EP0210349A2 - Gekapselter Rollkolbenverdichter - Google Patents

Gekapselter Rollkolbenverdichter Download PDF

Info

Publication number
EP0210349A2
EP0210349A2 EP86105874A EP86105874A EP0210349A2 EP 0210349 A2 EP0210349 A2 EP 0210349A2 EP 86105874 A EP86105874 A EP 86105874A EP 86105874 A EP86105874 A EP 86105874A EP 0210349 A2 EP0210349 A2 EP 0210349A2
Authority
EP
European Patent Office
Prior art keywords
oil
crankshaft
rotary piston
nozzle
piston compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86105874A
Other languages
English (en)
French (fr)
Other versions
EP0210349B1 (de
EP0210349A3 (en
Inventor
Bernd Dr. Gromoll
Peter Gulden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0210349A2 publication Critical patent/EP0210349A2/de
Publication of EP0210349A3 publication Critical patent/EP0210349A3/de
Application granted granted Critical
Publication of EP0210349B1 publication Critical patent/EP0210349B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/06Means for keeping lubricant level constant or for accommodating movement or position of machines or engines
    • F01M11/062Accommodating movement or position of machines or engines, e.g. dry sumps
    • F01M11/065Position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication

Definitions

  • the invention relates to a hermetically sealed, oil-lubricated rotary piston compressor with a horizontally arranged, at least partially hollow crankshaft, in which the lubricating oil is sucked out of the oil sump by a dynamic vacuum generated in the compressed gas line and together with the compressed gas into the hollow part of the crankshaft, which is inside of the cylinder housing has radial bores for supplying oil to the mutually movable surfaces of the compressor.
  • Hermetically encapsulated, oil-lubricated rotary piston compressors with a horizontally arranged crankshaft are used because of their compact design in devices such as household refrigerators and air conditioners, in which the space required for the installation of a compressor should be as small as possible. Since the crankshaft is no longer immersed in the oil sump accumulated at the bottom of the housing, additional measures are required for the oil supply to the rotating parts of this compressor, in contrast to a rotary piston compressor with a vertical axis.
  • arrangements are also known in which the lubricating oil is sucked into the interior of the crankshaft by a negative pressure generated in the flowing compressed gas.
  • a hermetically sealed, oil-lubricated rotary piston compressor with a horizontally arranged hollow crankshaft is known (US Pat. No. 4,391,573), in which the lubricating oil is conveyed by the compressed gas discharged from the compressor into the hollow crankshaft, which is provided with radial bores within the cylinder housing through which the lubricating oil reaches the opposite movable surfaces of the compressor for lubrication and sealing.
  • the compressed gas expelled by the eccentric rotational movement of the rolling piston from the pressure chamber of the compressor via an outlet opening is guided to the end of the hollow crankshaft, which is remote from the drive side, via a line system located outside the cylinder housing, which is firmly connected to the cylinder housing.
  • Part of this pipe system consists of a horizontal outlet pipe that runs in the oil sump and is provided with an opening into which a vertical suction pipe opens.
  • the upper end of this suction pipe protrudes into the outlet pipe and has a bevelled opening and in this way forms a cross-sectional constriction in the outlet pipe.
  • the invention is therefore based on the object of a hermetically encapsulated oil-lubricated roller piston to specify denser, in which the oil supply is maintained by any rotation of the compressor about the horizontal axis of its crankshaft or a position parallel to it.
  • the cross-sectional constriction in the compressed gas line is a rotationally symmetrical nozzle which is interchangeably inserted in the compressed gas line.
  • the nozzle is preferably inserted coaxially to the crankshaft and is located outside the oil sump.
  • the nozzle opens into a mixing chamber in such a way that there is a suction chamber between the nozzle and the wall of the mixing chamber, which is connected to the oil suction nozzle via bores.
  • a diffuser is connected to the mixing room, in which a low-loss conversion of speed into pressure takes place.
  • the bearing of the oil suction nozzle has the shape of a spherical bearing and the oil suction nozzle can additionally rotate within a predetermined angular range Execute around an axis perpendicular to the axis of the crankshaft.
