EP0223207B1 - Einrichtung und Verfahren zum Regeln eines Turbokompressors zur Verhinderung des Pumpens - Google Patents

Einrichtung und Verfahren zum Regeln eines Turbokompressors zur Verhinderung des Pumpens Download PDF

Info

Publication number
EP0223207B1
EP0223207B1 EP86115791A EP86115791A EP0223207B1 EP 0223207 B1 EP0223207 B1 EP 0223207B1 EP 86115791 A EP86115791 A EP 86115791A EP 86115791 A EP86115791 A EP 86115791A EP 0223207 B1 EP0223207 B1 EP 0223207B1
Authority
EP
European Patent Office
Prior art keywords
blow
controller
curve
signal
correction signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86115791A
Other languages
English (en)
French (fr)
Other versions
EP0223207A3 (en
EP0223207A2 (de
Inventor
Wilfried Dipl.-Ing. Blotenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Gutehoffnungshutte GmbH
Original Assignee
MAN Gutehoffnungshutte GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Gutehoffnungshutte GmbH filed Critical MAN Gutehoffnungshutte GmbH
Publication of EP0223207A2 publication Critical patent/EP0223207A2/de
Publication of EP0223207A3 publication Critical patent/EP0223207A3/de
Application granted granted Critical
Publication of EP0223207B1 publication Critical patent/EP0223207B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids

