EP0213589B1 - Technetium-99m-Generator, seine Herstellung und Verwendung - Google Patents

Technetium-99m-Generator, seine Herstellung und Verwendung Download PDF

Info

Publication number
EP0213589B1
EP0213589B1 EP86111788A EP86111788A EP0213589B1 EP 0213589 B1 EP0213589 B1 EP 0213589B1 EP 86111788 A EP86111788 A EP 86111788A EP 86111788 A EP86111788 A EP 86111788A EP 0213589 B1 EP0213589 B1 EP 0213589B1
Authority
EP
European Patent Office
Prior art keywords
generator
copper
silica gel
aluminum oxide
technetium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86111788A
Other languages
English (en)
French (fr)
Other versions
EP0213589A2 (de
EP0213589A3 (en
Inventor
Ludwig Dr. Kuhlmann
Dietrich Pütter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CIS Bio International SA
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Priority to AT86111788T priority Critical patent/ATE63013T1/de
Publication of EP0213589A2 publication Critical patent/EP0213589A2/de
Publication of EP0213589A3 publication Critical patent/EP0213589A3/de
Application granted granted Critical
Publication of EP0213589B1 publication Critical patent/EP0213589B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G4/00Radioactive sources

Definitions

  • the invention relates to an improved technetium-99m generator based on carrier-adsorbed molybdenum-99, processes for producing such generators and their use for obtaining eluates which contain technetium-99m in the form of pertechnetate.
  • Technetium-99m is the most commonly used radioactive nuclide in nuclear medicine diagnostics. This is due to its core physical properties that are optimal for this application (short half-life of 6.0 hours, no corpuscular radiation, favorable ⁇ energy of 140 keV). It can be easily and easily obtained from a molybdenum 99 / technetium 99m generator.
  • the molybdenum-99 from which the isotope technetium-99m is continuously formed by core decay, is adsorbed onto an aluminum oxide column as molybdenum-99-molybdate.
  • Technetium-99m which is chemically pertechnetate, is separated from Molydbän-99 by washing with isotonic saline.
  • the so-called split molybdenum-99 is used almost exclusively as molybdenum-99. It is isolated from the fission product mixture that occurs during the core decay of uranium-235 and has a very high specific activity. This makes it possible to get high technetium-99m activity in small volumes of saline from a generator.
  • split molybdenum made it possible to use only small amounts (1-2 g) of aluminum oxide in the generators, whereby the minimum amount of saline solution required for the elution of the technetium-99m could be limited to a few milliliters (approx. 5 ml).
  • German Offenlegungsschrift 1 929 067 describes adding copper (II) acetate to the eluent.
  • this is not sufficient - even when using the minimum copper (II) concentrations mentioned - to prevent the aforementioned passage of copper into the eluate.
  • silica gels modified with amino groups and, if appropriate, magnesium silicates are advantageous carrier materials for technetium-99m generators which are capable of firmly binding copper (II) ions.
  • the invention thus relates to technetium-99m generators based on carrier-adsorbed molybdenum-99, which are characterized by a content of an amino group-modified silica gel and, if appropriate, magnesium silicates.
  • the amino group-modified silica gel is able to adsorb radioactive molybdenum-99. This means that the Mo-99 content in the eluate can be reduced to less than 1 ⁇ Ci Mo-99 / Ci Tc-99m.
  • a technetium-99m generator the carrier material of which consists of silica group modified with amino groups.
  • preferred embodiments of this invention additionally contain aluminum oxide and, if appropriate, magnesium silicates.
  • Generators according to the invention with a content of magnesium silicate expediently contain, in addition to the silica group-modified silica gel according to the invention, additionally aluminum oxide for the adsorption of Mo-99.
  • For generators that contain more than one carrier material it is fundamentally possible to mix the carrier materials and to fill the usual equipment with the mixture. However, since the different materials generally have a different grain size, special precautions, for example joint grinding, must be used to ensure that no "channels" remain open in the filling. It is therefore generally more convenient to fill the different materials in layers in the generators. "Layer by layer” can mean that the different materials are introduced in several, alternating layers, but it is advisable to introduce each material in the form of a single layer.
  • the amino group-modified silica gel is preferably introduced as the bottom layer in the generator column. A layer of aluminum oxide is then applied over this.
  • FIG. 1 and 2 show schematically and not necessarily to scale two embodiments of the invention:
  • (1) means the column into which the carrier material is filled, the direction of elution (from top to bottom) being indicated by the arrow.
  • (2) and (3) mean the layers of different carrier materials, in a preferred embodiment aluminum oxide as layer (2) and amino group-modified silica gel as layer (3).
  • FIG. 2 designates a corresponding arrangement with three layers, three different materials (2), (3) and (4) being used.
  • (4) means a layer of copper (II) -loaded aluminum oxide, (2) aluminum oxide and (3) amino group-modified silica gel and optionally magnesium silicates.
  • nuclide generators The technical design of nuclide generators is known and is described, for example, in German Patent Specification 1,614,486 (or the corresponding US Pat. No. 3,369,121) or GB Pat. No. 1,186,587. Details can therefore be dispensed with here.
  • the amount of carrier material depends on the dimensioning of the generator and the load; it can be easily determined by simple preliminary tests.
  • Amino group-modified silica gels are customary as support materials for chromatographic processes.
  • a preferred form contains the amino groups in the form of 1,3-propylamine groups.
  • carrier materials for example those with secondary or tertiary amino groups, such as those used as adsorbents for acidic compounds, are also possible.
  • Suitable as magnesium silicate are naturally occurring products such as forsterite, entstatite, serpentine, serpentine asbestos, talc, antigorite or meerschaum as well as corresponding synthetic products, the magnesium ortho-, di- or polysilicates, the latter with chain, ribbon or layer (sheet) ) Structure included. Such materials are used for example for chromatographic processes.
  • one glass column was filled with 1.2 g of aluminum oxide and another with 105 mg of silica gel and 1.0 g of aluminum oxide.
  • These comparative generators were eluted with copper-free eluent contaminated with organic contaminants.
  • the results are summarized in Table 2.
  • the yield of Tc-99m is given in%, based on the Mo-99 activity, the molybdenum-99 content in ppm, based on the Tc-99m activity and the copper (II) content in ppm.
  • Table 3 shows the reduction of the Mo-99 content in the eluate even when using the design according to EP-B 0 014 957. Cu (II) could not be found in any eluate.