  • the angular range within which the crankshaft can be inclined against the surface of the oil sump while maintaining the oil supply to the compressor is increased compared to an embodiment with a cylindrical bearing.
  • an electric motor 4 with a hollow, horizontally arranged motor shaft 6 is arranged in a compressor housing 2.
  • the compressor and housing are partially shown in section.
  • the motor shaft 6 also forms the likewise hollow crankshaft 6 of the rotary piston compressor 8, the cylinder housing 82 of which is firmly connected to the compressor housing 2 and is provided with an oil suction device 10.
  • Bushings 70 are located on the compressor housing 2 for the electrical connections of the electric motor 4 and mounting brackets 80.
  • the gas drawn in through an inlet connector 14 is compressed in the rotary piston compressor 8 and directed into the oil intake device 10 via a compressed gas line located in the cylinder housing 82. There, the oil is sucked in and the compressed gas-oil mixture reaches the hollow crankshaft 6. Through radial bores in the hollow crankshaft 6, the oil is lubricated and sealed against the mutually movable surfaces of the compressor. The compressed gas emerges together with the excess oil at the engine-side end 132 of the hollow crankshaft 6. The excess oil is thrown against the compressor housing wall 16 and flows back from there to the oil sump 12. The compressed gas is passed on via an outlet connection 18, which is attached to the compressor housing 2 opposite the engine-side end 132 of the hollow crankshaft 6, to a condenser, not shown in the figure.
  • the oil suction device 10 is further illustrated in FIG.
  • the rotary piston compressor 8 contains a rotary piston 20 which rotates eccentrically in the cylinder housing 82.
  • a separating slide 80 which is movably attached to the cylinder housing 82 by means of a spring, divides the space located between the cylinder housing 82 and the rotary piston 20 into a pressure chamber and a suction chamber.
  • the gas compressed in the pressure chamber by the revolving rolling piston 20 is expelled via a pressure valve 22 and is guided via a first deflection chamber 24 and a compressed gas line 26 to the open end 130 of the hollow crankshaft 6 facing away from the drive.
  • a part 262 of the compressed gas line is located in the cylinder housing 82.
  • a deflecting body 50 is over a Sealing ring 40 is firmly connected to the cylinder housing 82.
  • the compressed gas is guided in the deflection body 50 through a gas line 264 to a second deflection chamber 266 and is directed there into the nozzle 104.
  • the nozzle 104 is designed as a rotating body and, in an advantageous embodiment, can form a replaceable component inserted into the deflecting body 50.
  • the nozzle 104 opens into a likewise rotationally symmetrical mixing space 110, which is adjoined by a diffuser 106, in which the speed energy is converted back into pressure energy with little loss.
  • the plane of the outlet opening 1042 of the nozzle 104, the outer wall of the nozzle 104 and part of the inner wall of the mixing space 110 form the boundary surfaces of a suction space 108.
  • Bores 112 which run radially to the axis 200 and which serve to remove pressure open into this suction space 108.
  • These bores 112 start from a groove 114 with a rectangular cross section, which surrounds the deflecting body 50 in an annular manner on its outer wall.
  • the groove 114 is surrounded by a hollow shaft which bears against the outer wall of the deflecting body 50 and can be rotated about the axis 200 and serves as a bearing 62 for the oil suction port 60.
  • a cylindrical connection piece 64 for example, is attached to the outer surface of the bearing 62, the cylinder axis of which extends perpendicular to the axis 200.
  • the cylindrical socket 64 is hollow on the inside and its bore opens into the annular groove 114.
  • the bearing 62 and the hollow cylindrical socket 64 form the rotatably mounted oil suction socket 60.
  • the center of gravity S of the oil suction socket 60 is located outside the axis 200 in the socket 64.
  • the opening 642 and the center of gravity S of the oil suction port are located such that the extension of their connecting line L intersects the axis 200 at an intersection point P.
  • the nozzle-shaped cross-sectional constriction of the nozzle 104 in the compressed gas line 26 thus creates a negative pressure in the suction chamber 108 compared to the oil chamber 120.