Definitions

  • the invention relates to a device for regulating a turbo compressor, of the type specified in the preamble of claim 1.
  • a device of this type is known from US-A 4142 838.
  • Pumping is the term for an unstable state of a turbo compressor, in which the pumping medium flows back intermittently or periodically from the pressure side to the suction side.
  • a pump limit line can be defined in the characteristic diagram of the compressor, which separates the stable from the unstable area.
  • a blow-off line is defined in the map, which runs at a safety distance from the surge limit line. The current operating point of the compressor in the map is recorded, and when the operating point approaches the blow-off line, the regulator opens a blow-off or blow-off valve connected to the compressor output more or less in order to lower the final pressure before the operating point approaches the unstable area.
  • this regulation does not respond quickly enough, however, so that the operating point can cross the blow-off line and possibly reach the surge limit line.
  • a safety line which may be identical to the blow-off line or may lie between this and the surge line, an additional signal is generated which controls a rapid, complete or partial opening of the blow-off valve.
  • the invention has for its object to develop a device of the type mentioned so that a delay-free action of the correction signal on the relief valve is achieved with simple means, without special measures for subsequent compensation of the correction signal are necessary, and without the operating point unnecessarily long beyond the blow-off line.
  • the correction signal By applying the correction signal directly to the integral part of the controller, the correction signal is passed on to the controller output without delay in order to bring about a quick opening of the relief valve.
  • the controller output signal immediately assumes at least approximately the value that it must have after the fault has ended, i.e. there is no longer a compensation time during which the controller has to readjust to the new value via the compressor system working beyond the blow-off line.
  • the correction signal is fed to the integral part as a control signal and the integration time constant (readjustment time) is changed as a function of the position of the operating point. This ensures that the controller responds quickly in critical operating situations, since the reset time of the controller is reduced when the safety line is exceeded.
  • the output signal Y of an integral proportional controller is a function of the integration time constant (reset time) T N , the proportional gain KP and the control difference X d :
  • control difference X d ie the distance between the working point and the blow-off line, is relatively small in the vicinity of the blow-off line and consequently the change in the controller output signal Y takes place only slowly. However, this contradicts the requirement that the controller should react quickly when the blow-off line is exceeded.
  • a correction variable is therefore switched to the integral part of the controller when the blow-off line is exceeded, so that the output of the controller changes quickly and the downstream blow-off valve is triggered accordingly quickly.
  • the pressure difference in front of and behind a throttle orifice is measured by sensors 3, 5 and an actual value for the suction-side throughput V is formed therefrom in a transmitter 7.
  • a sensor 9 with transmitter 11 detects the final pressure P of the compressor.
  • the computer 13 determines the distance of the working point defined by P and V from the blow-off line A and generates a desired value signal according to this distance, which is compared in a difference element 17 with the actual value signal by an input signal for the controller 10 form.
  • This comprises at least a proportional part 10a and an integral part 10b and can also have a differential part 10c.
  • the output signal of the controller 10 controls a relief valve 19 branching off from the compressor output.
  • the computer 13 additionally generates a signal which in a signal shaping stage 21 generates a correction signal, e.g. in the form of one or more pulses which are input as an input signal into the integral part 10b of the controller.
  • a correction signal e.g. in the form of one or more pulses which are input as an input signal into the integral part 10b of the controller.
  • the signal shaping part 21 can be designed such that it generates the correction signal as long as the working point is to the left of the safety or blow-off line. However, it is also possible for the signal shaping stage 21 to generate a correction pulse of a defined, adjustable duration. Several pulses can also be generated one after the other, which bring about a change in the integrator content in several stages of adjustable height at adjustable time intervals.
  • the influence of the correction signal can thus be made dependent not only on whether the safety line is exceeded, but also on how far and / or at what speed it is exceeded. This influence can in particular be non-linear and can also be limited to changes with only one sign.
  • the pulse height, the pulse width, the pulse spacing or the pulse-pause ratio and / or the time constant of the correction signal can be varied depending on the position of the operating point in the characteristic diagram.
  • the correction signal is not additionally applied to the integral part of the controller, but rather serves as a control signal for changing the reset time T N.
  • the reset time T N is always adapted to the requirements so that there is always an optimal adjustment of the controller output signal Y.
  • the adjustment time T N is adjusted by means of a control unit 25 and can be carried out in various ways.
  • a shorter reset time is reached when a limit line (safety line) is reached near the blow-off line. If the operating point crosses this line in the opposite direction (towards the safe map area), the system switches back to the original reset time, whereby it may be necessary to provide a hysteresis for switching back.
  • a limit line safety line
  • the reset time can also be changed in another way, for example in several stages or continuously.
  • the reset time T N is a function of the control difference X d
  • f (X d ) should be zero, ie the reset time is constant in this range and has the value T i .
  • the readjustment time can either decrease with increasing control difference in order to increase the effect of the surge limit control with increasing danger for the compressor, or decrease abruptly when a limit is exceeded and increase again with increasing control difference in order to not impermissibly the controller with increasing control difference to design quickly.
  • a combination of both methods can also be used are applied, ie with increasing control difference, the reset time initially decreases and increases again above a limit.
  • PI controller proportional and integral controller
  • FIG. 2 shows a proportional and integral controller (PI controller) as a parallel connection of a proportional controller 10a and an integral controller 10b.
  • PI controller can be represented in this way, even if the controller is implemented in a different form, e.g. as a software algorithm in a digital controller.
  • a limiter can also be provided in the control unit 25, which has the effect that the reset time can neither be greater than that of the stably set controller, nor can it be so short that the relief valve can no longer follow due to its finite actuating speed.
  • the methods can also be used with other control algorithms with time-dependent changes.
  • control device 3 to 7 show further exemplary embodiments of the control device according to the invention.
  • the entire control loop is not shown here, but only the section between the formation of the control difference X d (from the setpoint W and the actual value X) and the controller output y.
  • the limit value stage 27 is set to the distance between the blow-off line and the safety line. If the limit value is reached, the relay 29 switches to the other time constant T N2 .
  • the time constant is adapted as an expression T N / X d to the input signal of the controller.
  • the limiter 31 ensures that certain limits are neither exceeded nor undershot.
  • a switch is made from T N1 to T N2 when the switching threshold is reached. If the control difference X d continues to increase, the effective reset time T N becomes dependent on the output of the function generator again larger. Alternatively, the reset time T N2 can also be omitted; the function generator is then set so that T N first decreases and then increases again.
  • FIG. 6 shows an arrangement in which the limit value stage 27 drives a pulse element 35 when a limit value is exceeded.
  • the pulse element 35 then outputs a larger or more smaller pulses or a ramp to the integrator 37.
  • Fig. 7 An arrangement in which instead of reducing the size T N, the term is multiplied is provided with a constant K is shown in Fig. 7.
  • the relay 41 can also be followed by a time limiter 39, which limits the influence of c on a fixed period of time or dependent on another parameter.
  • the position of the working point is determined by the detection of the final pressure and the throughput in the described embodiments
  • other variables such as the pressure ratio between the final and suction pressure can also be used for the detection of the working point or the definition of the characteristic map in a manner known per se.
  • the speed, the vane position, the power, the input signal of the controller 10 or the output signal of a process controller are used.
  • the map can be determined by other parameters, such as the adiabatic delivery head (instead of the final pressure) and the intake volume flow (instead of the suction-side pressure difference) are determined.
  • the surge line has a clear course in the map, so that the blow-off and safety line can also be clearly defined with respect to the surge line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Description

