EP0219629B1 - Hochwarmfeste Aluminiumlegierung und Verfahren zur ihrer Herstellung - Google Patents

Hochwarmfeste Aluminiumlegierung und Verfahren zur ihrer Herstellung Download PDF

Info

Publication number
EP0219629B1
EP0219629B1 EP86110727A EP86110727A EP0219629B1 EP 0219629 B1 EP0219629 B1 EP 0219629B1 EP 86110727 A EP86110727 A EP 86110727A EP 86110727 A EP86110727 A EP 86110727A EP 0219629 B1 EP0219629 B1 EP 0219629B1
Authority
EP
European Patent Office
Prior art keywords
aluminium alloy
heat
alloy
particles
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86110727A
Other languages
English (en)
French (fr)
Other versions
EP0219629A1 (de
Inventor
Ignaz Dipl.-Ing. Mathy
Günther Dr.-Ing. Scharf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vereinigte Aluminium Werke AG
Original Assignee
Vereinigte Aluminium Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vereinigte Aluminium Werke AG filed Critical Vereinigte Aluminium Werke AG
Priority to AT86110727T priority Critical patent/ATE47890T1/de
Publication of EP0219629A1 publication Critical patent/EP0219629A1/de
Application granted granted Critical
Publication of EP0219629B1 publication Critical patent/EP0219629B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys

Definitions

  • the invention relates to a heat-resistant aluminum alloy consisting essentially of an aluminum matrix which contains a dispersion mixture of solidifying Al-Fe particles, part of the Fe content being at least one of the refractory elements titanium, zirconium, niobium, molybdenum, tungsten, chromium and vanadium including nickel and cobalt can be replaced.
  • EP 0 137 180 discloses a heat-resistant aluminum alloy with 6-8% manganese, 0.5-2% iron, 0.03-0.5% zirconium and 2-5% copper, with overheating of the molten metal the powder is produced at 150 ° C. above the melting point of the starting metals (claim 6). The powder particles were smaller than 120 mesh (page 7, column 4). Tests have shown that the alloys produced thereafter did not have good machinability and ductility.
  • the invention was therefore based on the object of developing new wrought aluminum alloys which can be produced from powder particles of relatively large average particle size and are easy to process and not only have good heat resistance with high RT * ) strength but also have improved corrosion behavior and show a higher fatigue strength.
  • this object is achieved by the alloys and methods for producing objects from certain alloy elements specified in the patent claims. It was not to be expected that copper and manganese additions in a content of more than 1% lead to good strength behavior over temperature, since the person skilled in the art knew from various references that precipitation hardening occurs with AICuMn alloys. This would be disadvantageous in the case of reheating, since the AI 2 Cu (Mn) phases coarsen due to the dissolution of the sub-excretions (Ostwald ripening) and the strength-increasing effect is lost.
  • the test evaluation shows that the heat resistance of the developed alloys is determined by the formation of fine, stable intermetallic phases of the AICuMn, AIsFe, AisNi and AI s Co2 type and their mixed phases. At the same time, high room temperature strength with RT strengths of up to 600 N / mm 2 could be achieved.
  • Very stable intermetallic phases which separate out due to the rapid solidification process of the melt (average particle size less than 1 gm), form from the alloy elements iron, nickel and cobalt. These fine, stable intermetallic phases of aluminum are distributed between 20-40% in the aluminum alloy and have a positive influence on the corrosion behavior.
  • the solubility of the alloy elements according to the invention in aluminum and thus the alloy content of the usual wrought aluminum alloys is significantly increased.
  • the addition of 0.4-2.0% titanium, zirconium and chromium to the aluminum alloy enables the formation of very fine phases ⁇ 0.2 gm in a proportion of 80%.
