EP0219740B1 - Ringspalt-Kugelmühle - Google Patents

Ringspalt-Kugelmühle Download PDF

Info

Publication number
EP0219740B1
EP0219740B1 EP86113617A EP86113617A EP0219740B1 EP 0219740 B1 EP0219740 B1 EP 0219740B1 EP 86113617 A EP86113617 A EP 86113617A EP 86113617 A EP86113617 A EP 86113617A EP 0219740 B1 EP0219740 B1 EP 0219740B1
Authority
EP
European Patent Office
Prior art keywords
grinding
rotor
gap
grinding container
ball mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86113617A
Other languages
English (en)
French (fr)
Other versions
EP0219740A2 (de
EP0219740A3 (en
Inventor
Karl-Heinz Hoffmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reimbold und Strick GmbH and Co
Original Assignee
Reimbold und Strick GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reimbold und Strick GmbH and Co filed Critical Reimbold und Strick GmbH and Co
Priority to AT86113617T priority Critical patent/ATE43798T1/de
Publication of EP0219740A2 publication Critical patent/EP0219740A2/de
Publication of EP0219740A3 publication Critical patent/EP0219740A3/de
Application granted granted Critical
Publication of EP0219740B1 publication Critical patent/EP0219740B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/16Mills in which a fixed container houses stirring means tumbling the charge
    • B02C17/166Mills in which a fixed container houses stirring means tumbling the charge of the annular gap type