Landscapes

  • High Energy & Nuclear Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Medicinal Preparation (AREA)
  • Steroid Compounds (AREA)
  • Cosmetics (AREA)

Description

  • Die Erfindung betrifft einen verbesserten Technetium-99m-Generator auf Basis von trägeradsorbiertem Molybdän-99, Verfahren zur Herstellung solcher Generatoren und ihre Verwendung zu Gewinnung von Eluaten, die Technetium-99m in Form von Pertechnetat enthalten.
  • Technetium-99m ist das am häufigsten benutzte radioaktive Nuklid in der nuklearmedizinischen Diagnostik. Dies beruht auf seinen für diese Anwendung optimalen kernphysikalischen Eigenschften (kurze Halbwertszeit von 6,0 Stunden, keine Korpuskularstrahlung, günstige γ-Energie von 140 keV). Es kann aus einem Molybdän-99/Technetium-99m-Generator leicht und einfach gewonnen werden.
  • Bei dem zur Zeit verbreitetsten Generatortyp wird das Molybdän-99, aus dem das Isotop Technetium-99m durch Kernzerfall ständig gebildet wird, als Molybdän-99-molybdat an eine Aluminiumoxidsäule adsorbiert. Das Technetium-99m, das chemisch als Pertechnetat vorliegt, wird durch Waschen mit isotonischer Kochsalzlösung vom Molydbän-99 abgetrennt. Als Molybdän-99 wird heute fast ausschließlich das sogenannte Spaltmolybdän-99 verwendet. Es wird aus der beim Kernzerfall von Uran-235 anfallenden Spaltproduktmischung isoliert und besitzt eine sehr hohe spezifische Aktivität. Durch wird es möglich, hohe Aktivitäten an Technetium-99m in kleinen Volumina Kochsalzlösung aus einem Generator zu erhalten.
  • Die Einführung des Spaltmolybdäns erlaubte es, in den Generatoren nur noch geringe Mengen (1-2 g) Aluminiumoxid einzusetzen, wodurch die zur Elution des Technetium-99m notwendige minimale Menge Kochsalzlösung auf wenige Milliliter (ca. 5 ml) begrenzt werden konnte.
  • Die an einen gebrauchsfertigen Generator zu stellenden Mindestanforderungen sind in der DIN 6854 (Januar 1985) zusammengefaßt. Danach sollte die eluierbare Aktivität an Tc-99m bei einer Elution in 24 Stunden-Intervallen 70 % nicht unterschreiten. Die Qualität des Eluates unterliegt dabei bestimmten Anforderungen. Es ist natürlich wünschenswert, diese Grenzwerte so weit wie möglich zu unterschreiten. Dies gilt besonders für Molybdän-99, das in hohen Aktivitäten im Generator enthalten ist und im Eluat auf Grund der langen Halbwertszeit von 66,0 h zu einer unnötigen Strahlenbelastung bei der Anwendung am Menschen führen würde.
  • Es ist bekannt, daß Mo-99/Tc-99m-Generatoren mit Spaltmolybdän, insbesondere bei höheren Mo-99-Aktivitäten, zu Ausbeuteverlusten oder manchmal sogar zu Ausbeutezusammenbrüchen neigen (EP-B 0 014 957). Dieser Effekt wird durch organische Verunreinigungen im Elutionsmittel, die z.B. aus Kunststoffelutionsmittelbehältern in die Kochsalzlösung gelangen können, noch verstärkt.
  • Um diese Ausbeuteverluste zu vermeiden, werden Ausbeutestabilisatoren eingesetzt. Es ist bekannt, daß Kupfer(II)-Ionen diese stabilisierende Wirkung haben.