  • the heat resistance is significantly increased due to the low diffusion coefficient and the fine, stable intermetallic phases of aluminum with these elements.
  • the spherical particles only form when the ratio of copper: manganese is in the range from 2: 1 to 1: 1.
  • the powdery particles have an average particle size greater than 80 ⁇ m, preferably 100-200 ⁇ m, if the compression before the forming to a minimum density of the block of 70-85% leads.
  • high extrusion speeds of 5-10 m / sec can be achieved.
  • powder particles of 160 ⁇ m in the alloy according to the invention still have a very fine casting structure (cell size).
  • very fine, roundish particles are formed from the casting structure by heterogeneous nucleation and shaping by the forming process.
  • These fine, rounded particles allow a high extrusion speed of the alloys according to the invention.
  • the high pressing speeds ensure economical production, although the forming forces for the P / M alloys naturally increase due to the high alloy contents.
  • the special alloy contents according to the invention also ensure higher extrusion temperatures of up to 500 ° C. without a greater impairment of the mechanical properties than is described for comparable metastably supersaturated P / M alloys in US 4,464,199.
  • the very fine, homogeneous structure of rounded particles in the alloy according to the invention ensures that there are no pik-ups (chatter marks due to local melting).
  • the extruded profiles show particularly good smooth surfaces, which are almost without any defects and perfectly anodizable.
  • the fatigue strength of the heat-resistant alloys according to the invention is better than 250 N / mm 2 and thus not only better than conventional AI alloys with particularly good fatigue strengths, but also better than comparable heat-resistant AI-P / M alloys. This high fatigue strength applies to both RT and 150 ° C.
  • the particularly high modulus of elasticity is also particularly characteristic of the heat-resistant AI-P / M alloys according to the invention.
  • the modulus of elasticity is 85-100 G Pa compared to 72 G Pa for the conventional heat-resistant AI alloy AA 2618.
  • a conventional heat-resistant wrought aluminum alloy made by continuous casting contains 2.7% copper, 0.2% manganese and 1.2% magnesium.
  • the mechanical properties that can be achieved after precipitation hardening are summarized in Table 1.
  • An essential result of the invention is that the alloying of copper and manganese to the alloys with iron, nickel, cobalt, chromium, molybdenum, vandium, cerium and others. (which form the very stable intermetallic phases) leads to very good RT strengths and the heat resistance to the copper-manganese-free alloys does not decrease or can hardly be determined.
  • the AA 2618 I / M is not SRK-resistant, while the Al 2 Cu 1.5 Mn 4 Fe 4 Ni-P / M alloy is SRK-resistant.
  • a further improvement in the heat resistance of the alloy influences described is achieved if the alloy according to the invention contains 0.5-1.5% magnesium.
  • the magnesium addition does not lead to an improvement due to precipitation hardening, because aging treatment between 120 ° C and 220 ° C does not lead to an increase in the F-values or no dependence of the F-values on the aging conditions can be determined.
  • the addition of magnesium leads to an improvement in the mechanical properties through the formation of fine magnesium oxide in the P / M semi-finished product - which, like intermetallic phases, can increase strength - by reducing the defects in the quenched alloys - as defects - «sink» etc. Properties of the AI-P / M alloy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Casings For Electric Apparatus (AREA)
  • Coating With Molten Metal (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