  • the lubricating oil is sucked in via the cylindrical connection piece 64 to the pressure tapping holes 112 and from there reaches the suction chamber 108 and mixes in the mixing chamber 110 with the compressed gas and is then conveyed as a compressed gas / oil mixture into the diffuser 106 and from there into the hollow crankshaft 6.
  • FIG. 3 shows the oil suction nozzle 60 in a position in which the cylindrical nozzle 64 is not aligned parallel to the gravitational field or to an inertia field caused by the rotation of the rotary piston compressor about the axis 200 or an axis parallel to it.
  • Gravity or inertial force F which generates a torque M about axis 200, acts on the oil suction port. Due to the torque M, the suction port 64 is little aligned approximately parallel to the gravity or inertia field. Its opening 642 is thus always in the equilibrium position in the oil sump 12.
  • the connector 68 of the oil suction connector 60 has approximately the shape of a circular disk sector.
  • the distance of the center of gravity S from the axis 200 and the torque M generated by the gravity or inertia force are accordingly increased compared to the embodiment of a cylindrical connecting piece.
  • bearing friction forces which can inhibit the alignment of the oil suction nozzle 60 are more easily overcome.
  • the pressure valve 22 is accommodated in that part of the cylinder housing 82 which faces away from the drive.
  • the compressed gas passes directly to the deflection chamber 266 via the compressed gas line 26.
  • the crankshaft 6 is hollow only within the cylinder housing 82 and is provided with radial bores 140 there.
  • the diffuser 106 connects to one open end of the crankshaft 6 and is connected to the oil space 120 by means of radial outlet bores 34.
  • the compressed gas-oil mixture flows from the diffuser 106 into the oil chamber 120 and from there, for example, through bores in the rotor of the electric motor 4, not shown in the drawing, which run parallel to the crankshaft and to the outlet port 18. This simultaneously cools the electric motor 4.
  • a part 54 of the outer surface of the deflecting body 50 is formed by the outer surface of a spherical zone and is surrounded by a groove 116 in a ring.
  • the cross-sectional area of the groove 116 is, for example Circular ring sector.
  • the groove 116 is connected to the suction chamber 108 by means of bores 112 running perpendicular to the axis 200.
  • the groove 116 is surrounded by a spherical bearing 66 of the oil suction nozzle 60 resting on the part 52 of the outer surface of the deflecting body 50.
  • the spherical bearing 66 can also be provided on its inner surface with an annular circumferential groove 118, into which the bore of a, for example, cylindrical connecting piece 64 opens.
  • This construction ensures that the oil suction nozzle 60 can still be freely rotated about the axis 200 by the force of gravity or inertia if it is inclined within a predetermined angular range ⁇ against the surface of the oil sump 12. With cylindrical bearing surfaces with such inclinations there is the possibility that the oil suction nozzle 60 is tilted and prevented from rotating.
  • Another advantage of the dome-shaped mounting of the oil suction nozzle 60 is that the angle of inclination ⁇ of the crankshaft 6 against the surface of the oil sump 12, up to which the opening 642 of the nozzle 6 is still in the oil sump 12, compared to the embodiment with a cylindrical bearing surface of the oil suction port 60 is enlarged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

Hermetisch gekapselter Rollkolbenverdichter mit waagerecht angeordneter, wenigstens teilweise hohler Kurbelwelle (6), bei dem das Schmieröl durch einen in einer Druckgasleitung (26) erzeugten dynamischen Unterdruck aus einem Ölsumpf (12) mittels eines Ölsaugstutzens (60) angesaugt und zusammen mit dem Druckgas in den hohlen Teil der Kurbelwelle (6), die innerhalb des Zylindergehäuses (82) radiale Bohrungen (140) zur Ölversorgung der beweglichen Teile des Verdichters aufweist, befördert wird. Erfindungsgemäß ist der Ölsaugstutzen (60) drehbar um die Achse (200) der Kurbelwelle (6) gelagert. Dadurch ist die Ölversorgung in jeder sich durch eine beliebige Drehung des Verdichters um die waagerechte Achse (200) seiner Kurbelwelle (6) ergebenden Lage aufrechterhalten.