  • Hierbei tritt jedoch die Schwierigkeit auf, daß die geringen Mengen an Aluminiumoxid nicht ausreichen, den Durchtritt des Kupfers in das Eluat auf Dauer zu verhindern.
  • In der deutschen Offenlegungsschrift 1 929 067 wird beschrieben, dem Elutionsmittel Kupfer(II)-acetat zuzusetzen. Als minimale Menge werden 0,001 Volumenprozent gefordert, worunter wohl im Falle von Kupfer(II)-acetat 10 µg/ml = 3,5 µg Cu(II)/ml zu verstehen sind. Für moderne Generatoren, die im Gegensatz zu denen, die am Prioritätstag der genannten deutschen Offenlegungsschrift üblich waren, nur eine geringe Menge an Aluminiumoxid enthalten, reicht diese - selbst bei Einsatz der genannten minimalen Kupfer(II)-Konzentrationen - nicht aus, den erwähnten Durchtritt des Kupfers in das Eluat zu verhindern. Darüber hinaus hat sich gezeigt, daß 3,5 µg Cu(II)/ml Elutionsmittel nicht immer eine stabil hohe Ausbeute gewährleisten können.
  • Zur Verhinderung des Durchtritts von Kupferionen in das Eluat wurde in der EP-B -0 014 957 ein Verfahren beschrieben, das die Fixierung von größeren Mengen Kupfer(II) auf dem Aluminiumoxid erlaubt. Diese Methode erfordert jedoch einen zusätzlichen Verfahrenschritt bei der Herstellung der Generatoren und ist somit aufwendig.
  • Es wurde nun gefunden, daß mit Aminogruppen modifizierte Kieselgele und gegebenenfalls Magnesiumsilikate vorteilhafte Trägermaterialien für Technetium-99m-Generatoren darstellen, die Kupfer(II)-ionen fest zu binden vermögen. Die Erfindung betrifft somit Technetium-99m-Generatoren auf Basis von trägeradsorbiertem Molybdän-99, die durch einen Gehalt an einem aminogruppenmodifizierten Kieselgel und gegebenenfalls Magnesiumsilikaten gekennzeichnet sind.
  • Es wurde weiterhin gefunden, daß das aminogruppenmodifizierte Kieselgel in der Lage ist, radioaktives Molybdän-99 zu adsorbieren. Damit können die Mo-99-Gehalte im Eluat auf weniger als 1 µCi Mo-99/Ci Tc-99m gesenkt werden. Eine Ausgestaltung der Erfindung betrifft somit einen Technetium-99m-Generator, dessen Trägermaterial aus aminogruppenmodifiziertem Kieselgel besteht. Bevorzugte Ausgestaltungen dieser Erfindung enthalten jedoch zusätzlich Aluminiumoxid und gegebenenfalls Magnesiumsilikate.
  • Erfindungsgemäße Generatoren mit einem Gehalt an Magnesiumsilikat enthalten neben dem erfindungsgemäßen aminogruppenmodifizierten Kieselgel zweckmäßig zusätzlich Aluminiumoxid zur Adsorption des Mo-99. Für solche Generatoren, die mehr als ein Trägermaterial enthalten, ist es grundsätzlich möglich, die Trägermaterialien zu mischen und mit der Mischung die üblichen Apparaturen zu füllen. Da jedoch die unterschiedlichen Materialien im allgemeinen eine unterschiedliche Korngröße aufweisen, muß durch besondere Vorkehrungen, beispielweise gemeinsames Vermahlen, darauf geachtet werden, daß in der Füllung keine "Kanäle" offenbleiben. Es ist deshalb im allgemeinen zweckmäßiger, die unterschiedlichen Materialien schichtweise in die Generatoren einzufüllen. "Schichtweise" kann hierbei bedeuten, daß die unterschiedlichen Materialien in mehreren, abwechselnd aufeinander folgenden Schichten eingebracht werden, zweckmäßig ist jedoch, jedes Material in Form einer einzigen Schicht einzubringen.