Definitions

  • the invention relates to an annular gap ball mill for the continuous fine grinding, in particular of mineral hard materials, with a closed grinding container in which a rotor is arranged, the outer surface of which limits a grinding gap with the inner surface of the grinding container, the upper part and the lower part of the rotor being tapered in opposite directions according to EP-A 173 271 (prior art according to Art 54 (3) (4) EPC).
  • Mineral hard materials such as corundum, zirconium dioxide, aluminum oxide, silicon carbide and similar substances, have so far been mainly crushed in ball mills with iron balls. This requires considerable dwell times of the material in the grinding chamber, and all parts that come into contact with the material to be ground and the iron balls are subject to very heavy wear. In addition, the grinding process is associated with annoying noise. Another disadvantage of such ball mills is that the abrasion of the iron balls gets into the regrind and has to be washed out in chemical washing processes in a complicated and expensive manner.
  • Annular gap ball mills of the type mentioned at the beginning (DE-A 28 48 479) are said to be an improvement over the conventional ball mills, but are not very suitable for the fine grinding of mineral hard materials and only for the grinding of very much softer materials, e.g. Chalk and the like, economically. This is primarily due to the behavior of the grinding balls or grinding beads in the grinding gap.
  • the grinding beads which are pumped into the grinding gap from below, together with the material to be ground, initially move due to the pressure of the feed pump, with which the grinding material suspension is pressed into the annular gap ball mill, and due to the rotary movement of the rotor in the grinding gap, but they sag when they decrease of the pump pressure by gravity and do not allow a grinding process to take place in the upper part of the grinding gap. If you want to prevent this, the feed pump pressure or the regrind flow must be increased so that the grinding beads are also held in the upper part of the grinding gap; then there is the danger that the grinding beads are discharged together with the regrind, which in turn reduces the grinding performance.
  • the vane pump wheel only reinforces another disadvantage of this annular gap ball mill, which is that grinding beads that do not sag down are increasingly pumped to the outlet opening with the material to be ground and are therefore also lost to the grinding process.
  • the vane pump wheel is subject to heavy wear from grinding beads and regrind. Sieves are sometimes used to hold back the grinding beads in the grinding gap, but these can hinder and even prevent the regrind discharge if they are clogged with regrind and grinding beads.
  • Another known annular gap ball mill (DE-A 28 11 899) has a conical ring-shaped ground material container, the inner surface of which defines a grinding chamber with a conical ring-shaped rotatable displacement body.
  • return channels for the grinding beads are arranged obliquely outwards.
  • the grinding beads show the unfavorable behavior described, and despite the circulation of the grinding beads, the utilization of the entire height of both grinding gap parts for the grinding process is practically not achieved here either.
  • the grinding beads located in the inner downward grinding gap part namely follow the grinding material flow in the outlet direction instead of counteracting it, so that even less work is done in this part of the grinding gap than in the other grinding gap part, in which gravity may cause a certain lengthening of the residence time.
  • the grinding container can be driven to rotate about the central axis.
  • this measure does not bring any advantages with regard to the optimization of the degree of comminution, but rather does the opposite, because the grinding beads are only driven faster downwards and outwards through the grinding gap, so that the grinding capacity is reduced by shortening their residence time in the grinding gap.
  • This known annular gap ball mill is otherwise only suitable for wet grinding and cannot treat dry material at all.
  • the invention has for its object to improve an annular gap ball mill of the type mentioned in such a way that, by increasing the grinding capacity in the grinding gap, it enables an economically and technically optimal fine grinding even of mineral hard materials even in the dry state.
  • the grinding container is rotatably mounted and connected to a rotary drive.
  • any mineral hard material such as corundum, zirconium dioxide, aluminum oxide, silicon carbide and the like can be finely ground economically, even when dry, because the entire height and width of the Grinding gap can be used for the active grinding process of the grinding beads.
  • the centrifugal force dry grinding
  • the centrifugal force as a result of the opposite te directions tapered formation of the upper and lower parts of the rotor and rotating grinding bowl counteracts the gravity of the grinding beads and prevents their sinking into the grinding gap and that the grinding beads on the outside of the grinding gap are kept in motion by the grinding container and on the inside of the grinding gap by the rotor .
  • the grinding gap is optimally used for the grinding process, because even with a slowly rotating rotor and grinding bowl, it is interspersed in its entire height and width by grinding beads, which achieve high grinding performance due to increased turbulence between the two rotating parts.
  • the speed of rotation of the two rotating parts determines the grinding action by influencing the grinding pearl speed in the grinding gap, so that an adaptation to the ground material can be achieved by speed control, taking into account the prevention of the discharge of the grinding pearls from the grinding gap.
  • the discharge of grinding beads with the material to be ground is effectively prevented by the large centrifugal forces at the equatorial zone of the largest diameter, so that a sieve or the like is omitted and the finely ground material freely emerges from the grinding gap in the direction of the outlet opening.
  • the regrind moved through the grinding gap between the upper part of the rotor and the grinding container to the outlet opening contains practically no grinding beads, so that a subsequent separation of grinding beads and grinding stock is not necessary.
  • there are longer residence times because it is possible to work with lower peripheral speeds of the rotor and the grinding container.
  • the millbase between the millbeads correspondingly moves upwards very slowly and the grain size of the millbase is narrow.
  • the annular gap ball mill according to the invention works extremely well with grinding beads of various sizes, the coarse, heavier grinding beads preferably grinding coarse parts of the ground material in the grinding gap and the fine, lighter grinding beads preferably grinding finer parts in the grinding gap above, because the centrifugal force and thus the buoyancy of the lighter particles increases upwards. If the material now remains in the grinding gap for a sufficiently long time, the hard material is ground in a short time into powder of the desired fineness and discharged in a continuous stream. Corresponding to the higher filling in the grinding gap, the utilization of the energy supplied to the rotor and the grinding container is also greater and the operation of the annular gap ball mill is more economical.
  • the rotor and the grinding container are driven in opposite directions.
  • the additional swirling of the grinding beads and the material to be ground in the grinding gap and in particular in the equatorial zone it is possible in this way to approximately double the output compared to an annular gap ball mill which works with a rotor and an immovable grinding container.
  • the shear gradient essential for the grinding action is therefore here in the lower part of the grinding gap practically on the wall of the inner rotor and in the upper region of the grinding gap on the wall of the outer body.
  • the position of the described reversal of the direction of rotation moves upwards with increasing speed of the outer rotor.
  • the direction of rotation of the outer body is selected to be the same as the direction of rotation of the inner rotor, the behavior of the grinding beads in the mill changes.
  • the centrifugal force acting on the liquid filling raises the liquid level in the outlet area.
  • the inner rotor can stand still.
  • the centrifugal force generated by the grinding container, which acts as the outer rotor is sufficient to achieve the described effects during dry grinding.
  • the rotor or the grinding container is slidably mounted to change the grinding gap width. It can preferably be displacements transversely to the central axes of the rotor and grinding container that narrow the grinding gap on one side, or coaxial displacements are possible which Narrow the grinding gap at the top or bottom.