  • Die Erfindung betrifft eine hochwarmfeste Aluminiumlegierung, bestehend im wesentlichen aus einer Aluminiummatrix, die ein Dispersionsgemisch von verfestigenden AI-Fe-Teilchen enthält, wobei ein Teil des Fe-Gehalts durch mindestens eines der feuerfesten Elemente Titan, Zirkon, Niob, Molybdän, Wolfram, Chrom und Vanadin incl. Nickel und Kobalt ersetzt werden kann.
  • Eine Aluminiumlegierung der genannten Art ist aus DE-OS 3 144 445 bekannt. Aus Figur 2 der Offenlegungsschrift ergibt sich, daß die mit Al8Fe2Mo bezeichnete Legierung eine RT*)-Festigkeit nach einer Kaltverformung von 390 N/mm2 und eine Warmfestigkeit bei 300° von 250 N/mm2 aufweist. Zur Herstellung dieser Legierung ist es aber erforderlich, eine durchschnittliche Teilchengröße von weniger als 0,05 µm und eine hohe Abkühlgeschwindigkeit von mehr als 105°C pro Sekunde einzuhalten. Ferner hat sich in der Praxis gezeigt, daß die Verarbeitbarkeit insbesondere bei hohen Gehalten an feuerfesten Elementen zu wünschen übrig ließ.
  • Ferner ist aus der EP 0 137 180 eine warmfeste Aluminiumlegierung mit 6-8% Mangan, 0,5-2% Eisen, 0,03-0,5% Zirkon und 2-5% Kupfer bekannt, wobei eine Überhitzung des geschmolzenen Metalls bei der Herstellung des Pulvers auf 150°C über den Schmelzpunkt der Ausgangsmetalle erfolgt (Anspruch 6). Die pulverförmigen Teilchen hatten eine Größe kleiner 120 mesh (Seite 7, Sp. 4). Versuche haben gezeigt, daß die danach hergestellten Legierungen keine gute Zerspanbarkeit und Duktilität aufwiesen.
  • Der Erfindung lag daher die Aufgabe zugrunde, neue Aluminium-Knetlegierungen zu entwickeln, die aus Pulverpartikeln relativ großer mittlerer Teilchengröße hergestellt und einfach verarbeitet werden können und dabei nicht nur eine gute Warmfestigkeit bei gleichzeitig hoher RT*)-Festigkeit besitzen sondern auch ein verbessertes Korrosionsverhalten und eine höhere Dauerfestigkeit zeigen.
  • Erfindungsgemäß wird diese Aufgabe durch die in den Patentansprüchen angegebenen Legierungen und Verfahren zur Herstellung von Gegenständen aus bestimmten Legierungselementen gelöst. Es war nicht zu erwarten, daß Kupfer und Mangan-Zusätze in Gehalten von über 1% zu einem guten Festigkeitsverhalten über der Temperatur führen, da dem Fachmann aus verschiedenen Literaturstellen bekannt war, daß bei AICuMn-Legierungen eine Ausscheidungshärtung auftritt. Dies wäre bei einer Wiedererwärmung von Nachteil, da durch Auflösung der Subausscheidungen (Ostwald-Reifung) die AI2Cu(Mn)-Phasen vergröbern und die festigkeitssteigernde Wirkung verloren geht.
  • Im folgenden werden die üblichen Abkürzungen verwendet, wie:
    Figure imgb0001
  • Die Versuchsauswertung zeigt, daß die Warmfestigkeit der entwickelten Legierungen durch die Bildung feiner stabiler intermetallischer Phasen vom Typ AICuMn, AIsFe, AisNi und AIsCo2 und deren Mischphasen bestimmt wird. Dabei konnte gleichzeitig eine hohe Raumtemperaturfestigkeit mit RT-Festigkeiten bis 600 N/mm2 erreicht werden.
  • Sehr stabile intermetallische Phasen, die sich durch den schnellen Erstarrungsprozeß der Schmelze fein ausscheiden (mittlere Teilchengröße kleiner 1 gm), bilden sich aus den Legierungselementen Eisen, Nickel und Cobalt. Diese feinen stabilen intermetallischen Phasen des Aluminiums sind in Gehalten zwischen 20-40% in der Aluminiumlegierung verteilt und beeinflussen das Korrosionsverhalten positiv.
  • Die erfindungsgemäßen Aluminium-Knetlegierungen werden im Vergleich zum Stranggießen bei mittleren Abschreckgeschwindigkeiten von 102-104 K/s hergestellt. Die mittlere Abschreckgeschwindigkeit der Legierung aus der Schmelze wird durch Gasverdüsung, Schmelzspinnen, Herstellung von Partikeln mit dem Schleuder-Kokillen-Verfahren u.a. erreicht. Diese rasch erstarrten Partikel können anschließend durch bekannte pulvermetallurgische Verfahren zu Halbzeug, wie Strangpreßerzeugnisse, durch Explosionsverdichten hergestellte Teile u.a. verarbeitet werden. Die Verdüsung der erfindungsgemäßen Legierung führt zu feinen Dendritenabständen (Zellgrößen), während eine durch Strangguß hergestellte AICuMn-Legierung eine Zellgröße von zirka 50 µm aufweist, ist die mittlere Zellgröße gemäß vorliegender Erfindung zirka 0,5 um.