  • Vorzugsweise wird das aminogruppenmodifizierte Kieselgel als unterste Schicht in die Generatorsäule eingebracht. Darüber wird dann eine Schicht aus Aluminiumoxid aufgetragen.
  • Es kann auch von der in der EP-B 0 014 957 beschriebenen Erfindung Gebrauch gemacht werden, indem man einen Generator herstellt, bei dem in der obersten Schicht das Kupfer(II)-beladene Aluminiumoxid eingebracht ist, darunter eine Schicht von Aluminiumoxid und hierunter eine Schicht des erfindungsgemäßen Trägermaterials folgt.
  • In den Figuren 1 und 2 sind schematisch und nicht notwendigerweise maßstabsgerecht zwei Ausgestaltungen der Erfindung dargestellt:
    In Figur 1 bedeutet (1) die Säule, in welche das Trägermaterial eingefüllt wird, wobei durch den Pfeil die Elutionsrichtung (von oben nach unten) angedeutet ist. (2) und (3) bedeuten die Schichten unterschiedlicher Trägermaterialien, in einer bevorzugten Ausgestaltung also Aluminiumoxid als Schicht (2) und aminogruppenmodifiziertes Kieselgel als Schicht (3).
  • Die Figur 2 bezeichnet eine entsprechende Anordnung mit drei Schichten, wobei drei unterschiedliche Materialien (2), (3) und (4) Verwendung finden. In einer bevorzugten Ausgestaltung dieses Aspektes der Erfindung bedeutet (4) eine Schicht aus Kupfer(II)-beladenem Aluminiumoxid, (2) Aluminiumoxid und (3) aminogruppenmodifiziertes Kieselgel und gegebenenfalls Magnesiumsilikate.
  • Die technische Ausgestaltung von Nuklidgeneratoren ist bekannt und beispielsweise in der deutschen Auslegeschrift 1 614 486 (bzw. der entsprechenden US-PS 3 369 121) oder der GB-PS 1 186 587 beschrieben. Es kann deshalb hier auf Details verzichtet werden.
  • Die Menge des Trägermaterials richtet sich nach der Dimensionierung des Generators und der Beladung; sie ist durch einfache Vorversuche leicht zu ermitteln.
  • Aminogruppenmodifizierte Kieselgele sind als Trägermaterialien für chromatographische Prozesse üblich. Eine bevorzugte Form enthält die Aminogruppen in Form von 1,3-Propylamingruppen. Es sind jedoch auch andere Trägermaterialien, beispielsweise solche mit sekundären oder tertiären Aminogruppen, wie sie als Adsorbentien für saure Verbindungen dienen, möglich.
  • Als Magnesiumsilikat eignen sich natürlich vorkommende Produkte wie Forsterit, Enstatit, Serpentin, Serpentinasbest, Talk, Antigorit oder Meerschaum sowie entsprechende synthetische Produkte, die Magnesiumortho-, -di-oder -polysilikate, letztere mit Ketten-, Band- oder Schicht- (Blatt-)-Struktur enthalten. Solche Materialien werden beispielsweise für chromatographische Verfahren eingesetzt.
  • In den folgenden Beispielen wird die Erfindung näher erläutert.