  • the grinding beads pressed through the narrowing of the grinding gap have a particularly good work performance due to the congestion of grinding material and grinding beads in this narrowing.
  • Different grinding gap constrictions can be expedient to adapt to the mineral hard material to be ground.
  • the displacement can be carried out during the rotation of the rotor and / or grinding container in order to change the eccentricity of both parts during mill operation and thereby to bring about an additional increase in performance.
  • the central axes of the rotor and the grinding container can be inclined at an angle relative to one another and / or to the vertical. This results in an improvement in the separation of millbase and millbeads when the millbase is discharged, because the millbeads are kept below an upper outlet for the millbase by centrifugal force. There are many possible variations by combining the change in the width of the grinding gap and the position of the central axes relative to one another.
  • the inner surface of the rotatable grinding container and the outer surface of the rotor have fine-rough surfaces. This means that they must not be particularly smooth, but should not be particularly rough.
  • the fine roughness can be achieved by a suitable coating of the surfaces, which serves as a corrosion and wear protection layer.
  • the inside of the rotor can be ventilated.
  • the grinding container can be surrounded by a coolant jacket.
  • the rotor 13 of an annular gap ball mill 45 which essentially consists of a rotatably mounted grinding container 12 and the rotor 13, is suspended from an arbitrary frame 10 via an arm 11, a displaceable motor bearing 11a, a motor 17 and a drive shaft 16.
  • the grinding container 12 and the rotor 13 are each constructed from an upper part and a lower part, which are tapered in the shape of a truncated cone in opposite directions.
  • the upper parts have a lower height than the lower parts.
  • the upper part 14 of the rotor 13 is covered at a short distance by a lid 15 which is detachably attached as an upper part to the lower part of the grinding container 12 and is adapted to the conical inclination of the upper part 14 of the rotor 13.
  • the upper end of the upper part 14 engages the drive shaft 16, which supports the rotor 13 in the grinding container 12 in a free-floating manner and transmits the drive of the motor 17 to the rotor 13.
  • the entire inner surface of the grinding container 12 with cover 15 is provided with a wear and corrosion resistant lining 18, 19 provided which has a fine-rough surface.
  • the outer surface of the rotor 13 with the upper part 14 is equipped with a correspondingly fine-rough surface, which is not shown for the sake of clarity.
  • a parallel-walled annular grinding gap 20 is provided, which has a horizontal central space 22 between the flat bottoms of the grinding container 12 and the rotor 13 with a lower central feed opening 21 for the ground material communicates.
  • a parallel discharge gap 23 Between the upper part 14 and the cover 15 or its coating 19 there is a likewise parallel discharge gap 23, the width of which is smaller than the width of the grinding gap 20 and which extends over the entire height of the upper part 14.
  • the lower end of the downwardly diverging outlet gap 23 and the upper end of the upwardly diverging grinding gap 20 open into a radial annular chamber 24.
  • the chamber 24 Since the chamber 24 lies on the dividing line between the cover 15 and the lower part of the grinding container 12, it can be opened by removing the cover 15.
  • a spacer 27 is inserted into the division joint 26, which can be exchanged for a spacer of a different thickness in order to raise or lower the grinding container 12 more or less with respect to the rotor 13 in order to change the width of the grinding gap 20.
  • the chamber 24 is accessible through an opening 28 in the cover flange. Through this opening 28 grinding beads are introduced into the grinding gap 20 when the rotor 13 and the grinding container 12 are rotating and mineral hard materials to be comminuted through the feed opening 21 have been introduced into the grinding gap 20 from below.
  • the drive shaft 16 passes through a discharge chamber 29 in a nozzle 30.
  • a discharge chamber 29 in a nozzle 30.
  • outlet openings 31 for the finely ground material, which is pressed out of the outlet gap 23 into the discharge chamber 29.
  • elastic seals 32, 33 are arranged at the upper end of the nozzle 30.
  • a fixed ring channel 34 which bears against the nozzle 30 by means of sealing lips 35, picks up the ground material and discharges it via the drain pipe 36.
  • the motor 17 When the annular gap ball mill 45 is operated, the motor 17 first rotates the rotor 13 and the grinding container 12 is driven in the opposite direction. Then through the feed opening 21 in the hollow axis 39 regrind in the Grinding gap 20 is introduced, and then 28 grinding beads are added through the opening, which may consist of the same material as the material to be comminuted, so that the abrasion of the grinding beads does not contaminate the material to be ground and high-purity substances are produced. Since the highest circumferential speed is achieved by the conical configuration of the rotor 13 and the grinding container 12 in the equatorial zone of the largest diameter, the centrifugal force prevents the grinding beads from falling in the grinding gap 20.
  • An excess of grinding beads is collected in the chamber 24, so that a barrier layer arises, which prevents the escape of grinding beads from the grinding gap 20.
  • the grinding beads in the grinding gap 20 fill the grinding gap 20 over its entire height, so that it is used 100% for the grinding process and the ground material is exposed to a maximum grinding attack during its residence time in the grinding gap 20. Grinding beads, which have become so small due to abrasion, for example, that they fit into the outlet gap 23, are returned to the chamber 24 by the centrifugal force, so that the powder emerging from the outlet openings 31 contains no grinding beads and without aftertreatment such as washing or sieving in it desired final state is present.
  • the grinding beads are reliably prevented from sedimentation in the grinding gap 20, the risk of starting difficulties or blocking of the rotor 13 is averted.
  • the wear of the parts is correspondingly low.
  • high grinding capacities are achieved with mineral hard materials, whereby the length of the residence time of the material in the grinding gap can be adjusted by a suitable choice of the peripheral speeds of the rotor and grinding container and the width of the grinding gap.
  • the degree of comminution can be influenced by the size of the grinding beads, which can be different if necessary, whereby a gradual comminution is achieved because coarse grinding beads in the lower part of the annular gap ball mill preferably grind the coarse parts and finer grinding beads in the upper parts preferably comminute the finer parts .
  • the reference numerals of parts which roughly correspond to the example in FIG. 1 are supplemented by "a".
  • the chamber 24 is missing. It is not required because the grinding beads remain at an appropriate speed of the rotor 13a and grinding container 12a due to the centrifugal force in the equator zone and perform increased grinding work in this.
  • the performance is increased by the fact that the rotor 13a is displaced across the bearing 1a in the grinding container 12a transversely to its axis of rotation 16a (to the left in the drawing), so that the grinding gap 20a is narrower on one side than on the other .
  • the regrind and milling pearls accumulate in the narrow gap part and the milling effect is increased with continuous upward movement of the milling material in the discharge direction.
  • the drive of the rotor 13a is transmitted by a motor via a pulley 41 fastened to the drive shaft 16a.
  • the grinding container 12a is rotatably mounted in a bearing 37a which is connected to a holder 38a and surrounds a hollow axis 39a.
  • the hollow axle 39a carries a drive pulley 40a.
  • a feed line 21a is passed through the hollow axis 39a and opens into the lower region of the grinding gap 20a.
  • the axes of rotation of rotor 13a and grinding container 12a can be inclined to the vertical.
  • An automatic interval switch can be provided, which can initially drive the grinding container 12a and the rotor 13a with the same direction of rotation, when the maximum speed is reached, move the rotor 13a or the grinding container 12a relative to each other until a one-sided grinding gap 20a of 1 mm is reached and simultaneously switches the grinding container 12a or the rotor 13a to counter-rotation, then return the grinding container 12a or the rotor 13a to its starting position with the same direction of rotation and then allows these processes to be repeated.
  • This process technology is particularly recommended for oxyacetylene grinding in order to achieve high energy density in the narrowed grinding gap.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Grinding (AREA)
  • Disintegrating Or Milling (AREA)
  • Milling Processes (AREA)
  • Cosmetics (AREA)