    • *) siehe Aufstellung der verwendeten Abkürzungen.
  • Durch die Überhitzung von mindestens 300°C über Schmelztemperatur und anschließender Abschreckgeschwindigkeit zwischen 102-104 K/sec wird die Löslichkeit der erfindungsgemäßen Legierungselemente im Aluminium und damit der Legierungsgehalt der üblichen AI-Knetlegierungen wesentlich erhöht. Außerdem wird durch die Zulegierung sowohl von 0,4-2,0% Titan, Zirkon und Chrom zur Aluminiumlegierung die Bildung sehr feiner Phasen < 0,2 gm in einem Anteil von 80% ermöglicht. Durch die Zugabe von Wolfram, Molybdän, Cerium und Vanadin wird die Warmfestigkeit wegen des niedrigen Diffusionskoeffizienten und den sich bildenden feinen stabilen intermetallischen Phasen von Aluminium mit diesen Elementen wesentlich erhöht.
  • TEM-Untersuchungen zeigen kugelförmige Partikel aus intermetallischen Phasen des Typs AI-Cu-Mn neben den sie umgebenden Phasen von AIsFe, AlsNi und AIsCo2 und deren Mischphasen. Diese Struktur der feinen stabilen intermetallischen Phasen des Aluminiums beeinflußten entscheidend die Verarbeitbarkeit der erfindungsgemäßen Aluminiumlegierungen.
  • Die kugelförmigen Teilchen bilden sich nur, wenn das Verhältnis von Kupfer:Mangan im Bereich von 2:1 bis 1:1 liegt. Versuche haben gezeigt, daß bei anderen Gewichtsverhältnissen entweder die Festigkeit oder die Zerspanbarkeit abnimmt. Um diese kugelige Struktur auch bei der Weiterverarbeitung unverändert beibehalten zu können, ist es erforderlich, die Vorwärmtemperaturen und die Preßgeschwindigkeit innerhalb bestimmter Bereiche einzustellen. Danach hat es sich als günstig erwiesen - im Gegensatz zur bisher herrschenden Lehre - daß die pulverförmigen Partikel eine mittlere Teilchengröße größer 80 µm, vorzugsweise 100-200 µm, aufweisen, wenn die Verdichtung vor der Umformung zu einer Mindestdichte des Blockes von 70-85% führt. Trotz der groben Pulverfraktionen erreicht man hohe Strangpreßgeschwindigkeiten von 5-10 m/sec. Dies ist möglich weil Pulverpartikel von 160 µm bei der erfindungsgemäßen Legierung noch ein sehr feines Gußgefüge (Zellgröße) besitzen. Aus dem Gußgefüge bilden sich während der Umformung sehr feine rundliche Partikel durch heterogene Keimbildung und Einformung durch den Umformprozeß. Diese feinen rundlichen Partikel erlauben eine hohe Strangpreßgeschwindigkeit der erfindungsgemäßen Legierungen. Durch die hohen Preßgeschwindigkeiten ist eine wirtschaftliche Herstellung gewährleistet, obwohl natürlich die Umformkräfte für die P/M-Legierungen durch die hohen Legierungsgehalte zunehmen.
  • Die besonderen erfindungsgemäßen Legierungsgehalte gewährleisten auch höhere Strangpreßtemperaturen bis 500°C ohne stärkere Beeinträchtigung der mechanischen Eigenschaften, als dies für vergleichbare metastabil übersättigte P/M-Legierungen in US 4 464 199 beschrieben wird.
  • Außerdem wird bei der erfindungsgemäßen Legierung durch das sehr feine homogene Gefüge von rundlichen Partikeln gewährleistet, daß keine pik up's (Rattermarken durch örtliche Ausschmelzungen) auftreten. Die Strangpreßprofile zeigen besonders gute glatte Oberflächen, die fast ohne irgendwelche Fehler und einwandfrei eloxierbar sind.
  • Die Dauerfestigkeit der erfindungsgemäßen warmfesten Legierungen ist besser als 250 N/mm2 und damit nicht nur besser als konventionelle AI-Legierungen mit besonders guten Ermüdungsfestigkeiten sondern auch besser als vergleichbare warmfeste AI-P/M-Legierungen. Diese hohe Dauerfestigkeit gilt sowohl bei RT als auch bei 150°C.
  • Besonders kennzeichnend für die erfindungsgemäßen warmfesten AI-P/M-Legierungen ist weiterhin der besonders hohe E-Modul. Der E-Modul beträgt 85-100 G Pa gegenüber 72 G Pa für die konventionelle warmfeste AI-Legierung AA 2618.
  • Im folgenden wird die Erfindung anhand mehrerer Ausführungs- und Vergleichsbeispiele näher erläutert:
  • Eine konventionelle warmfeste Aluminium-Knetlegierung, die über das Stranggießen hergestellt wurde, enthält 2,7% Kupfer, 0,2% Mangan und 1,2% Magnesium. Die nach einer Ausscheidungshärtung erreichbaren mechanischen Eigenschaften sind in Tab. 1 zusammengefaßt.
    Figure imgb0002
  • In Tabelle 2 werden 2 auf dem pulvermetallurgischen Verfahrensweg über die rasche Erstarrung mit zirka 104 K/sec hergestellte Legierungen AIsFe und AI8Fe zum Vergleich herangezogen. Die Verarbeitungstemperatur lag bei 480°C. Dabei wiesen die Teilchen eine Größe von zirka 0,3 µm auf. Die Struktur der intermetallischen Phasen war mehr plattenförmig.
    Figure imgb0003
  • Ein wesentliches Ergebnis der Erfindung ist, daß das Zulegieren von Kupfer und Mangan zu den Legierungen mit Eisen, Nickel, Kobalt, Chrom, Molybdän, Vandium, Cerium u.a. (welche die sehr stabilen intermetallischen Phasen bilden) zu sehr guten RT-Festigkeiten führt und dabei die Warmfestigkeit gegenüber den Kupfer-Mangan-freien Legierungen nicht oder kaum feststellbar abfällt.
  • Die etwa gleichen Warmzugfestigkeiten bei 300°C nach 200 h Vorbehandlung bei 300°C bestätigen, daß keine Oswald-Reifung der AI-Cu-Mn-Phasen auftritt (s. Tab. 3).
    Figure imgb0004
  • Außerdem wurde durch weitere Untersuchungen bestätigt, daß erst beim Zulegieren beider Legierungselemente Kupfer und Mangan die guten RT-Festigkeiten und die guten Warmfestigkeiten erreicht werden, siehe Tabelle 4. Wird zu der Legierung AI4Fe4Ni nur Mangan zulegiert, so besitzt diese Legierung nicht die gewünschte RT-Festigkeit, siehe Tabelle 4. Ein Zulegieren von Kupfer zu AI4Fe4Ni führt zwar zu relativ guten RT-Festigkeiten, aber die Warmfestigkeit dieser Legierung ist bei höheren Temperaturen schlechter als die Cu + Mn haltigen Legierungen, siehe Tabelle 4. Enthält die Legierung AI4Fe4Ni nun Kupfer und Mangan, so wird wieder eine gute RT-Festigkeit und eine gute Warmzugfestigkeit erreicht, siehe Tabelle 4. Eine Auslagerungsbehandlung zwischen 120 bis 220°C zeigte keine Anzeichen eines Festigkeitseinflusses durch thermische Aushärtung. Die im TEM zu findenden AICuMn-Ausscheidungsphasen müssen während der Pulverherstellung und/oder pulvermetallurgischen Verarbeitung auftreten. Die Ausscheidungskinetik dieser stabilen Phasen wird scheinbar durch die hohen Gehalte an Eisen, Nickel etc. beeinflußt.
    Figure imgb0005
  • Das gute Korrosionsverhalten der erfindungsgemäßen Legierung wurde anhand folgender Testversuche beurteilt:
    • Die erfindungsgemäßen Legierungen zeigen nicht nur ein gutes Verhalten gegenüber allgemeiner Korrosion sondern sind auch besonders gut beständig gegenüber Korrosion unter Spannung bzw. Spannungsrißkorrosion. Die Spannungsrißkorrosion wurde in der kritischen Querrichtung (LT) in 2% NaCi + 0,5% Na2Cr04/pH 3 unter konstanter Spannung getestet. Die konventionelle warmfeste I/M-AI-Legierung AA 2618 wurde zum Vergleich mitgeprüft, siehe Tabelle 5.
      Figure imgb0006
  • Es zeigt sich, daß die AA 2618 I/M nicht SRK-beständig ist, während die Al2Cu1,5Mn4Fe4Ni-P/M-Legierung SRK-beständig ist.
  • Eine nochmalige Verbesserung der Warmfestigkeit der beschriebenen Legierungseinflüsse wird dann erreicht, wenn die erfindungsgemäße Legierung 0,5-1,5% Magnesium enthält. Der Magnesiumzusatz führt nicht zu einer Verbesserung durch Ausscheidungshärtung, denn eine Auslagerungsbehandlung zwischen 120°C und 220°C führt nicht zu einer Erhöhung der F-Werte bzw. es ist keine Abhängigkeit der F-Werte von den Auslagerungsbedingungen feststellbar. Der Magnesium-Zusatz führt durch die Bildung von feinem Magnesiumoxid im P/M-Halbzeug - was wie intermetallische Phasen festigkeitssteigernd wirken kann -, durch eine Verminderung der Fehlstellen der abgeschreckten Legierungen - als Fehlstellen - «Senke» etc. - zu einer Verbesserung der mechanischen Eigenschaften der AI-P/M-Legierung. Ein Zusatz von 0,55% Magnesium zu der erfindungsgemäßen Legierung Al3Cu1,5Mn4Fe4NiO,5Ti steigert die Warmzugfestigkeit, siehe Tabelle 6. Die Warmzug-Festigkeiten der Tab. 6 wurden nach 5000 h Temperatur-Warmauslagerung gemessen. Hiermit wird die thermische Stabilität der Legierung nochmals bestätigt.
    Figure imgb0007