  • Für die Herstellung von Generatorsäulen wurden folgende Trägermaterialien verwendet: Aluminiumoxid S, sauer, superaktiv; Fa. Riedel de Haen; (R)LiChroprep NH₂ für die Flüssigkeitschromatographie, Fa. Merck, im folgenden "Kieselgel". Als Elutionsmittel wurde physiologische Kochsalzlösung verwendet, die unterschiedliche Mengen an Kupfer(II)-chlorid, Dihydrat enthielt. Die Kupfer(II)-Bestimmung erfolgte kolorimetrisch, wobei die untere Nachweisgrenze 0,1 ppm betrug.
  • Beispiel 1
  • Durch Elution unter gleichen Bedingungen wurde festgestellt, in welchem Maße die Trägermaterialien befähigt sind. Kupfer(II)-Ionen festzuhalten. Die Eluate Nr. 1-8 waren in allen Fällen kupferfrei. Wie die folgende Tabelle 1 zeigt, kann das Kieselgel Kupfer(II) sehr viel besser abfangen als das Aluminiumoxid.
    Figure imgb0001
  • Beispiel 2
  • In eine Glassäule werden 105 mg Kieselgel gepackt und darüber 1,0 g Aluminiumoxid geschichtet. Die Säule wird mit Mo-99 beladen und arbeitstäglich mit physiologischer Kochsalzlösung eluiert, die 20 µg CuCl₂ 2R₂0 pro ml enthält. Vor Zugabe des Kupfer(II)-chlorids wurde die Kochsalzlösung zusammen mit der üblicherweise zur Verpackung dienenden PVC-Folie im Autoklav sterilisiert. Es ist bekannt, daß dabei organische Verunreinigungen in das Elutionsmittel gelangen, die zu starken Ausbeuteverminderungen führen können.
  • Zum Vergleich wurde eine Glassäule mit 1,2 g Aluminiumoxid und eine weitere mit 105 mg Kieselgel und 1,0 g Aluminiumoxid gefüllt. Diese Vergleichsgeneratoren eluierte man mit kupferfreiem, mit organischen Verunreinigungen belastetem Elutionsmittel.
  • In den Eluaten wird der Gehalt an Technetium-99m, Molybdän-99 und soweit das Elutionsmittel Kupfer(II) enthält, der Anteil an Kupfer(II) gemessen. In der Tabelle 2 sind die Ergebnisse zusammengefaßt. Die Ausbeute an Tc-99m ist in %, bezogen auf die Mo-99-Aktivität, der Molybdän-99-Gehalt in ppm, bezogen auf die Tc-99m-Aktivität und der Kupfer(II)-Gehalt in ppm angegeben.
  • Die Tabelle 2 zeigt:
    • 1. Durch Einsatz von Kieselgel wird der Mo-99-Gehalt im Eluat unter 1 ppm gesenkt.
    • 2. Durch Einsatz von Kieselgel kann dem Elutionsmittel Kupfer(II) zugesetzt werden, wodurch die Ausbeute an Tc-99m gleichmäßig hoch bleibt, ohne daß Kupfer(II) in nennenswerten Mengen im Eluat nachgewiesen werden kann.
    • 3. Durch Einsatz von Kieselgel kann der Kupfer(II)-Gehalt im Elutionsmittel über den minimalen Anteil von 20 ppm hinaus gesteigert werden.
    Figure imgb0002
    Beispiel 3
  • Es wurden Generatorsäulen nach dem Verfahren der EP-B 0 014 957 hergestellt. Einige enthielten jedoch als unterste Schicht zusätzlich Kieselgel. Diese wurden mit Mo-99 beladen und arbeitstäglich mit physiologischer Kochsalzlösung eluiert. Die Tabelle 3 zeit die Ergebnisse.
    Figure imgb0003
  • Die Tabelle 3 belegt die Herabsetzung des Mo-99-Gehaltes im Eluat auch bei Anwendung der Ausgestaltung nach EP-B 0 014 957. In keinem Eluat konnte Cu(II) festgestellt werden.