Description

  • Die Erfindung betrifft eine Ringspalt-Kugelmühle zum kontinuierlichen Feinstzerkleinern insbesondere von mineralischen Hartstoffen mit einem geschlossenen Mahlbehälter, in dem ein Rotor angeordnet ist, dessen Außenfläche mit der Innenfläche des Mahlbehälters einen Mahlspalt begrenzt, wobei das Oberteil und das Unterteil des Rotors in entgegengesetzte Richtungen verjüngt sind nach EP-A 173 271 (Stand der Technik gemäß Art 54(3)(4) EPÜ).
  • Mineralische Hartstoffe (Mohssche Härte > 5), wie Korund, Zirkoniumdioxid, Aluminiumoxid, Siliciumcarbid und ähnliche Stoffe, werden bisher vorwiegend in Kugelmühlen mit Eisenkugeln feinzerkleinert. Hierbei sind beträchtliche Verweilzeiten des Gutes im Mahlraum erforderlich, und alle mit dem Mahlgut und den Eisenku geln in Berührung kommenden Teile unterliegen sehr starkem Verschleiß. Außerdem ist der Mahlvorgang mit störender Geräuschentwicklung verbunden. Ein weiterer Nachteil solcher Kugelmühlen besteht darin, daß der Abrieb der Eisenkugeln in das Mahlgut gelangt und in chemischen Waschprozessen auf komplizierte aufwendige Weise herausgewaschen werden muß.
  • Ringspalt-Kugeimühlen der eingangs erwähnten Art (DE-A 28 48 479) sollen zwar gegenüber den herkömmlichen Kugelmühlen eine Verbesserung darstellen, sind zum Feinzerkleinern von mineralischen Hartstoffen aber wenig geeignet und nur bei der Zerkleinerung von sehr viel weicheren Stoffen, z.B. Kreide und dergleichen, wirtschaftlich. Dies ist vor allem auf das Verhalten der Mahlkugeln oder Mahlperlen in dem Mahlspalt zurückzuführen. Die zusammen mit dem Mahlgut von unten in den Mahlspalt eingepumpten Mahlperlen bewegen sich zwar zunächst durch den Druck der Speisepumpe, mit der die Mahlgutsuspension in die Ringspalt-Kugelmühle gedrückt wird, sowie durch die Rotationsbewegung des Rotors in dem Mahlspalt nach oben, sacken jedoch bei Nachlassen des Pumpendruckes durch Schwerkraft nach unten und lassen einen Mahlvorgang im oberen Teil des Mahlspaltes gar nicht stattfinden. Will man dies verhindern, muß der Speisepumpendruck bzw. der Mahlgutdurchfluß derart erhöht werden, daß die Mahlperlen auch im oberen Teil des Mahlspaltes gehalten werden; dann besteht aber die Gefahr, daß die Mahlperlen zusammen mit dem Mahlgut ausgetragen werden, was wiederum die Mahlleistung reduziert. Erfahrungsgemäß wird daher bei einer mittleren Durchflußgeschwindigkeit des Mahlgutes nur etwa die untere Hälfte des Mahlspaltes für den Mahlvorgang ausgenutzt, und die theoretisch erzielbare Mahlleistung ist demgemäß nur etwa zur Hälfte realisiert. Außerdem bewirkt die hohe Packungsdichte der Mahlperlen im unteren Teil des Mahlspaltes einen hohen Abrieb an der Oberfläche des Rotors und des Mahlbehälters, und es kann, insbesondere nach einer kurzen Stillstandszeit des Rotors oder der Speisepumpe, sogar zu Blockierungen des Rotors kommen. Dieses Risiko soll bei der vorgenannten Ringspalt-Kugelmühle dadurch reduziert werden, daß der Rotor an seinem unteren Ende mit einem Flügelpumpenrad versehen ist. Das Flügelpumpenrad verstärkt jedoch nur einen weiteren Nachteil dieser Ringspalt-Kugelmühle, der darin besteht, daß Mahlperlen, die nicht nach unten sacken, mit dem Mahlgut verstärkt zur Auslaßöffnung gepumpt werden und auch dadurch für den Mahlvorgang verloren sind. Überdies unterliegt das Flügelpumpenrad einem starken Verschleiß durch Mahlperlen und Mahlgut. Bisweilen werden zur Zurückhaltung der Mahlperlen in dem Mahlspalt Siebe benutzt, die jedoch den Mahlgutaustrag behindern und sogar verhindern können, wenn sie mit Mahlgut und Mahlperlen zugesetzt sind.
  • Eine andere bekannte Ringspalt-Kugelmühle (DE-A 28 11 899) weist einen kegelringförmigen Mahlgutbehälter auf, dessen Innenfläche mit einem kegelringförmigen drehbaren Verdrängungskörper einen Mahlraum begrenzt. In einer den Verdrängungskörper tragenden Ringscheibe sind schräg nach außen gerichtete Rückführkanäle für die Mahlperlen angebracht. Die Mahlperlen zeigen auch in diesem Falle das geschilderte ungünstige Verhalten, und die Ausnutzung der gesamten Höhe beider Mahlspaltteile für den Mahlvorgang wird trotz der Zirkulation der Mahlperlen auch hierbei praktisch nicht erzielt. Die in dem inneren abwärtsführenden Mahlspaltteil befindlichen Mahlperlen folgen nämlich dem Mahlgutstrom in Auslaßrichtung anstatt ihm entgegenzuwirken, so daß in diesem Teil des Mahlspaltes noch geringere Arbeit geleistet wird als in dem anderen Mahlspaltteil, in dem die Schwerkraft eine gewisse Verweilzeitverlängerung hervorrufen mag. Als eventuelle weitere Ausführungsform kann der Mahlbehälter um die Mittelachse rotierbar angetrieben werden. Diese Maßnahme bringt jedoch keine Vorteile hinsichtlich der Optimierung des Zerkleinerungsgrades, sondern bewirkt eher das Gegenteil, weil die Mahlperlen nur um so schneller durch den Mahlspalt innen abwärts und außen aufwärts getrieben werden, so daß durch Verkürzung ihrer Verweilzeit in dem Mahlspalt die Mahlleistung sinkt. Diese bekannte Ringspalt-Kugelmühle ist im übrigen nur zum Naßmahlen geeignet und kann trockenes Material gar nicht behandeln.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Ringspalt-Kugelmühle der eingangs erwähnten Art so zu verbessern, daß sie durch Erhöhung der Mahlleistung in dem Mahlspalt eine wirtschaftlich und technisch optimale Feinstzerkleinerung auch von mineralischen Hartstoffen sogar in trockenem Zustand ermöglicht.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Mahlbehälter drehbar gelagert und mit einem Drehantrieb verbunden ist.
  • Mit einer Ringspalt-Kugelmühle, die zwei Rotoren mit in entgegengesetzte Richtungen verjüngten Ober- und Unterteilen aufweist, kann beliebiges mineralisches Hartmaterial, wie Korund, Zirkoniumdioxid, Aluminiumoxid, Siliciumcarbid und dergleichen sogar in trockenem Zustand wirtschaftlich feinstzermahlen werden, weil die gesamte Höhe und Breite des Mahlspaltes für den aktiven Mahlvorgang der Mahlperlen ausgenutzt werden. Dies ist darauf zurückzuführen, daß die Zentrifugalkraft (Trockenmahlung) als Folge der in entgegengesetzte Richtungen verjüngten Ausbildung des Oberteils und Unterteils von Rotor und drehendem Mahlbehälter der Schwerkraft der Mahlperlen entgegenwirkt und deren Absinken in den Mahlspalt verhindert und daß die Mahlperlen auf der Außenseite des Mahlspaltes von dem Mahlbehälter und auf der Innenseite des Mahlspaltes von dem Rotor in Bewegung gehalten werden. Der Mahlspalt wird optimal für den Mahlvorgang ausgenutzt, weil er sogar bei langsam rotierendem Rotor und Mahlbehälter in seiner gesamten Höhe und Breite von Mahlperlen durchsetzt ist, die durch verstärkte Verwirbelung zwischen den beiden rotierenden Teilen hohe Mahlleistungen erbringen. Die Drehzahl der beiden rotierenden Teile bestimmt die Mahlwirkung durch Beeinflussung der Mahlperlengeschwindigkeit im Mahlspalt, so daß durch Drehzahlregelung eine Anpassung an das Mahlgut unter Berücksichtigung der Verhinderung des Austrages der Mahlperlen aus dem Mahlspalt erreichbar ist. Die Austragung von Mahlperlen mit dem Mahlgut wird durch die großen Fliehkräfte an der Äquatorzone größten Durchmessers wirksam verhindert, so daß ein Sieb oder dergleichen entfällt und der feinstgemahlene Stoff aus dem Mahlspalt in Richtung der Auslaßöffnung frei austritt. Das durch den Mahlspalt zwischen Rotor-und Mahlbehälteroberteil nach oben zur Auslaßöffnung bewegte Mahlgut enthält praktisch keine Mahlperlen, so daß eine nachträgliche Trennung von Mahlperlen und Mahlgut entfällt. Bei der erfindungsgemäßen Ringspalt-Kugelmühle ergeben sich verlängerte Verweilzeiten, weil mit niedrigeren Umfangsgeschwindigkeiten des Rotors und des Mahlbehälters gearbeitet werden kann. Das Mahlgut zwischen den Mahlperlen bewegt sich entsprechend ganz langsam nach oben, und es ergibt sich ein enges Kornspektrum des Mahlgutes. Die erfindungsgemäße Ringspalt-Kugelmühle arbeitet außerordentlich gut mit Mahlperlen verschiedener Größe, wobei die groben, schwereren Mahlperlen unten im Mahlspalt vorzugsweise grobe Teile des Mahlgutes vermahlen und die feinen, leichteren Mahlperlen oben im Mahlspalt vorzugsweise feinere Teile vermahlen, weil die Zentrifugalkraft und damit der Auftrieb der leichteren Partikel nach oben zunimmt. Bei nunmehr ausreichend langer Verweilzeit des Gutes in dem Mahlspalt wird das Hartmaterial in kurzer Zeit in Pulver gewünschter Feinheit zermahlen und in kontinuierlichem Strom ausgetragen. Entsprechend der höheren Füllung im Mahlspalt ist auch die Ausnutzung der dem Rotor und dem Mahlbehälter zugeführten Energie größer und der Betrieb der Ringspalt-Kugelmühle wirtschaftlicher.