Claims (7)

1. Hochwarmfeste Aluminiumlegierung, bestehend aus einer Aluminiummatrix, die ein Dispersionsgemisch von verfestigenden AI-Fe-Teilchen enthält, wobei ein Teil des Fe-Gehalts durch mindestens eines der feuerfesten Elemente Titan, Zirkon, Niob, Molybdän, Wolfram, Chrom und Vanadin ersetzt werden kann, dadurch gekennzeichnet, daß die Aluminiumlegierung aus 2-16% Nickel und/oder Cobalt, 1-6% Kupfer und 1-3% Mangan, wahlweise noch 0,5-1,5% Wolfram, Cer, Molybdän und/oder Vanadium und wahlweise 0,5-1,5% Magnesium sowie Eisen, Rest Aluminium besteht, wobei das Gewichtsverhältnis von Kupfer:Mangan im Bereich von 2:1 bis 1:1 liegt, daß intermetallische Phasen des Typs AI-Cu-Mn, AIsNi, Al3Fe und/oder Al9Co2 in kugelförmiger Struktur anwesend sind, und daß der Gesamtgehalt der verfestigenden Teilchen zwischen 20-40 Gew.-% liegt.
2. Hochwarmfeste Aluminiumlegierung nach Anspruch 1, dadurch gekennzeichnet, daß die verfestigenden Teilchen eine mittlere Teilchengröße zwischen 0,2 und 1 µm aufweisen.
3. Hochwarmfeste Aluminiumlegierung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in der Aluminiumlegierung 0,4-2 Gew.-% Chrom, Titan und/oder Zirkon in Form feiner Phasen zu einem Anteil von größer 80%, kleiner 0,2 µm vorliegen.
4. Hochwarmfeste Aluminiumlegierung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß 0,5-1,5 Gew.-% Wolfram, Cer, Molybdän und/oder Vanadium, überwiegend an den Phasengrenzen der intermetallischen Verbindung vorliegen.
5. Hochwarmfeste Aluminiumlegierung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in der Aluminiumlegierung 0,5-1,5% Magnesium enthalten sind und der Anteil der Mg-Phasen unter 0,5 Vol.-% liegt.
6. Verfahren zur Herstellung einer hochwarmfesten Aluminiumlegierung aus einer Legierungsschmelze nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Schmelze auf mindestens 300° über Schmelztemperatur der jeweiligen Legierung erhitzt wird und mit einer Abkühlungsgeschwindigkeit von 102-104 K pro Sekunde in pulverförmige Partikel überführt wird, deren Teilchengröße zumindest 50% über 80 µm liegt, wobei das Pulver eine mittlere Zellgröße kleiner 1 µm aufweist.
7. Verfahren zur Herstellung eines Aluminiumgegenstandes unter Verwendung einer Legierung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Block aus Legierungspulverteilchen bei Raumtemperatur mit einer Dichte von 70-80% hergestellt wird, der Block auf 350-480°C angewärmt und mit einer Preßgeschwindigkeit von 2-10 m pro Minute umgeformt wird.
EP86110727A 1985-09-18 1986-08-02 Hochwarmfeste Aluminiumlegierung und Verfahren zur ihrer Herstellung Expired EP0219629B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86110727T ATE47890T1 (de) 1985-09-18 1986-08-02 Hochwarmfeste aluminiumlegierung und verfahren zur ihrer herstellung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853533233 DE3533233A1 (de) 1985-09-18 1985-09-18 Hochwarmfeste aluminiumlegierung und verfahren zu ihrer herstellung
DE3533233 1985-09-18