Claims (6)

  1. Technetium-99m-Generator auf Basis von trägeradsorbiertem Molybdän-99, der mit Kupfer(II) enthaltenden Lösungen eluiert wird, gekennzeichnet durch einen Gehalt an einem aminogruppenmodifizierten Kieselgel.
  2. Generator nach Anspruch 1, dadurch gekennzeichent, daß in einer Elutionssäule (1) der das Molybdän-99 enthaltende Träger als obere Schicht (2) und das aminogruppenmodifizierte Kieselgel als untere Schicht (3) angeordnet ist.
  3. Generator nach Anspruch 1 oder 2, durch gekennzeichnet, daß er zusätzlich ein Magnesiumsilikat enthält.
  4. Generator nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß in einer Elutionssäule (1) als obere Schicht (4) Kupfer(II)-beladenes Aluminiumoxid, als mittlere Schicht (2) Aluminiumoxid und als untere Schicht (3) aminogruppenmodifiziertes Kieselgel angeordnet ist.
  5. Verfahren zur Herstellung eines Generators nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß man als Trägermaterial ein aminogruppenmodifiziertes Kieselgel einsetzt.
  6. Verwendung eines Generators nach Anspruch 1 bis 4 zur Gewinnung eines Technetium-99m enthaltenden Eluats.
EP86111788A 1985-09-03 1986-08-26 Technetium-99m-Generator, seine Herstellung und Verwendung Expired - Lifetime EP0213589B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86111788T ATE63013T1 (de) 1985-09-03 1986-08-26 Technetium-99m-generator, seine herstellung und verwendung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853531355 DE3531355A1 (de) 1985-09-03 1985-09-03 Technetium-99m-generator, seine herstellung und verwendung
DE3531355 1985-09-03

Publications (3)

Publication Number Publication Date
EP0213589A2 EP0213589A2 (de) 1987-03-11
EP0213589A3 EP0213589A3 (en) 1988-03-16
EP0213589B1 true EP0213589B1 (de) 1991-04-24

Family

ID=6279972

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86111788A Expired - Lifetime EP0213589B1 (de) 1985-09-03 1986-08-26 Technetium-99m-Generator, seine Herstellung und Verwendung

Country Status (14)