  • In vorteilhafter Ausgestaltung der Erfindung ist vorgesehen, daß der Rotor und der Mahlbehälter gegenläufig angetrieben sind. Infolge der zusätzlichen Verwirbelung der Mahlperlen und des Mahlgutes in dem Mahlspalt und insbesondere in der Äquatorzone kann auf diese Weise eine angenäherte Leistungsverdoppelung gegenüber einer Ringspalt-Kugelmühle erreicht werden, die mit einem Rotor und einem unbeweglichen Mahlbehälter arbeitet.
  • Wird die gegenläufige Rotation des Außenkörpers (Mahlbehälter plus Deckel) zugeschaltet, so findet im Mahlspalt eine teilweise Umkehr der Perlenbewegung statt. Hatte bisher die Perlenfüllung gleichmäßig in Richtung der Innenrotordrehung rotiert, so beginnt nun im unteren Teil des Mahlspalts die Perlenfüllung in Richtung der Außenkörperrotation zu drehen. Im oberen Bereich des Mahlspalts bleibt die ursprüngliche Rotation der Perlen erhalten. Zwischen beiden Perlenpaketen bildet sich eine ca. 10 Millimeter breite Zone der Drehrich tungsumkehr aus, in der die Perlen weniger dicht gepackt sind und fast zum Stillstand kommen. Das für die Mahlwirkung wesentliche Schergefälle liegt also hier im unteren Teil des Mahlspalts praktisch an der Wandung des Innenrotors und im oberen Bereich des Mahlspalts an der Wandung des Außenkörpers. Die Lage der beschriebenen Drehrichtungsumkehr wandert mit steigender Drehzahl des Au- ßenrotors nach oben.
  • Im Bereich der Auslaßöffnung, oberhalb des Innenrotors, stellt sich in der überstehenden Flüssigkeit eine Drehrichtungsumkehr ein, die mit der Bildung von Wirbeln verbunden ist. Mahlperlen, die in diesen Bereich gelangen, bleiben in diesen Wirbeln gefangen.
  • Wird die Drehrichtung des Außenkörpers gleich der Drehrichtung des Innenrotors gewählt, so ändert sich das Verhalten der Mahlperlen in der Mühle.
  • Rotiert der Innenkörper mit z.B. 2080 U/min, so werden die Mahlperlen bis weit in den Auslaufbereich getragen. Wird nun der Außenkörper gleichsinnig in Rotation versetzt, so genügt eine Drehzahl des Außenkörpers von nur 170 U/min, um den Auslaufbereich praktisch frei von Mahlperlen zu machen.
  • Wird die Drehzahl des Außenkörpers erhöht, so ist der Auslaufspalt fast frei von Mahlperlen.
  • Durch die auf die Flüssigkeitsfüllung wirkende Fliehkraft wird der Flüssigkeitsspiegel im Auslaufbereich angehoben.
  • Durch den mit geringer Drehzahl mitlaufenden Außenkörper wird im Auslaufspalt eine Zentrifugalbeschleunigung aufgebaut, die auf das gesamte Flüssigkeitsvolumen im Spalt wirkt und nicht in bestimmten Bereichen (Außenwand) zu Null wird. Darum wirkt auf alle Mahlperlen eine über der Erdbeschleunigung liegende Beschleunigungskraft, welche die Füllung des Auslaufspalts wie eine Zentrifuge in leichte und schwere Anteile trennt und damit die Mahlperlen sehr wirksam separiert.
  • Auf eine an der Außenwand mitlaufende Mahlperle wirkt hier die 3,8fache Erdbeschleunigung, die zu einem raschen Absetzen selbst in Schlickern hoher Dichte führt. Zudem wird der Absetzvorgang im Auslaufspalt nicht durch Wirbelbildung gestört.
  • Der innere Rotor kann stillstehen. In diesem Falle genügt die von dem als äußerer Rotor wirksamen Mahlbehälter erzeugte Fliehkraft zur Erzielung der geschilderten Effekte bei der Trockenmahlung.
  • Es hat sich als vorteilhaft erwiesen, daß der Rotor bzw. der Mahlbehälter zur Veränderung der Mahlspaltbreite verschiebbar gelagert ist. Es kann sich vorzugsweise um Verschiebungen quer zu den Mittelachsen von Rotor und Mahlbehälter handeln, die den Mahlspalt auf einer Seite verengen, oder es sind koaxiale Verschiebungen möglich, die den Mahlspalt oben oder unten verengen. Die durch die Verengung des Mahlspaltes hindurchgepreßten Mahlperlen haben infolge des Mahlgut- und Mahlperlenstaus in dieser Verengung eine besonders gute Arbeitsleistung. Zur Anpassung an den zu mahlenden mineralischen Hartstoff können unterschiedliche Mahlspaltverengungen zweckmäßig sein. Die Verschiebung kann während der Drehung von Rotor und/oder Mahlbehälter durchführbar sein, um die Exzentrizität beider Teile beim Mühlenbetrieb zu verändern und hierdurch eine zusätzliche Leistungssteigerung zu bewirken. Die Mittelachsen des Rotors und des Mahlbehälters können relativ zueinander und/oder zur Senkrechten unter einem Winkel geneigt sein. Hierdurch ergibt sich eine Verbesserung der Trennung von Mahlgut und Mahlperlen bei Auslaß des Mahlgutes, weil die Mahlperlen durch Fliehkraft unterhalb eines oberen Auslasses für das Mahlgut gehalten werden. Es ergeben sich viele Variationsmöglichkeiten durch Kombination der Veränderung der Mahlspaltbreite und der Position der Mittelachsen relativ zueinander.
  • Vorteilhafte weitere Ausgestaltungen der Erfindung sind in den Ansprüchen 6 bis 9 enthalten. Auch sie tragen zur Leistungssteigerung der Ringspalt-Kugelmühle bei und ermöglichen die Feinstzerkleinerung von trockenen und von nassen Hartstoffen.
  • Die Innenfläche des drehbaren Mahlbehälters und die Außenfläche des Rotors weisen feinrauhe Oberflächen auf. Dies bedeutet, daß sie keinesfalls besonders glatt sein dürfen, aber auch nicht besonders rauh sein sollten. Die Feinrauhigkeit kann durch eine geeignete Beschichtung der Oberflächen erzielt werden, die als Korrosions- und Verschleißschutzschicht dient. Zur Vermeidung von Wärmestaus kann der Rotor innen belüftet sein. Außerdem kann der Mahlbehälter von einem Kühlflüssigkeitsmantel umgeben sein.
  • In der Zeichnung sind Ausführungsbeispiele der Erfindung schematisch dargestellt. Es zeigen:
    • Fig. 1 einen Längsschnitt einer Ringspalt-Kugelmühle und
    • Fig. 2 einen schematischen Längsschnitt einer Ring spalt-Kugelmühle mit veränderter Mahlspaltform, wobei die ringförmige Kammer im Bereich der Äquatorzone größten Durchmessers weggelassen ist.
  • An einem beliebigen Gestell 10 ist über einen Arm 11, ein verschiebbares Motorlager 11a, einen Motor 17 und eine Antriebswelle 16 der Rotor 13 einer Ringspalt-Kugelmühle 45 aufgehängt, die im wesentlichen aus einem drehbar gelagerten Mahlbehälter 12 und dem Rotor 13 besteht. Der Mahlbehälter 12 und der Rotor 13 sind jeweils aus einem Oberteil und einem Unterteil aufgebaut, die in entgegengesetzten Richtungen geradflächig kegelstumpfförmig verjüngt sind. Die Oberteile haben geringere Höhe als die Unterteile. Das Oberteil 14 des Rotors 13 wird mit geringem Abstand von einem Deckel 15 abgedeckt, der als Oberteil lösbar auf dem Unterteil des Mahlbehälters 12 befestigt und der konischen Schrägneigung des Oberteiles 14 des Rotors 13 angepaßt ist. Das obere Ende des Oberteils 14 greift an die Antriebswelle 16 an, die den Rotor 13 freifliegend in dem Mahlbehälter 12 lagert und den Antrieb des Motors 17 auf den Rotor 13 überträgt. Der Antrieb des Mahlbehälters 12, der über ein Lager 37 auf einer Halterung 38 befestigt ist, erfolgt über eine Riemenscheibe 40 am unteren Ende einer Hohlachse 39, und zwar gegenläufig zu dem Rotor 13. Die gesamte Innenfläche des Mahlbehälters 12 mit Deckel 15 ist mit einer verschleiß- und korrosionsfesten Auskleidung 18, 19 versehen, die eine feinrauhe Oberfläche hat. Die Außenfläche des Rotors 13 mit Oberteil 14 ist mit einer entsprechend feinrauhen Oberfläche ausgestattet, die der Deutlichkeit halber nicht eingezeichnet ist.