Publications (2)

Publication Number Publication Date
EP0219629A1 EP0219629A1 (de) 1987-04-29
EP0219629B1 true EP0219629B1 (de) 1989-11-08

Family

ID=6281255

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86110727A Expired EP0219629B1 (de) 1985-09-18 1986-08-02 Hochwarmfeste Aluminiumlegierung und Verfahren zur ihrer Herstellung

Country Status (7)

Country Link
US (1) US4832737A (de)
EP (1) EP0219629B1 (de)
JP (1) JPS6274042A (de)
AT (1) ATE47890T1 (de)
DE (1) DE3533233A1 (de)
ES (1) ES2000977A6 (de)
NO (1) NO168257C (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157831A (ja) * 1986-12-18 1988-06-30 Toyo Alum Kk 耐熱性アルミニウム合金
JP2752971B2 (ja) * 1987-06-11 1998-05-18 アルミニウム粉末冶金技術研究組合 高強度・耐熱性アルミニウム合金部材およびその製造方法
JPS63312901A (ja) * 1987-06-16 1988-12-21 Kobe Steel Ltd 耐熱性高力a1合金粉末及びそれを用いたセラミック強化型耐熱a1合金複合材料
JPH0234740A (ja) * 1988-07-25 1990-02-05 Furukawa Alum Co Ltd 耐熱性アルミニウム合金材及びその製造方法
DE3902032A1 (de) * 1989-01-25 1990-07-26 Mtu Muenchen Gmbh Gesintertes leichtbaumaterial mit herstellungsverfahren
JP3142659B2 (ja) * 1992-09-11 2001-03-07 ワイケイケイ株式会社 高力、耐熱アルミニウム基合金
US20040156739A1 (en) 2002-02-01 2004-08-12 Song Shihong Gary Castable high temperature aluminum alloy
DE102008024531A1 (de) * 2008-05-21 2009-11-26 Bayerische Motoren Werke Aktiengesellschaft Hochwarmfeste Aluminium-Gusslegierung sowie Verwendung einer hochwarmfesten Aluminium-Gusslegierung
US9963770B2 (en) 2015-07-09 2018-05-08 Ut-Battelle, Llc Castable high-temperature Ce-modified Al alloys
CN109226767A (zh) * 2018-07-27 2019-01-18 常州大学 制备铝合金中第二相粒子模拟材料的超高压高温合成方法
US11009074B1 (en) * 2019-11-11 2021-05-18 Aktiebolaget Skf Lightweight bearing cage for turbine engines and method of forming a lightweight bearing cage

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE897921C (de) * 1938-02-13 1953-11-26 Metallgesellschaft Ag Verfahren zur Herstellung von Lagern aus Aluminium und seinen Legierungen durch Pressen und Sintern der pulverfoermigen Bestandteile
US2963780A (en) * 1957-05-08 1960-12-13 Aluminum Co Of America Aluminum alloy powder product
US2966731A (en) * 1958-03-27 1961-01-03 Aluminum Co Of America Aluminum base alloy powder product
US3004331A (en) * 1960-11-08 1961-10-17 Aluminum Co Of America Aluminum base alloy powder product
US3637441A (en) * 1968-04-08 1972-01-25 Aluminum Co Of America Aluminum-copper-magnesium-zinc powder metallurgy alloys
US3754905A (en) * 1971-12-23 1973-08-28 Johnson & Co Inc A Exothermic structuring of aluminum
US4021271A (en) * 1975-07-07 1977-05-03 Kaiser Aluminum & Chemical Corporation Ultrafine grain Al-Mg alloy product
US4347076A (en) * 1980-10-03 1982-08-31 Marko Materials, Inc. Aluminum-transition metal alloys made using rapidly solidified powers and method
CA1177286A (en) * 1980-11-24 1984-11-06 United Technologies Corporation Dispersion strengthened aluminum alloys
JPS601947B2 (ja) * 1981-03-25 1985-01-18 株式会社神戸製鋼所 アルミニウム合金鍛造品の製造法
US4464199A (en) * 1981-11-20 1984-08-07 Aluminum Company Of America Aluminum powder alloy product for high temperature application
JPS59126761A (ja) * 1983-01-10 1984-07-21 Kobe Steel Ltd 成形加工性に優れた熱処理型アルミニウム合金の製造法
JPS59137180A (ja) * 1983-01-25 1984-08-07 Honda Motor Co Ltd 自動溶接装置
JPS6043453A (ja) * 1983-08-17 1985-03-08 Nissan Motor Co Ltd 耐熱アルミニウム合金
JPS60125347A (ja) * 1983-12-12 1985-07-04 Mitsubishi Metal Corp 摺動部材用焼結Al合金