Description

  • Die Erfindung bezieht sich auf einen hermetisch gekapselten ölgeschmierten Rollkolbenverdichter mit waagrecht angeordneter, wenigstens teilweise hohler Kurbelwelle, bei dem das Schmieröl durch einen in der Druckgasleitung erzeugten dynamischen Unterdruck aus dem Ölsumpf angesaugt wird und zusammen mit dem Druckgas in den hohlen Teil der Kurbelwelle, die innerhalb des Zylindergehäuses radiale Bohrungen zur Ölversorgung der gegeneinander beweglichen Oberflächen des Verdichers aufweist, befördert wird.
  • Hermetisch gekapselte, ölgeschmierte Rollkolbenverdichter mit waagerecht angeordneter Kurbelwelle werden wegen ihrer kompakten Bauweise in Geräten, wie beispielsweise Haushaltkühlschränken und Klimaanlagen, eingesetzt, bei denen der für den Einbau eines Kompressors benötigte Raum möglichst klein sein soll. Da die Kurbelwelle nicht mehr in den am Boden des Gehäuses angesammelten Ölsumpf eintaucht, sind für die Ölversorgung der rotierenden Teile dieses Verdichters im Gegensatz zu einem Rollkolbenverdichter mit senkrechter Achse zusätzliche Maßnahmen erforderlich. Neben der Verwendung von Ölpumpen, die beispielsweise von der Kurbelwelle angetrieben werden, sind auch Anordnungen bekannt, bei denen durch einen, im strömenden Druckgas erzeugten, Unterdruck das Schmieröl in das Innere der Kurbelwelle gesaugt wird.
  • Es ist ein hermetisch gekapselter, ölgeschmierter Rollkolbenverdichter mit waagerecht angeordneter hohler Kurbelwelle bekannt (US-PS 4 391 573), bei dem das Schmieröl von dem aus dem Verdichter ausgestoßenen Druckgas in die hohle Kurbelwelle befördert wird, die innerhalb des Zylindergehäuses mit radialen Bohrungen versehen ist, durch die das Schmieröl zur Schmierung und Abdichtung an die gegeneiannder beweglichen Oberflächen des Verdichters gelangt. Das durch die exzentrische Rotationsbewegung des Rollkolbens aus dem Druckraum des Verdichters über eine Auslaßöffnung ausgestoßene Druckgas wird über ein außerhalb des Zylindergehäuses gelegenes Leitungssystem, das fest mit dem Zylindergehäuse verbunden ist, zu dem Ende der hohlen Kurbelwelle geführt, das der Antriebsseite abgewandt ist. Ein Teil dieses Leitungssystems besteht aus einem waagerechten Auslaßrohr, das im Ölsumpf verläuft und mit einer Öffnung versehen ist, in die ein senkrechtes Saugrohr einmündet. Das obere Ende dieses Saugrohres ragt in das Auslaßrohr hinein und hat eine abgeschrägte Öffnung und bildet auf diese Weise im Auslaßrohr eine Querschnittsverengung. Dadurch entsteht ein dynamischer Unterdruck und das Schmieröl wird in das Auslaßrohr gesaugt und weiter in die hohle Kurbelwelle befördert. Da das Saugrohr nahe am Boden der Kompressor-Gehäusewand des hermetisch gekapselten Rollkolbenverdichters endet, kann die Ölversorgung auch bei geringen Neigungen des Kompressors noch aufrechterhalten werden. Bei Drehung des Kompressors um die Achse der Kurbelwelle oder um eine dazu parallele Achse wird jedoch die Ölversorgung unterbrochen, wenn die Öffnung des Saugrohres sich nicht mehr im Ölsumpf befindet.
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, einen hermetisch gekapselten ölgeschmierten Rollkolbenver dichter anzugeben, bei dem in jeder sich durch eine beliebige Drehung des Verdichters um die waagerechte Achse seiner Kurbelwelle oder einer dazu parallelen Achse ergebenden Lage die Ölversorgung aufrechterhalten wird.