  • Zwischen der Außenfläche des Unterteiles des Rotors 13 und der Innenfläche des Unterteiles des Mahlbehälters 12 ist ein parallelwandiger ringförmiger Mahlspalt 20 vorgesehen, der über einen waagerechten Zwischenraum 22 zwischen den ebenen Böden des Mahlbehälters 12 und des Rotors 13 mit einer unteren zentralen Speiseöffnung 21 für das Mahlgut in Verbindung steht. Zwischen dem Oberteil 14 und dem Deckel 15 bzw. seiner Beschichtung 19 ist ein ebenfalls parallelflächiger Auslaufspalt 23 vorhanden, dessen Breite geringer ist als die Breite des Mahlspaltes 20 und der sich über die ganze Höhe des Oberteiles 14 erstreckt. Das untere Ende des nach unten divergierenden Auslaufspaltes 23 und das obere Ende des nach oben divergierenden Mahlspaltes 20 münden in eine radiale ringförmige Kammer 24. Ihre obere und untere Wand sind eben und zueinander parallel; ihre äußere Stirnfläche 25 verläuft konvex gekrümmt. Da die Kammer 24 auf der Teilungsfuge zwischen Deckel 15 und Unterteil des Mahlbehälters 12 liegt, läßt sie sich durch Abnahme des Deckels 15 öffnen. In die Teilungsfuge 26 ist eine Distanzscheibe 27 eingesetzt, die gegen eine Distanzscheibe anderer Dicke ausgetauscht werden kann, um zur Änderung der Breite des Mahlspaltes 20 den Mahlbehälter 12 in bezug auf den Rotor 13 mehr oder weniger anzuheben oder abzusenken. Die Kammer 24 ist durch eine Öffnung 28 im Deckelflansch zugänglich. Durch diese Öffnung 28 werden Mahlperlen in den Mahlspalt 20 eingeführt, wenn der Rotor 13 und der Mahlbehälter 12 rotieren und durch die Speiseöffnung 21 zu zerkleinernde mineralische Hartstoffe von unten in den Mahlspalt 20 eingebracht worden sind.
  • Die Antriebswelle 16 durchquert eine Austragkammer 29 in einem Stutzen 30. In der Wand des Stutzens 30 befinden sich Auslaßöffnungen 31 für das feingemahlene Gut, das aus dem Auslaufspalt 23 in die Austragkammer 29 hineingedrückt wird. Am oberen Ende des Stutzens 30 sind elastische Dichtungen 32, 33 angeordnet. Ein feststehender Ringkanal 34, der mittels Dichtlippen 35 an dem Stutzen 30 anliegt, nimmt das Mahlgut auf und führt es über das Ablaufrohr 36 ab.
  • Beim Betrieb der Ringspalt-Kugelmühle 45 versetzt zunächst der Motor 17 den Rotor 13 in Drehung und es wird der Mahlbehälter 12 gegenläufig drehend angetrieben. Dann wird durch die Speiseöffnung 21 in der Hohlachse 39 Mahlgut in den Mahlspalt 20 eingeführt, und anschließend werden durch die Öffnung 28 Mahlperlen zugegeben, die aus dem gleichen Material wie das zu zerkleinernde Gut bestehen können, damit der Abrieb der Mahlperlen das Mahlgut nicht verunreinigt und hochreine Stoffe erzeugt werden. Da durch die entgegengesetzt konische Ausbildung des Rotors 13 und des Mahlbehälters 12 in der Äquatorzone größten Durchmessers die höchste Umfangsgeschwindigkeit erreicht wird, verhindert die Fliehkraft ein Absinken der Mahlperlen im Mahlspalt 20. Ein Überschuß an Mahlperlen wird in der Kammer 24 gesammelt, so daß eine Sperrschicht entsteht, die einen Austritt von Mahlperlen aus dem Mahlspalt 20 unterbindet. Die im Mahlspalt 20 befindlichen Mahlperlen füllen den Mahlspalt 20 über seine ganze Höhe aus, so daß dieser 100%ig für den Mahlvorgang ausgenutzt wird und das Mahlgut während seiner Verweilzeit im Mahlspalt 20 einem maximalen Mahlangriff ausgesetzt ist. Mahlperlen, die beispielsweise durch Abrieb so klein geworden sind, daß sie in den Auslaufspalt 23 passen, werden durch die Zentrifugalkraft in die Kammer 24 zurückgeführt, so daß das aus den Auslaßöffnungen 31 austretende Pulver keine Mahlperlen enthält und ohne Nachbehandlung wie Waschen oder Sieben in seinem gewünschten Endzustand vorliegt.
  • Da die Mahlperlen zuverlässig an einer Sedimentation im Mahlspalt 20 gehindert werden, ist die Gefahr von Anlaufschwierigkeiten oder Blockierung des Rotors 13 gebannt. Der Verschleiß der Teile ist entsprechend gering. Mit geringer Energieaufnahme werden hohe Mahlleistungen bei mineralischen Hartstoffen erzielt, wobei die Länge der Verweilzeit des Gutes in dem Mahlspalt durch passende Wahl der Umfangsgeschwindigkeiten von Rotor und Mahlbehälter und der Breite des Mahlspaltes eingestellt werden kann. Der Zerkleinerungsgrad läßt sich durch die Größe der Mahlperlen beeinflußen, die gegebenenfalls unterschiedlich sein kann, wodurch eine stufenweise Zerkleinerung erreicht wird, weil grobe Mahlperlen im unteren Teil der Ringspalt-Kugelmühle vorzugsweise die groben Teile mahlen und feinere Mahlperlen im oberen Teile vorzugsweise die feineren Teile zerkleinern.
  • Bei dem Beispiel der Figur 2 sind die Bezugsziffern von mit dem Beispiel der Figur 1 etwa übereinstimmenden Teilen durch "a" ergänzt. In diesem Beispiel weicht die Ausbildung der Ringspalt-Kugelmühle 45a u.a. insofern von der Konstruktion nach Fig. 1 ab, als der Mahlspalt 20a sich im wesentlichen über die gesamte Höhe des nach entgegengesetzten Richtungen kegelstumpfförmig verjüngenden Rotors 13a und Mahlbehälters 12a erstreckt und Ober- und Unterteile 13b, 13c etwa gleiche Höhe haben. Außerdem fehlt die Kammer 24. Sie wird nicht benötigt, weil die Mahlperlen bei angemessener Drehzahl von Rotor 13a und Mahlbehälter 12a infolge der Zentrifugalkraft in der Äquatorzone bleiben und in dieser verstärkte Mahlarbeit leisten. Außerdem wird die Leistung dadurch erhöht, daß der Rotor 13a über das Lager 1 la in dem Mahlbehälter 12a quer zu seiner Drehachse 16a (in der Zeichnung nach links) verschoben ist, so daß der Mahl spalt 20a auf einer Seite schmaler ist als auf der anderen. Mahlgut und Mahlperlen stauen sich im schmalen Spaltteil und die Mahlwirkung wird bei kontinuierlicher Aufwärts-Bewegung des Mahlgutes in Austragrichtung gesteigert. Je nach Härte des Mahlgutes und den Umfangsgeschwindigkeiten von Rotor und Mahlbehälter ist auch ein Verzicht auf die Zugabe von Mahlperlen und damit eine Autogenmahlung. d.h. eine Vermahlung des Mahlgutes mit sich selbst, möglich. Der Antrieb des Rotors 13a wird über eine auf der Antriebswelle 16a befestigte Riemenscheibe 41 von einem Motor übertragen. Der Mahlbehälter 12a ist in einem Lager 37a drehbar gelagert, das mit einer Halterung 38a verbunden ist und eine Hohlachse 39a umgibt. Die Hohlachse 39a trägt eine Antriebsscheibe 40a. Durch die Hohlachse 39a ist eine Speiseleitung 21a hindurchgeführt, die in den unteren Bereich des Mahlspaltes 20a mündet. Die Drehachsen von Rotor 13a und Mahlbehälter 12a können zur Senkrechten schräg geneigt sein.
  • Es kann eine Intervall-Schaltautomatik vorgesehen sein, die den Mahlbehälter 12a und den Rotor 13a zunächst mit gleichem Drehsinn antreiben läßt, bei Erreichen der maximalen Drehzahl den Rotor 13a bzw. den Mahlbehälter 12a bis zur Erreichung eines einseitigen Mahlspaltes 20a von 1 mm relativ zueinander verschieben läßt und gleichzeitig den Mahlbehälter 12a oder den Rotor 13a auf Gegenläufigkeit umschaltet, danach den Mahlbehälter 12a bzw. den Rotor 13a in seine Ausgangslage mit gleichem Drehsinn zurückführen und sodann diese Vorgänge wiederholen läßt. Diese Verfahrenstechnik empfiehlt sich insbesondere bei Autogenmahlung zur Erzielung hoher Energiedichte im verengten Mahlspalt.