Country Link
US (1) US4837110A (de)
EP (1) EP0213589B1 (de)
JP (1) JPS6271900A (de)
AT (1) ATE63013T1 (de)
BE (1) BE905368A (de)
CA (1) CA1276448C (de)
DE (2) DE3531355A1 (de)
DK (1) DK417786A (de)
ES (1) ES2003343A6 (de)
GR (1) GR862237B (de)
IE (1) IE59192B1 (de)
PT (1) PT83290B (de)
SU (1) SU1471959A3 (de)
ZA (1) ZA866644B (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110474A (en) * 1990-04-09 1992-05-05 Arch Development Corporation Method for liquid chromatographic extraction of strontium from acid solutions
JP4257115B2 (ja) 2000-11-27 2009-04-22 日本電産サンキョー株式会社 カードリーダにおけるカードゲート機構
CA2553957A1 (en) * 2004-01-27 2005-09-09 Arcana International, Inc. System for the control, verification and recording of the performance of a radioisotope generator's operations
US20060023829A1 (en) * 2004-08-02 2006-02-02 Battelle Memorial Institute Medical radioisotopes and methods for producing the same
CA2583568A1 (en) * 2004-10-12 2006-04-20 Mcmaster University Generator and method for production of technetium-99m
ES2677024T3 (es) * 2007-01-01 2018-07-27 Bayer Healthcare Llc Sistemas para generación, preparación, transporte y administración de productos radiofarmacéuticos integrados
RU2443030C2 (ru) * 2010-02-03 2012-02-20 Федеральное государственное унитарное предприятие "Ордена Трудового Красного Знамени научно-исследовательский физико-химический институт им. Л.Я. Карпова" (ФГУП "НИФХИ им. Л.Я. Карпова") ГЕНЕРАТОР ТЕХНЕЦИЯ-99m С СУЛЬФО-КАРБОКСИЛИРОВАННЫМ КАТИОНООБМЕННЫМ ЗАЩИТНЫМ СЛОЕМ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
US9108047B2 (en) 2010-06-04 2015-08-18 Bayer Medical Care Inc. System and method for planning and monitoring multi-dose radiopharmaceutical usage on radiopharmaceutical injectors
CN111032210B (zh) * 2017-07-12 2022-11-22 阿朗新科德国有限责任公司 用于连续聚合的反应器和方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3369121A (en) * 1966-04-06 1968-02-13 Squibb & Sons Inc Radioactive package and container therefor
NL6607699A (de) * 1966-06-03 1967-12-04
US3664964A (en) * 1968-07-03 1972-05-23 Squibb & Sons Inc Eluent for radioisotopes
US3755161A (en) * 1970-02-05 1973-08-28 Osaka Soda Co Ltd Treatment process for removal of metals and treating agent therefor
CA955035A (en) * 1970-02-05 1974-09-24 Osaka Soda Co. Treatment process for removal of metals and treating agent therefor
US3740558A (en) * 1971-02-17 1973-06-19 Dainabot Radioisotope Labor Lt Radioactive isotope generator of short-lived nuclides
NL7503293A (nl) * 1975-03-19 1976-09-21 Leuven Res & Dev Vzw Werkwijze voor het verwijderen van metalen uit oplossing.
US4167481A (en) * 1975-03-19 1979-09-11 Leuven Research & Development Vzw Process for the removal of metals from solution
US4158700A (en) * 1976-03-08 1979-06-19 Karageozian Hampar L Method of producing radioactive technetium-99M
DE2906439A1 (de) * 1979-02-20 1980-09-04 Hoechst Ag Verfahren zur trennung von technetium-99m von molybaen-99
CA1169773A (en) * 1979-04-17 1984-06-26 Karel J. Panek Preparation and use of a su195m xxau-containing liquid
DE8533473U1 (de) * 1985-11-28 1986-02-06 Hoechst Ag, 6230 Frankfurt Technetium-99m-Generator