  • Die Erfindung betrifft eine Einrichtung zum Regeln eines Turbokompressors, von der im Oberbegriff des Anspruchs 1 angegebenen Art. Eine Einrichtung dieser Art ist aus US-A 4142 838 bekannt.
  • Als Pumpen bezeichnet man einen instabilen Zustand eines Turbokompressors, bei welchem Fördermedium stoßweise oder periodisch von der Druckseite zur Saugseite zurückströmt Im Kennfeld des Kompressors kann eine Pumpgrenzlinie definiert werden, die den stabilen vom instabilen Bereich trennt. Zum Zwecke der Pumpgrenzregelung wird im Kennfeld eine Abblaselinie definiert, die in einem Sicherheitsabstand von der Pumpgrenzlinie verläuft. Der momentane Arbeitspunkt des Kompressors im Kennfeld wird erfaßt, und bei Annäherung des Arbeitspunktes an die Abblaselinie wird vom Regler ein an den Kompressorausgang angeschlossenes Abblase- oder Umblaseventil mehr oder weniger geöffnet, um den Enddruck zu senken, bevor sich der Arbeitspunkt dem instabilen Bereich nähert. Bei schnellen Änderungen des Arbeitspunktes spricht diese Regelung aber nicht rasch genug an, so daß der Arbeitspunkt die Abblaselinie überschreiten und gegebenenfalls die Pumpgrenzlinie erreichen kann. Um dies zu verhindern ist vorgesehen, daß dann, wenn der Arbeitspunkt eine Sicherheitslinie überschreitet, die mit der Abblaselinie identisch sein oder zwischen dieser und der Pumpgrenzlinie liegen kann, ein zusätzliches Signal erzeugt wird, welches ein schnelles, vollständiges oder teilweises Öffnen des Abblaseventils steuert.
  • Bei der aus US-A 4 142 838 bekannten Einrichtung wird dieses zusätzliche Signal auf das Ausgangssignal des Reglers aufaddiert. Hierbei entsteht das Problem, daß dieses Korrektursignal nach dem Abklingen der Störung wieder unwirksam gemacht werden muß. Dies wird bei der bekannten Einrichtung dadurch erreicht, daß man das Korrektursignal nach einer Zeitfunktion abklingen läßt. Deren Zeitkonstante muß auf das Regelverhalten des Reglers abgestimmt sein, da das Abklingen des Korrektursignals eine Störung für den Regelkreis bedeutet, die vom Regler wieder korrigiert werden muß. Während dieser Abklingzeit befindet sich der Arbeitspunkt des Kompressors jenseits der Abblaselinie.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Einrichtung der genannten Art so weiter zu bilden, daß mit einfachen Mitteln eine verzögerungsfreie Einwirkung des Korrektursignals auf das Abblaseventil erreicht wird, ohne daß besondere Maßnahmen zur nachträglichen Kompensation des Korrektursignals nötig sind,und ohne daß der Arbeitspunkt unnötig lange jenseits der Abblaselinie liegt.
  • Die Lösung der Aufgabe ist im Anspruch 1 angegeben. Die Unteransprüche beziehen sich auf vorteilhaftere weitere Ausgestaltungen.
  • Durch direkte Beaufschlagung des Integralteils des Reglers mit dem Korrektursignal wird dieses unverzögert auf den Reglerausgang weitergegeben, um eine Schnellöffnung des Abblaseventils zu bewirken. Dabei nimmt das Reglerausgangssignal sofort mindestens annähernd den Wert an, den es nach Beendigung der Störung haben muß, d.h. eine längere Kompensationszeit, während der sich der Regler über das jenseits der Abblaselinie arbeitende Kompressorsystem auf den neuen Wert nachregeln muß, entfällt.
  • In einer alternativen Ausführungsform wird das Korrektursignal dem Integralteil als Steuersignal zugeführt und die Integrationszeitkonstante (Nachstellzeit) in Abhängigkeit von der Lage des Arbeitspunktes verändert. Auf diese Weise wird in kritischen Betriebssituationen ein schnelles Ansprechen des Reglers sichergestellt, da bei Überschreiten der Sicherheitslinie die Nachstellzeit des Reglers vermindert wird.
  • Ausführungsformen der Erfindung werden anhand der Zeichnungen näher erläutert.
    • Fig. 1 zeigt vereinfacht das Schema einer ersten Ausführungsform der Erfindung, in der das Korrektursignal dem Integralteil direkt zugeführt wird.
    • Fig. 2 zeigt eine alternative Ausführungsform, in der das Korrektursignal zur Veränderung der Nachstellzeit des Reglers dient.
    • Fig. 3-7 zeigen weitere Ausführungsbeispiele der Erfindung.
  • Das Ausgangssignal Y eines integral-proportionalen Reglers ist eine Funktion der Integrationszeitkonstanten (Nachstellzeit) TN, der Proportionalverstärkung KP und der Regeldifferenz Xd:
    Figure imgb0001
  • Bei gegebenen Werten von KP und TN, bestimmt durch die Stabilitätsforderungen im gesamten Arbeitsbereich, verändert sich Y nur langsam, solange Xd kleine Werte annimmt.
  • Die Regeldifferenz Xd, d.h. der Abstand zwischen Arbeitspunkt und Abblaselinie, ist in der Nähe der Abblaselinie relativ klein und demzufolge erfolgt die Änderung des Reglerausgangssignals Y nur langsam. Dies widerspricht aber der Forderung, daß beim Überschreiten der Abblaselinie der Regler schnell reagieren soll.
  • Gemäß der in Fig. 1 dargestellten ersten Ausführungsform der Erfindung wird deshalb beim Überschreiten der Abblaselinie eine Korrekturgröße auf den Integralteil des Reglers geschaltet, so daß sich der Ausgang des Reglers schnell verändert und das nachgeschaltete Abblaseventil entsprechend schnell auslöst.