Claims (10)

1. Ringspalt-Kugelmühle zum kontinuierlichen Feinstzerkleinern insbesondere von mineralischen Hartstoffen mit einem geschlossenen Mahlbehälter, in dem ein Rotor angeordnet ist, dessen Außenfläche mit der Innenfläche des Mahlbehälters einen Mahlspalt begrenzt, der Mahlperlen enthält, wobei das Oberteil und das Unterteil des Rotors in entgegengesetzte Richtungen verjüngt sind, dadurch gekennzeichnet, daß der Mahlbehälter (12) drehbar gelagert und mit einem Drehantrieb verbunden ist.
2. Ringspalt-Kugelmühle nach Anspruch 1, dadurch gekennzeichnet, daß der Rotor (13) und der Mahlbehälter (12) gegenläufig angetrieben sind.
3. Ringspalt-Kugelmühle nach Anspruch 1 oder 2, dadurch gekennzeichet, daß der Rotor (13) bzw. der Mahlbehälter (12) zur Veränderung der Mahlspaltbreite verschiebbar gelagert ist.
4. Ringspalt-Kugelmühle nach Anspruch 3, dadurch gekennzeichnet, daß die Verschiebung während der Drehung von Rotor (13) und/oder Mahlbehälter (12) durchführbar ist.
5. Ringspalt-Kugelmühle nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Mittelachsen des Rotors (13) und des Mahlbehälters (12) relativ zueinander unter einem Winkel geneigt sind.
6. Ringspalt-Kugelmühle nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Mittelachsen des Rotors (13) und/oder des Mahlbehälters (12) in bezug auf die Senkrechte geneigt sind.
7. Ringspalt-Kugelmühle nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß eine Intervall-Schaltautomatik für den Rotor (13) und den Mahlbehälter (12) vorgesehen ist, die den Drehsinn von Rotor (13) und/oder Mahlbehälter (12) ändert, die Verschiebung des Rotors (13) relativ zum Mahlbehälter (12) bewirkt und die Wiederholung dieser Vorgänge veranlaßt.
8. Ringspalt-Kugelmühle nach Anspruch 7, dadurch gekennzeichnet, daß die Intervall-Schaltautomatik den Mahlbehälter (12) und den Rotor (13) zunächst mit gleichem Drehsinn antreiben läßt, bei Erreichen der maximalen Drehzahl den Rotor (13) bzw. den Mahlbehälter (12) bis zur Erreichung eines einseitigen Mahlspaltes (20) von 1 mm relativ zueinander verschieben läßt und gleichzeitig den Mahlbehälter (12) oder den Rotor (13) auf Gegpnläufigkeit umschaltet, danach den Mahlbehälter (12) bzw. den Rotor (13) in seine Ausgangslage mit gleichem Drehsinn zurückführen und sodann diese Vorgänge wiederholen läßt.
9. Ringspalt-Kugelmühle nach Anspruch 8, dadurch gekennzeichnet, daß der Rotor (13) oder der Mahlbehälter (12) einen zentralen Durchlaß aufweist, der im unteren Bereich des Mahlspaltes (20) offen endet und daß der Durchlaß koaxial zu einer hohlen Antriebswelle verläuft, die mit einem Einlaß für das Mahlgut verbunden ist.
10. Ringspalt-Kugelmühle nach Anspruch 1 und einem der Ansprüche 3 bis 9, dadurch gekennzeichnet. daß der Rotor (13) und der Mahlbehälter (12) gleichsinnig angetrieben sind.
EP86113617A 1985-08-27 1986-10-02 Ringspalt-Kugelmühle Expired EP0219740B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86113617T ATE43798T1 (de) 1985-08-27 1986-10-02 Ringspalt-kugelmuehle.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN85106019A CN85106019B (zh) 1985-08-27 1985-08-27 环形缝隙式球磨机
DE19853536454 DE3536454A1 (de) 1985-08-27 1985-10-12 Ringspalt-kugelmuehle
DE3536454 1985-10-12

Publications (3)

Publication Number Publication Date
EP0219740A2 EP0219740A2 (de) 1987-04-29
EP0219740A3 EP0219740A3 (en) 1987-09-09
EP0219740B1 true EP0219740B1 (de) 1989-06-07

Family

ID=76193349

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86113617A Expired EP0219740B1 (de) 1985-08-27 1986-10-02 Ringspalt-Kugelmühle

Country Status (14)

Country Link
EP (1) EP0219740B1 (de)
JP (1) JPS6287257A (de)
KR (1) KR870003822A (de)
CN (2) CN85106019B (de)
AT (1) ATE43798T1 (de)
AU (1) AU581777B2 (de)
BR (1) BR8604966A (de)
CA (1) CA1244393A (de)
DD (1) DD250062A5 (de)
DE (2) DE3536454A1 (de)
ES (1) ES2001716A6 (de)
FI (1) FI81731C (de)
GR (1) GR3000094T3 (de)
ZA (1) ZA867607B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0483453A1 (de) * 1990-10-31 1992-05-06 Oliver Y Batlle S.A. Mühle zum Zermahlen und Feinzerkleinern von in Flüssigkeiten dispergierten Feststoffen
EP0700724A1 (de) 1994-09-09 1996-03-13 EVV-Vermögensverwaltungs-GmbH Verfahren und Vorrichtung zum kontinuierlichen autogenen Mahlen eines fliessfähigen Behandlungsguts
US5544818A (en) * 1994-09-28 1996-08-13 Mitsubishi Jukogyo Kabushiki Kaisha Pulverizing method and horizontal mill