Also Published As

Publication number Publication date
ES2003343A6 (es) 1988-11-01
PT83290B (pt) 1993-04-30
US4837110A (en) 1989-06-06
DK417786A (da) 1987-03-04
IE59192B1 (en) 1994-01-26
DE3531355A1 (de) 1987-03-12
DE3678880D1 (de) 1991-05-29
IE862345L (en) 1987-03-03
EP0213589A2 (de) 1987-03-11
DK417786D0 (da) 1986-09-02
CA1276448C (en) 1990-11-20
PT83290A (pt) 1986-10-01
SU1471959A3 (ru) 1989-04-07
BE905368A (fr) 1987-03-02
ZA866644B (en) 1987-04-29
DE3531355C2 (de) 1992-06-11
JPS6271900A (ja) 1987-04-02
ATE63013T1 (de) 1991-05-15
GR862237B (en) 1986-12-31
EP0213589A3 (en) 1988-03-16

Similar Documents

Publication Publication Date Title
DE69031918T2 (de) Lösliche bestrahlungstargets zur herstellung von radioruthenium
DE60209818T2 (de) Verfahren und vorrichtung zur trennung der ionen von metallischen elementen in wässriger lösung
EP0443479A1 (de) Verfahren zur Erzeugung von Aktinium-225 und Wismut-213
EP1062668A1 (de) Adsorptionsmittel für radionuklide
EP0213589B1 (de) Technetium-99m-Generator, seine Herstellung und Verwendung
DE102009049108B4 (de) Verfahren und Vorrichtung zur Gewinnung eines Radionuklids
DE69017222T2 (de) Verbessertes radionukliderzeugungssystem und verfahren zu seiner herstellung und seinem gebrauch.
DE2542415A1 (de) Hoch 82 sr- hoch 82 rb-radioisotop- generator
DE3100365C2 (de)
DE2140998B2 (de)
DE102008064682B4 (de) Anionisches Boranpolymer, sowie dessen Verwendung und Herstellung
DE1210416B (de) Verfahren zur Trennung von Metallionen
DE8533473U1 (de) Technetium-99m-Generator
DE2722316A1 (de) Verfahren und vorrichtung zur erzeugung von technetium-99m aus molybdaen-99
DE2909648A1 (de) Verfahren zur herstellung von radioaktivem technetium-99m
DE202006020604U1 (de) Säulensystem zur Herstellung einer Lösung mit hoher spezifischer Aktivität
EP0014957B1 (de) Verfahren zur Trennung von Technetium-99m von Molybdän-99
DE2511712C3 (de) Herstellung eines Technetium-99m-Generators
DE2213137A1 (de) Verfahren zum Wiederbeladen eines Technetium-99m-Generators
DE2030102C3 (de) Verfahren zur Gewinnung von Technet!um-99m aus einer wässrigen Lösung eines anorganischen Salzes von Molybdän-99
DE2338366C3 (de) Verfahren zur Herstellung eines Technetium-99m-Generators
DE112021003173T5 (de) Chitosan/titan-verbundstoff und herstellungsverfahren und verwendung davon
DE2030102B2 (de) Verfahren zur gewinnung von technetium-99m aus einer waessrigen loesung eines anorganischen salzes von molybdaen99
DE2511712B2 (de) Herstellung eines technetium-99m- generators
DE2806849A1 (de) Verfahren zum der reihe nach erfolgenden beladen, eluieren und wiederbeladen eines technetium-99m-generators

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19880823

17Q First examination report despatched

Effective date: 19900926

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 63013

Country of ref document: AT

Date of ref document: 19910515

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3678880

Country of ref document: DE

Date of ref document: 19910529

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86111788.5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: HOECHST AKTIENGESELLSCHAFT TRANSFER- CIS BIO INTER

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHAAD, BALASS & PARTNER AG

NLS Nl: assignments of ep-patents

Owner name: CIS BIO INTERNATIONAL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960731

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19960801

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970827

EUG Se: european patent has lapsed

Ref document number: 86111788.5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980831

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000301

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020704

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020708

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020712

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020724

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020726

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030826

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040302

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050826