  • Im Ansaugstutzen 1 eines Kompressors K wird durch Meßfühler 3, 5 die Druckdifferenz vor und hinter einer Drosselblende gemessen und daraus in einem Meßumformer 7 ein Ist-Wert für den saugseitigen Durchsatz V gebildet. Ein Meßfühler 9 mit Meßumformer 11 erfaßt den Enddruck P des Kompressors. Diese Ist-Werte werden einem Rechner 13 eingegeben, an den ein Speicher 15 angeschlossen ist, in welchem der Verlauf der Pumpgrenzlinie P und/oder einer im Sicherheitsabstand davon verlaufenden Abblaselinie A, bzw. einer zwischen den Linien P und A verlaufenden Sicherheitslinie gespeichert ist.
  • Der Rechner 13 bestimmt den Abstand des durch P und V definierten Arbeitspunktes von der Abblaselinie A und erzeugt entsprechend diesem Abstand ein Soll-Wert-Signal, welches in einem Differenzglied 17 mit dem Ist-Wert-Signal verglichen wird, um ein Eingangssignal für den Regler 10 zu bilden. Dieser umfaßt mindestens einen Proportionalteil 10a und einen Integralteil 10b und kann auch einen Differentialteil 10c aufweisen. Das Ausgangssignal des Reglers 10 steuert ein vom Kompressorausgang abzweigendes Abblaseventil 19.
  • Überschreitet der Arbeitspunkt die Abblaselinie A bzw. die oben erwähnte Sicherheitslinie, so erzeugt der Rechner 13 zusätzlich ein Signal, welches in einer Signalformerstufe 21 die Erzeugung eines Korrektursignals, z.B. in Form eines oder mehrerer Impulse auslöst, die als Eingangssignal in den Integralteil 10b des Reglers eingegeben werden. Hierdurch wird das das Abblaseventil 19 steuernde Ausgangssignal des Reglers schlagartig reduziert, um eine schnelle Öffnung des Abblaseventils 19 zu bewirken, wobei es sich je nach der Stärke des Korrektursignals um eine Teil- oder Vollöffnung handeln kann.
  • Es ist auch möglich, zwischen dem Signalformerglied 21 und dem Integralteil 10b ein Zeitkonstantenglied 23 mit einstellbarer Zeitkonstanten einzufügen, so daß die Änderung des Inhalts des Integratorteils 10b nicht schlagartig, sondern mit einer einstellbaren Zeitkonstanten erfolgt, die aber unabhängig von dem Zeitverhalten des Reglers 10 ist.
  • Der Signalformerteil 21 kann so ausgebildet sein, daß er das Korrektursignal solange erzeugt, wie der Arbeitspunkt links der Sicherheits- bzw. Abblaselinie liegt. Es ist aber auch möglich, daß die Signalformerstufe 21 einen Korrekturimpuls von definierter, einstellbarer Dauer erzeugt. Auch können mehrere Impulse hintereinander erzeugt werden, die eine Änderung des Integratorinhalts in mehreren Stufen von einstellbarer Höhe in einstellbaren Zeitabständen bewirken.
  • Ferner ist es möglich, die Größe des vom Signalumformer 21 erzeugten Korrektursignals oder den Abstand der Impulse oder die Zeitkonstante dt in Abhängigkeit vom Eingangssignal des Reglers zu steuern, wie dies durch die gestrichelte Linie der Zeichnung dargestellt ist. Damit kann der Einfluß des Korrektursignals nicht nur davon abhängig gemacht werden, ob die Sicherheitslinie überschritten wird, sondern auch davon, wie weit und/oder mit welcher Geschwindigkeit sie überschritten wird. Diese Beeinflussung kann insbesondere nicht linear erfolgen und auch auf Veränderungen mit nur einem Vorzeichen begrenzt sein.
  • Gemäß einer weiteren Ausgestaltung kann die Impulshöhe, die Impulsbreite, der Impulsabstand bzw. das Impuls-Pausenverhältnis und/oder die Zeitkonstante des Korrektursignals in Abhängigkeit von der Lage des Arbeitspunktes im Kennfeld variiert werden.
  • Bei der in Fig. 2 dargestellten alternativen Ausführungsform der Erfindung wird das Korrektursignal nicht dem Integralteil des Reglers zusätzlich aufgeschaltet, sondern es dient als Steuersignal zur Veränderung der Nachstellzeit TN. Dabei wird die Nachstellzeit TN entsprechend den Erfordernissen stets so angepaßt, daß sich immer eine optimale Verstellung des Reglerausgangssignals Y ergibt.
  • Die Anpassung der Nachstellzeit TN erfolgt mittels einer Steuereinheit 25 und kann auf verschiedene Arten durchgeführt werden.
  • Im einfachsten Falle wird mit dem Erreichen einer Grenzlinie (Sicherheitslinie) in der Nähe der Abblaselinie auf eine kürzere Nachstellzeit umgeschaltet. Überschreitet der Arbeitspunkt diese Linie in entgegengesetzter Richtung (zum sicheren Kennfeldbereich hin), wird wieder auf die ursprüngliche Nachstellzeit zurückgeschaltet, wobei es unter Umständen erforderlich sein kann, für das Zurückschalten eine Hysterese vorzusehen.
  • Die Nachstellzeit kann auch in anderer Weise verändert werden, z.B. in mehreren Stufen oder kontinuierlich. Ganz allgemein ist die Nachstellzeit TN eine Funktion der Regeldifferenz Xd
  • Figure imgb0002
  • Für Regeldifferenzen im stabilen Arbeitsbereich soll dabei f (Xd) Null sein, d.h. die Nachstellzeit ist in diesem Bereich konstant und hat den Wert Ti. Im "gefährlichen Bereich" kann die Nachstellzeit entweder mit zunehmender Regeldifferenz abnehmen, um mit zunehmender Gefahr für den Kompressor die Wirkung der Pumpgrenzregelung zu verstärken, oder beim Überschreiten einer Grenze sprungförmig abnehmen und mit zunehmender Regeldifferenz wieder zunehmen, um den Regler bei zunehmender Regeldifferenz nicht unzulässig schnell zu gestalten. Ferner kann auch eine Kombination aus beiden Methoden angewandt werden, d.h. mit zunehmender Regeldifferenz nimmt die Nachstellzeit zunächst ab und oberhalb einer Grenze wieder zu.
  • In Fig. 2 ist ein Proportional- und Integralregler (PI-Regler) als Parallelschaltung aus einem Proportionalregler 10a und einem Integralregler 10b dargestellt. Jeder PI-Regler läßt sich derartig darstellen, auch wenn der Regler in einer anderen Form realisiert ist, z.B. als Softwareaigorithmus in einem Digitalregler.