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3838981A1 (de) * 1988-11-18 1990-05-23 Eirich Walter Ruehrwerkskugelmuehle
DE4025987C2 (de) * 1990-08-16 1998-04-09 Buehler Ag Rührwerksmühle
DE19750840B4 (de) * 1996-12-05 2007-07-19 Bühler AG Rührwerkskugelmühle
ES2315315T3 (es) * 2000-11-08 2009-04-01 Nycomed Gmbh Procedimiento para la rehidratacion de polvo de magaldrato.
CN1317079C (zh) * 2004-12-22 2007-05-23 广州晟田化工材料科技有限公司 研磨粉碎机械的磨筒和搅拌磨
JP5192514B2 (ja) * 2010-05-19 2013-05-08 株式会社キンキ 振動ミル
CN101972688A (zh) * 2010-11-19 2011-02-16 山东省农业科学院农产品研究所 高剪切超微粉碎机
CN104338598B (zh) * 2013-07-27 2017-11-10 枣庄福德通用机械有限公司 煤岩矿样粉碎机
CN104368422B (zh) * 2013-08-13 2017-07-14 宁夏嘉翔自控技术有限公司 一种独立球磨机房的球磨机钢球加装系统
CN104971799A (zh) * 2014-04-03 2015-10-14 无锡赫达科技有限公司 一种环隙式纳米砂磨机
CN104146134A (zh) * 2014-07-10 2014-11-19 苏州姑苏食品机械总厂 一种离心式巧克力食品球磨机
CN107952511B (zh) * 2017-12-29 2023-12-15 彭水县龙须晶丝苕粉有限公司 一种红薯粉生产用磨粉机器人
IT201800003874A1 (it) * 2018-03-22 2019-09-22 Certech Spa Con Socio Unico Mulino per materiali ceramici
CN109499692A (zh) * 2018-12-13 2019-03-22 长沙米淇仪器设备有限公司 一种椎形立式球磨罐
CN109499690A (zh) * 2018-12-13 2019-03-22 长沙米淇仪器设备有限公司 一种椎形立式球磨罐
CN111087835A (zh) * 2019-12-02 2020-05-01 骆瑜 一种纳米自洁净环保涂料的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4225092A (en) * 1977-11-22 1980-09-30 Microprocess Ltd. Annular grinding mill
DE2811899C2 (de) * 1978-03-18 1984-12-06 Fryma-Maschinen Ag, Rheinfelden Spalt-Kugelmühle
AT367657B (de) * 1978-08-24 1982-07-26 Buehler Ag Geb Ruehrwerkskugelmuehle-regelung
CH640751A5 (en) * 1978-08-24 1984-01-31 Buehler Ag Geb Method for operating an agitator mill and control arrangement for carrying out the method
DE3431636C1 (de) * 1984-08-29 1985-10-17 Reimbold & Strick GmbH & Co, 5000 Köln Ringspalt-Kugelmuehle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0483453A1 (de) * 1990-10-31 1992-05-06 Oliver Y Batlle S.A. Mühle zum Zermahlen und Feinzerkleinern von in Flüssigkeiten dispergierten Feststoffen
EP0700724A1 (de) 1994-09-09 1996-03-13 EVV-Vermögensverwaltungs-GmbH Verfahren und Vorrichtung zum kontinuierlichen autogenen Mahlen eines fliessfähigen Behandlungsguts
US5570846A (en) * 1994-09-09 1996-11-05 Evv-Vermogensverwaltungs-Gmbh Method and apparatus for the continuous autogenous grinding of free-flowing stock
US5544818A (en) * 1994-09-28 1996-08-13 Mitsubishi Jukogyo Kabushiki Kaisha Pulverizing method and horizontal mill

Also Published As

Publication number Publication date
EP0219740A2 (de) 1987-04-29
FI81731C (fi) 1990-12-10
AU6171986A (en) 1987-04-16
FI863754A (fi) 1987-04-13
ZA867607B (en) 1987-06-24
FI863754A0 (fi) 1986-09-17
ES2001716A6 (es) 1988-06-01
CN86106362A (zh) 1987-04-08
JPS6287257A (ja) 1987-04-21
DD250062A5 (de) 1987-09-30
CN85106019A (zh) 1987-02-25
CN85106019B (zh) 1987-10-28
DE3536454A1 (de) 1987-04-16
AU581777B2 (en) 1989-03-02
KR870003822A (ko) 1987-05-04
ATE43798T1 (de) 1989-06-15
BR8604966A (pt) 1987-07-14
EP0219740A3 (en) 1987-09-09
DE3663778D1 (en) 1989-07-13
CN1007212B (zh) 1990-03-21
FI81731B (fi) 1990-08-31
GR3000094T3 (en) 1990-11-29
CA1244393A (en) 1988-11-08

Similar Documents

Publication Publication Date Title
EP0219740B1 (de) Ringspalt-Kugelmühle
EP0173271B1 (de) Ringspalt-Kugelmühle
EP0146852B1 (de) Rührwerksmühle
EP0719585B1 (de) Rührwerksmühle mit Separator zur Zurückhaltung von Mahlperlen
DE4128074C2 (de) Rührwerkskugelmühle
AT390455B (de) Vorrichtung zum zerkleinern von fasermaterial
EP0219036B1 (de) Ringspaltmühle
EP0700724B2 (de) Verfahren und Vorrichtung zum kontinuierlichen autogenen Mahlen eines fliessfähigen Behandlungsguts
DE915408C (de) Verfahren zum Betrieb einer Muehle
DE19835555B4 (de) Verfahren und Vorrichtung zum Nassmahlen und Dispergieren von Feststoffpartikeln in Flüssigkeiten
DE3827558C2 (de) Verfahren und Vorrichtung zum Mahlen von als Suspension gefördertem Mahlgut
DE19834397B4 (de) Rührwerksmühle
EP1043073B1 (de) Nassklassiereinrichtung mit integriertem Mahlwerk
DE3729317C2 (de)
DE4234759C2 (de) Rührwerkmühle zur Feinstmahlung
DD227339B5 (de) Ruehrwerksmuehle
DE1184188B (de) Ruehrwerksmuehle zur Herstellung von Feststoffdispersionen
DE456596C (de) Kreiselmuehle
DE4214060C2 (de)
DE3815156C2 (de)
DE3028343C2 (de)
DE1916235A1 (de) Verfahren und Vorrichtung zum Zerkleinern von Teilchenmassen
EP0476189A1 (de) Vorrichtung zur kontinuierlichen nassen Feinstzerkleinerung von Feststoffen
CH510465A (de) Verfahren zum Zermahlen von körnigem Material und Mühle zur Durchführung des Verfahrens
EP0193930A2 (de) Walzenmühle zum Zerkleinern von Mahlgut

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19871219

17Q First examination report despatched

Effective date: 19880809

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 43798

Country of ref document: AT

Date of ref document: 19890615

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

REF Corresponds to:

Ref document number: 3663778

Country of ref document: DE

Date of ref document: 19890713

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19890918

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3000094

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910906

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910910

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19910911

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19910923

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19911003

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19911028

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911030

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19911031

Year of fee payment: 6

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19921002

Ref country code: GB

Effective date: 19921002

Ref country code: AT

Effective date: 19921002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19921003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19921031

BERE Be: lapsed

Owner name: REIMBOLD & STRICK G.M.B.H. & CO. K.G.

Effective date: 19921031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19930430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ERICH NETZSCH GMBH & CO. HOLDING KG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921002

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941117

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19941227

Year of fee payment: 9

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3000094

EUG Se: european patent has lapsed

Ref document number: 86113617.4

Effective date: 19930510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19951031

Ref country code: CH

Effective date: 19951031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051002