Also Published As

Publication number Publication date
NO863441L (no) 1987-03-19
ES2000977A6 (es) 1988-04-01
JPS6274042A (ja) 1987-04-04
DE3533233A1 (de) 1987-03-19
NO168257C (no) 1992-01-29
EP0219629A1 (de) 1987-04-29
NO168257B (no) 1991-10-21
NO863441D0 (no) 1986-08-27
US4832737A (en) 1989-05-23
ATE47890T1 (de) 1989-11-15

Similar Documents

Publication Publication Date Title
DE60123065T2 (de) Titanlegierung und wärmebehandlungsverfahren für grossdimensionale, halbfertige materialien aus dieser legierung
EP1978120B1 (de) Aluminium-Silizium-Gussleglerung und Verfahren zu Ihrer Herstellung
DE69921925T2 (de) Hochfeste Aluminiumlegierungsschmiedestücke
EP3365472B1 (de) Aluminiumlegierung
DE69326838T3 (de) Zähe aluminiumlegierung mit kupfer und magnesium
DE60200928T2 (de) Hochtemperaturbeständige Magnesium-Legierungen
DE3805794C2 (de) Verschleißfeste Kupferlegierung
DE2517275B2 (de) Verfahren zur Herstellung und Weiterverarbeitung eines plastisch verformbaren Gußerzeugnisses auf Basis einer Aluminium-Silizium-Legierung und die Verwendung des weiterverarbeiteten Gußerzeugnisses
DE69703420T3 (de) Produkt aus AlMgMn-Legierung für Schweissstrukturen mit verbesserter Korossionsbeständigkeit
DE19727096B4 (de) Aluminiumlegierung mit ausgezeichneter maschineller Bearbeitbarkeit und Verfahren zu ihrer Herstellung
CA2135790C (en) Low density, high strength al-li alloy having high toughness at elevated temperatures
DE2423597A1 (de) Verbesserte aluminiumlegierungsprodukte und verfahren zu deren herstellung
DE4103934A1 (de) Fuer kolben geeignete aluminiumlegierung
EP0219629B1 (de) Hochwarmfeste Aluminiumlegierung und Verfahren zur ihrer Herstellung
EP1118685A1 (de) Aluminium - Gusslegierung
DE2348248A1 (de) Verfahren zum behandeln einer nickelgrundlegierung
DE3839795C2 (de)
DE2919478A1 (de) Kupfer-zink-legierung und ihre verwendung
DE1966949A1 (de) Verfahren zur herstellung von unmittelbar zu hochwarmfesten gusstuecken verarbeitbaren legierungen auf nickelbasis
DE69919307T2 (de) Aluminiumplatte für automobile und entsprechendes herstellungsverfahren
DE3020844A1 (de) Hochwarmfeste, sowohl gegen neutroneninduziertes schwellen, als auch gegen korrosion in fluessigem natrium resistente, austenitische eisen-nickel-chrom-legierungen
DE3041942A1 (de) Gussstrang aus aluminiumknetlegierung hoher zugfestigkeit usw. sowie verfahren zu seiner herstellung
DE1483228B2 (de) Aluminiumlegierung mit hoher zeitstandfestigkeit
DE2029962A1 (de) Nickel-Legierung
DE19539498B4 (de) Verschleißfester Synchronring aus einer Kupferlegierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19870624

17Q First examination report despatched

Effective date: 19880817

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 47890

Country of ref document: AT

Date of ref document: 19891115

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910729

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910809

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910819

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910831

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19920802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920831

BERE Be: lapsed

Owner name: VEREINIGTE ALUMINIUM-WERKE A.G.

Effective date: 19920831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930726

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930816

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930920

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940831

Ref country code: CH

Effective date: 19940831

EUG Se: european patent has lapsed

Ref document number: 86110727.4

Effective date: 19930307

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950428

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050802