  • Der variable Integralteil ist durch eine Steuereinheit 25 pauschal dargestellt. Dabei erfüllt die Steuereinheit 25 zwei Aufgaben:
    • 1. Festellung der Regeldifferenz und
    • 2. Einstellen der Nachstellzeit gemäß der Formel TN=Ti+f(Xd).
  • Zusätzlich kann in der Steuereinheit 25 noch ein Begrenzer vorgesehen sein, der bewirkt, daß die Nachstellzeit weder größer werden kann als die des stabil eingestellten Reglers, noch so klein werden kann, daß das Abblaseventil aufgrund seiner endlichen Stellgeschwindigkeit nicht mehr folgen kann. Selbstverständlich können die Verfahren auch bei anderen Regelalgorithmen mit zeitabhängigen Änderungen angewendet werden.
  • Zusammengefaßt gilt für das erfindungsgemäße Verfahren bzw. Einrichtung, daß mit dem Erreichen eines kritischen Betriebszustandes der integrale Term im Regler direkt und gesteuert verstellt wird. Dies erfolgt auf zwei verschiedene Arten:
    • a) Der integrale Term wird direkt durch einen Steuereingriff geändert, d.h. der Ausdruck
      Figure imgb0003
      ändert sich sprungartig, bzw. in einer Rampe.
    • b) Die schnelle Änderung des Reglerausgangs erfolgt durch eine Reduktion der Größe TN.
  • Während bei a) steuernd auf das Integral eingewirkt wird, wird bei b) ein Reglerparameter verändert.
  • Die technische Realisation kann dabei sowohl analog, als auch digital erfolgen:
    • a) Bei einem analogen Regler ist das zeitbestimmende Element ein Kondensator; der Wert I des Integrals entspricht der Spannung über dem Kondensator. Eine sprungförmige Änderung des Integralteils erfolgt durch schlagartiges Entladen des Kondensators um einen vorgegebenen Betrag. Bei einem digitalen Regler liegt I als Zahlenwert vor, und die sprungförmige Änderung erfolgt durch einfache Addition oder Subtraktion. In digitalen Reglern wird häufig der sogenannte "rekursive Algorithmus" verwendet, bei dem der Reglerausgang zum Zeitpunkt t durch
      Figure imgb0004
      gegeben ist, wobei Ts die Abtastzeit des Reglers ist. Bei der sprungförmigen Änderung wird ein zusätzlicher Term zu der obigen Gleichung addiert.
    • b) Die Veränderung der Zeitkonstanten kann im analogen Regler z.B. durch ein steuerbares elektrisches zeitbestimmendes Element (Widerstand, Kondensator) erfolgen, das mit dem Erreichen der Sicherheitsgrenze zu- bzw. weggeschaltet wird. Bei dem digitalen Regler wird wieder ein Zahlenwert geändert.
      Eine andere Möglichkeit besteht darin, Kp oder Xd zu verstärken. Wesentlich ist dabei, daß die Verstärkung nur im Ingetralterm wirksam wird.
  • In den Fig. 3 bis 7 sind weitere Ausführungsbeispiele der erfindungsgemäßen Regeleinrichtung dargestellt. Dabei ist nicht der gesamte Regelkreis wiedergegeben, sondern nur der Ausschnitt zwischen der Bildung der Regeldifferenz Xd (aus dem Sollwert W und dem Istwert X) und dem Reglerausgang y.
  • In Fig. 3 ist die Grenzwertstufe 27 auf den Abstand zwischen Abblase- und Sicherheitslinie eingestellt. Wird der Grenzwert erreicht, schaltet das Relais 29 auf die andere Zeitkonstante TN2 um.
  • Gemäß Fig. 4 wird die Zeitkonstante als Ausdruck TN / Xd an das Eingangssignal des Reglers angepaßt. Der Begrenzer 31 stellt sicher, daß gewisse Grenzen weder über- noch unterschritten werden.
  • Bei der Anordnung nach Fig. 5 wird bei Erreichen der Schaltschwelle von TN1 auf TN2 umgeschaltet. Steigt die Regeldifferenz Xd weiter an, wird die wirksame Nachstellzeit TN in Abhängigkeit vom Ausgang des Funktionsgebers wieder größer. Alternativ kann auch die Nachstellzeit TN2 weggelassen werden; der Funktionsgeber wird dann so eingestellt, daß TN zunächst abnimmt und dann wieder zunimmt.
  • Fig. 6 zeigt eine Anordnung, in der mit dem Überschreiten eines Grenzwertes die Grenzwertstufe 27 ein Impulsglied 35 ansteuert. Das Impulsglied 35 gibt dann einen größeren oder mehrere kleinere Impulse bzw. eine Rampe auf den Integrator 37.
  • Eine Anordnung, bei der statt einer Verkleinerung der Größe TN eine Multiplikation des Terms
    Figure imgb0005
    mit einer Konstanten K vorgesehen ist, ist in Fig. 7 dargestellt. Bei Erreichen des Grenzwertes steuert die Grenzwertstufe 27 ein Relais 41 an, das von K = 1 auf K = C - 1, d.h. auf einem wesentlich größeren Wert, umschaltet. Dies ist gleichbedeutend mit einer Verkleinerung von TN.
  • Dem Relais 41 kann auch ein zeitlicher Begrenzer 39 nachgeschaltet sein, der dem Einfluß von c auf eine feste oder von einem anderen Parameter abhängige Zeitdauer begrenzt.
  • Während in den beschriebenen Ausführungsformen die Lage des Arbeitspunktes durch die Erfassung des Enddrucks und des Durchsatzes bestimmt wird, können für die Erfassung des Arbeitspunktes, bzw. die Definition des Kennfeldes in an sich bekannterer Weise auch andere Größen wie das Druckverhältnis zwischen End- und Saugdruck, die Drehzahl, die Leitschaufelstellung, die Leistung, das Eingangssignal des Reglers 10 oder das Ausgangssignal eines Prozeßreglers herangezogen werden. Insbesondere kann das Kennfeld durch andere Parameter, wie z.B. die adiabate Förderhöhe (statt des Enddrucks) und den Ansaugvolumenstrom (anstelle der saugseitigen Druckdifferenz) bestimmt werden. In jedem Fall hat die Pumpgrenze einen eindeutigen Verlauf im Kennfeld, so daß auch die Abblase- und Sicherheitslinie in Bezug auf die Pumpgrenze eindeutig festlegbar sind.

