянную амплитуду сигнала при линейных смещениях диафрагмы, что облегчает его обработку.
Claims (1)
- Способ измерения изгиба артиллерийского ствола, заключающийся в формировании в начале ствола модулированного светового пучка, направлении его вдоль ствола, отражении светового пучка от размещенного на конце ствола отражателя и направления его через объектив на фотоприемник фотоприемного датчика, отличающийся тем, что формируют в плоскости диафрагмы, расположенной непосредственно перед отражателем, световую зону с размерами, большими суммы размеров диафрагмы и диапазона измерений, непрерывно в процессе измерения отражают световой пучок в направлении, параллельном линии, соединяющей центры объектива и диафрагмы, формируют объективом изображение диафрагмы на фотоприемнике, измеряют линейное смещение диафрагмы относительно визирной оси фотоприемного датчика, величину изгиба ствола определяют по результатам деления измеренной величины смещения диафрагмы на известное расстояние между ней и объективом фотоприемного датчика.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
UA2000116368 | 2000-11-10 | ||
UA2000116368A UA38880C2 (ru) | 2000-11-10 | 2000-11-10 | Способ определения прогиба артиллерийского ствола |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2001100880A RU2001100880A (ru) | 2003-02-20 |
RU2224980C2 true RU2224980C2 (ru) | 2004-02-27 |
Family
ID=34391052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2001100880/28A RU2224980C2 (ru) | 2000-11-10 | 2001-01-09 | Способ измерения изгиба артиллерийского ствола |
Country Status (2)
Country | Link |
---|---|
RU (1) | RU2224980C2 (ru) |
UA (1) | UA38880C2 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2461797C1 (ru) * | 2010-07-15 | 2012-09-20 | Открытое Акционерное Общество "Пеленг" | Устройство для измерения изгиба артиллерийского ствола |
RU2471148C1 (ru) * | 2011-06-29 | 2012-12-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (НИУ ИТМО) | Устройство для контроля поворота объекта |
RU198702U1 (ru) * | 2019-12-13 | 2020-07-23 | Акционерное общество "Центральный научно-исследовательский институт "Буревестник" | Датчик изгиба ствола |
-
2000
- 2000-11-10 UA UA2000116368A patent/UA38880C2/ru unknown
-
2001
- 2001-01-09 RU RU2001100880/28A patent/RU2224980C2/ru not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
Зарубежная военная техника. Обзоры, серия Оптика в средствах вооружения и военной технике, вып. 20 (40), 1985, с. 87-88. * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2461797C1 (ru) * | 2010-07-15 | 2012-09-20 | Открытое Акционерное Общество "Пеленг" | Устройство для измерения изгиба артиллерийского ствола |
RU2471148C1 (ru) * | 2011-06-29 | 2012-12-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (НИУ ИТМО) | Устройство для контроля поворота объекта |
RU198702U1 (ru) * | 2019-12-13 | 2020-07-23 | Акционерное общество "Центральный научно-исследовательский институт "Буревестник" | Датчик изгиба ствола |
Also Published As
Publication number | Publication date |
---|---|
UA38880A (ru) | 2001-05-15 |
UA38880C2 (ru) | 2004-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7298468B2 (en) | Method and measuring device for contactless measurement of angles or angle changes on objects | |
US8913234B2 (en) | Measurement of the positions of centres of curvature of optical surfaces of a multi-lens optical system | |
CN109387161A (zh) | 一种自准直系统 | |
RU2224980C2 (ru) | Способ измерения изгиба артиллерийского ствола | |
US4678324A (en) | Range finding by diffraction | |
EP0343158B1 (en) | Range finding by diffraction | |
RU2461797C1 (ru) | Устройство для измерения изгиба артиллерийского ствола | |
RU2384812C1 (ru) | Автоколлиматор для измерения угла скручивания | |
RU98596U1 (ru) | Двухканальный цифровой автоколлиматор | |
US20080130014A1 (en) | Displacement Measurement Sensor Using the Confocal Principle with an Optical Fiber | |
KR102254322B1 (ko) | 광 간섭 시스템 | |
RU2769305C1 (ru) | Автоколлиматор | |
RU161643U1 (ru) | Автоколлимационная центрировочная труба | |
RU2366893C1 (ru) | Устройство измерения угловых и линейных координат объекта | |
RU2180727C2 (ru) | Фотоэлектрический автоколлимационный датчик крена | |
RU2773278C1 (ru) | Способ измерения перемещений изображения марки в цифровых автоколлиматорах и устройство для его осуществления | |
RU2663297C1 (ru) | Система измерения угла скручивания | |
SU1712775A1 (ru) | Оптическое устройство измерени линейных внутренних размеров | |
RU198702U1 (ru) | Датчик изгиба ствола | |
RU2467285C1 (ru) | Устройство для измерения угла скручивания | |
SU178138A1 (ru) | Автоколлиматор | |
SU1002833A1 (ru) | Устройство дл измерени углов поворота объекта | |
SU1076861A1 (ru) | Автоколлиматор | |
SU410243A1 (ru) | ||
JPS63153442A (ja) | ビ−ムスプリツタの光学特性測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20040110 |