Claims (12)

1. Einrichtung zum Regeln eines Turbokompressors zur Verhinderung des Pumpens, mit Meßgebern zur Erfassung des Ist-Wertes einer oder mehrerer für den Arbeitspunkt des Kompressors charakteristischen Betriebsgrößen, insbesondere Enddruck und Durchsatz,
Soll-Wert-Gebern mit vorgegebenem Verlauf mindestens einer Abblaselinie im Kompressorkennfeld, einem in Abhängigkeit von Ist- und Soll-Wert ein kontinuierliches Stellsignal für das Öffnen eines Abblaseventils erzeugenden Regler, der mindestens ein Proportionalteil und ein Integralteil und gegebenenfalls einen Differentialteil aufweist,
und einer bei Überschreiten der Abblaselinie oder einer Sicherheitslinie im Kennfeld ein Korrektursignal für das Schnellöffnen des Abblaseventils erzeugenden Einrichtung, dadurch gekennzeichnet, daß das Korrektursignal dem Integralteil (10b) des Reglers (10) als Eingangssignal oder als ein die Nachstellzeit des Integralteils beeinflussendes Steuersignal zuführbar ist.
2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Korrektursignal dem Integralteil (10b) über ein Zeitkonstantenglied (23) mit einstellbarer Zeitkonstante zugeführt ist.
3. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Korrektursignal solange ansteht, wie der Arbeitspunkt oberhalb der Abblase- bzw. Sicherheitslinie liegt.
4. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Korrektursignal eine vorgegebene, einstellbare Dauer hat.
5. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Korrektursignal eine Änderung des Inhalts des Integratorteils (10b) in mehreren Stufen von einstellbarer Höhe in einstellbaren Zeitabständen bewirkt.
6. Einrichtung nach einem der Ansprüche 1 bis 5, dadurch gekenzeichnet, daß die Größe des Korrektursignals oder der Abstand der Korrekturimpulse oder die Zeitkonstante vom Eingangssignal des Reglers (10) abhängig ist.
7. Einrichtung nach Anspruch 6, dadurch gekennzeichnet, daß das Korrektursignal nichtliniear vom Eingangssignal des Reglers (10) abhängt.
8. Einrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Größe des Korrektursignals, der zeitliche Verlauf der Impulsfolge, die Höhe der Einzelimpulse oder die Zeitkonstante von der Lage des Arbeitspunktes im Kennfeld abhängig ist.
9. Verfahren zum Regeln eines Turbokompressors zum Verhindern des Pumpens, wobei die Lage des Arbeitspunktes des Kompressors relativ zu einer im Kennfeld definierten Abblaselinie etfaßt und entsprechend der Annäherung des Arbeitspunktes an die Abblaselinie ein Abblase- oder Umblaseventil mittels eines einen Integralteil aufweisenden Reglers geregelt wird, und wobei bei Überschreiten der Abblaselinie oder einer ihr zugeordneten Sicherheitslinie ein zusätzliches Signal zum Schnellöffnen des Ventils erzeugt wird, dadurch gekennzeichnet, daß das zusätzliche Signal dem Integralteil des Reglers als Eingangssignal oder ein die Nachstellzeit des Integralteils beeinflussendes Steuersignal zugeführt und das Schnellöffnen des Ventils durch das Ausgangssignal des Reglers bewirkt wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Nachstellzeit eine Funktion der Regeldifferenz ist, wenn der Arbeitspunkt sich oberhalb der Sicherheitslinie befindet.
11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß die Veränderung der Nachstellzeit im Bereich der Sicherheitslinie mit einer Hysterese erfolgt.
12. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Nachstellzeit auf einen Bereich zwischen einem minimalen und einem maximalen Wert begrenzt ist.
EP86115791A 1985-11-13 1986-11-13 Einrichtung und Verfahren zum Regeln eines Turbokompressors zur Verhinderung des Pumpens Expired - Lifetime EP0223207B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853540284 DE3540284A1 (de) 1985-11-13 1985-11-13 Einrichtung zum regeln eines turbokompressors zur verhinderung des pumpens
DE3540284 1985-11-13

Publications (3)

Publication Number Publication Date
EP0223207A2 EP0223207A2 (de) 1987-05-27
EP0223207A3 EP0223207A3 (en) 1988-01-13
EP0223207B1 true EP0223207B1 (de) 1990-10-03

Family

ID=6285903

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86115791A Expired - Lifetime EP0223207B1 (de) 1985-11-13 1986-11-13 Einrichtung und Verfahren zum Regeln eines Turbokompressors zur Verhinderung des Pumpens

Country Status (4)

Country Link
US (1) US4968215A (de)
EP (1) EP0223207B1 (de)
JP (1) JPS62247200A (de)
DE (2) DE3540284A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19812159A1 (de) * 1998-03-20 1999-09-23 Ruhrgas Ag Verfahren zum Regeln des Volumenstroms von Gas, insbesondere Erdgas, durch einen Turboverdichter

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3805119A1 (de) * 1988-02-18 1989-08-31 Gutehoffnungshuette Man Verfahren und einrichtung zum regeln von turbokompressoren
DE3809881A1 (de) * 1988-03-24 1989-10-12 Gutehoffnungshuette Man Regelverfahren zur vermeidung des pumpens eines turbokompressors
DE3811232A1 (de) * 1988-04-02 1989-10-26 Gutehoffnungshuette Man Regelverfahren zum vermeiden des pumpens eines turboverdichters mittels bedarfsweisen abblasens
DE3811230A1 (de) * 1988-04-02 1989-10-26 Gutehoffnungshuette Man Verfahren zum schuetzen eines turboverdichters vor pumpen mittels abblasens ueber ein abblaseventil sowie vorrichtung zur durchfuehrung des verfahrens
US5306116A (en) * 1992-04-10 1994-04-26 Ingersoll-Rand Company Surge control and recovery for a centrifugal compressor
DE19528253C2 (de) * 1995-08-01 1997-10-16 Gutehoffnungshuette Man Verfahren und Vorrichtung zur Vermeidung von Reglerinstabilitäten bei Pumpgrenzregelungen beim Betrieb von Strömungsmaschinen mit Reglern hoher Prportionalverstärkung
DE19541192C2 (de) * 1995-11-04 1999-02-04 Ghh Borsig Turbomaschinen Gmbh Verfahren zum Schutz eines Turbokompressors vor Betrieb im instabilen Arbeitsbereich mittels einer Abblaseeinrichtung
US6059522A (en) * 1996-04-17 2000-05-09 United Technologies Corporation Compressor stall diagnostics and avoidance
DE19828368C2 (de) * 1998-06-26 2001-10-18 Man Turbomasch Ag Ghh Borsig Verfahren und Vorrichtung zum Betreiben von zwei- oder mehrstufigen Verdichtern
DE10001365A1 (de) 2000-01-14 2001-07-19 Man Turbomasch Ag Ghh Borsig Verfahren und Einrichtung zum Regeln eines Turbokompressors zur Verhinderung des Pumpens
JP5871157B2 (ja) * 2011-10-03 2016-03-01 株式会社Ihi 遠心圧縮設備のサージング防止方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142838A (en) * 1977-12-01 1979-03-06 Compressor Controls Corporation Method and apparatus for preventing surge in a dynamic compressor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1107887B (de) * 1957-04-16 1961-05-31 Power Jets Res & Dev Ltd Regler zur Pumpverhuetung bei Stroemungsverdichtern
US3276674A (en) * 1963-03-06 1966-10-04 Shell Oil Co Method for preventing surging of compressors
US4046490A (en) * 1975-12-01 1977-09-06 Compressor Controls Corporation Method and apparatus for antisurge protection of a dynamic compressor
US4139328A (en) * 1977-05-25 1979-02-13 Gutehoffnungshitte Sterkrade Ag Method of operating large turbo compressors
US4164034A (en) * 1977-09-14 1979-08-07 Sundstrand Corporation Compressor surge control with pressure rate of change control
DE2852717C2 (de) * 1978-12-06 1982-02-11 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Verfahren zur Enddruckbegrenzung für Turbo-Verdichter mittels Abblaseregelung
US4442667A (en) * 1981-01-14 1984-04-17 Aviation Electric Ltd. Acceleration limit reset
DE3105376C2 (de) * 1981-02-14 1984-08-23 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Verfahren zum Betreiben von Turboverdichtern
US4428194A (en) * 1981-02-19 1984-01-31 The Garrett Corporation Compressor bleed air control apparatus and methods
US4627788A (en) * 1984-08-20 1986-12-09 The Babcock & Wilcox Company Adaptive gain compressor surge control system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142838A (en) * 1977-12-01 1979-03-06 Compressor Controls Corporation Method and apparatus for preventing surge in a dynamic compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19812159A1 (de) * 1998-03-20 1999-09-23 Ruhrgas Ag Verfahren zum Regeln des Volumenstroms von Gas, insbesondere Erdgas, durch einen Turboverdichter

Also Published As

Publication number Publication date
DE3674723D1 (de) 1990-11-08
JPS62247200A (ja) 1987-10-28
EP0223207A3 (en) 1988-01-13
EP0223207A2 (de) 1987-05-27
DE3540284A1 (de) 1987-05-14
US4968215A (en) 1990-11-06

Similar Documents

Publication Publication Date Title
EP0223207B1 (de) Einrichtung und Verfahren zum Regeln eines Turbokompressors zur Verhinderung des Pumpens
DE3023550C2 (de)
EP0336095B1 (de) Regelverfahren zum Vermeiden des Pumpens eines Turboverdichters mittels bedarfsweisen Abblasens
EP0328729B1 (de) Verfahren und Einrichtung zum Regeln von Turbokompressoren
DE69007874T2 (de) Regelungsanordnung für ein Verfahrensinstrumentierungssystem.
DE69124322T2 (de) Steuervorrichtung von Mittel gegen das Pumpen eines Verdichters
DE3226283A1 (de) Leerlaufregler, insbesondere fuer kraftfahrzeuge
EP0223208B1 (de) Verfahren und Einrichtung zum Regeln von Turbokompressoren
DE3020088A1 (de) Drehzahl-begrenzersystem fuer einen verbrennungsmotor
EP1987573B1 (de) Verfahren zur begrenzung der überschusskraft eines fremdkraftbetätigten schliessteils
EP0334034B1 (de) Regelverfahren zur Vermeidung des Pumpens eines Turbokompressors
EP0222382B1 (de) Verfahren zum Regeln von Turbokompressoren
EP1116885B1 (de) Verfahren und Einrichtung zum Regeln eines Turbokompressors zur Verhinderung des Pumpens
DE19739827B4 (de) Verfahren und Vorrichtung zur Steuerung einer Betriebsgröße eines Kraftfahrzeugs
DE2816613A1 (de) Einrichtung zum regeln der fahrgeschwindigkeit eines kraftfahrzeugs
EP0757180B1 (de) Verfahren und Vorrichtung zum Betreiben von Strömungsmaschinen mit Reglern mit hoher Propertionalverstärkung
EP0707718B1 (de) Regeleinrichtung
DE2739229C3 (de) Regeleinrichtung für einen Turboverdichter
DE10043783A1 (de) Verfahren und Vorrichtung zur Regelung des Vakuums in einer Kammer
DE2735246A1 (de) Regeleinrichtung fuer einen turboverdichter
DE19824426C1 (de) Regelventilanlage
DE1129596B (de) Elektrische Regelvorrichtung mit einer Rueckfuehrung
DE2638456B2 (de) Verfahren zum Anfahren von Regelkreisen
DE1132649B (de) Verstaerkeranordnung zur Sollwertvorgabe fuer einen Drehzahlregler
DE2538403A1 (de) Adaptiv geregelte bremsanlage fuer fahrzeuge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19880527

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN GUTEHOFFNUNGSHUETTE AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 19890413

ITF It: translation for a ep patent filed

Owner name: UFFICIO TECNICO ING. A. MANNUCCI

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3674723

Country of ref document: DE

Date of ref document: 19901108

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: MAN GUTEHOFFNUNGSHUETTE AKTIENGESELLSCHAFT -DANN A

NLS Nl: assignments of ep-patents

Owner name: GHH BORSIG TURBOMASCHINEN GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051110

Year of fee payment: 20

Ref country code: FR

Payment date: 20051110

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20051114

Year of fee payment: 20

Ref country code: CH

Payment date: 20051114

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20051121

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20051122

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20061112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20061113

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20061113