  • Diese Aufgabe wird nun erfindungsgemäß gelöst mit den kennzeichnenden Merkmalen des Anspruchs 1. Durch diese Maßnahmen ist gewährleistet, daß die Öffnung des Ölsaugstutzens in jeder durch Drehung des Verdichters um die Achse der Kurbelwelle entstehenden Lage in den Ölsumpf eintaucht und somit die Schmierung des Rollkolbenverdichters aufrechterhalten ist.
  • Die Querschnittsverengung in der Druckgasleitung ist in einer vorteilhaften Ausführungsform eine rotationssymmetrische Düse, die auswechselbar in die Druckgasleitung eingesetzt ist. Die Düse ist vorzugsweise koaxial zur Kurbelwelle eingesetzt und befindet sich außerhalb des Ölsumpfes. In einer weiteren vorteilhaften Ausführungsform mündet die Düse in einen Mischraum derart, daß sie zwischen Düse und Mischraumwand ein Saugraum befindet, der über Bohrungen mit dem Ölsaugstutzen verbunden ist. An den Mischraum schließt ein Diffusor an, in dem eine verlustarme Umsetzung von Geschwindigkeit in Druck erfolgt. Dadurch wird der durch die Düse entstehende dynamische Unterdruck für die Ölansaugung besonders vorteilhaft ausgenutzt und die Vermischung des Schmieröls mit dem Druckgas erleichtert.
  • In einer weiteren vorteilhaften Ausführungsform hat das Lager des Ölsaugstutzens die Gestalt eines Kalottenlagers und der Ölsaugstutzen kann innerhalb eines vorbestimmten Winkelbereichs zusätzlich eine Drehbewegung um eine zur Achse der Kurbelwelle senkrechte Achse ausführen. Dadurch ist der Winkelbereich, innerhalb dem die Kurbelwelle gegen die Oberfläche des Ölsumpfes unter Aufrechterhaltung der Ölversorgung des Verdichters geneigt werden kann, gegenüber einer Ausführungsform mit einem zylindrischen Lager vergrößert.
  • Zur weiteren Erläuterung der Erfindung wird auf die Zeichnung Bezug genommen, in deren
    • Figur 1 ein hermetisch gekapselter Rollkolbenverdichter gemäß der Erfindung teilweise im Längsschnitt schematisch dargestellt ist und deren
    • Figur 2 eine vorteilhafte Ausführungsform der Ölsaugvorrichtung verdeutlicht. In
    • Figur 3 zur weiteren Erläuterung die Ölsaugvorrichtung im Querschnitt dargestellt ist.
    • Figur 4 zeigt eine vorteilhafte Ausführungsform des Ölsaugstutzens im Schnitt und in
    • Figur 5 ist eine weitere vorteilhafte Ausführungsform des Rollkolbenverdichtes ebenfalls im Schnitt dargestellt.
  • In der Ausführungsform eines hermetisch gekapselten Rollkolbenverdichters gemäß Figur 1 ist ein Elektromotor 4 mit einer hohlen, waagerecht angeordneten Motorwelle 6 in einem Kompressorgehäuse 2 angeordnet. Verdichter und Gehäuse sind teilweise im Schnitt dargestellt. Die Motorwelle 6 bildet zugleich die ebenfalls hohle Kurbelwelle 6 des Rollkolbenverdichters 8, dessen mit dem Kompressorgehäuse 2 fest verbundenes Zylindergehäuse 82 mit einer Ölansaugvorrichtung 10 versehen ist. Diese enthält einen um die waagerechte Achse 200 der hohlen Kurbelwelle 6 drehbar gelagerten Ölansaugstutzen 60, der in einen Ölsumpf 12 eintaucht. Am Kompressorgehäuse 2 befinden sich Durchführungen 70 für die elektrischen Anschlüsse des Elektromotors 4 und Montagehalterungen 80.
  • Das durch einen Einlaßstutzen 14 angesaugte Gas wird im Rollkolbenverdichter 8 verdichtet und über eine im Zylindergehäuse 82 befindliche Druckgasleitung in die Ölansaugvorrichtung 10 gelenkt. Dort erfolgt die Ölansaugung und das Druckgas-Öl-Gemisch gelangt in die hohle Kurbelwelle 6. Durch radiale Bohrungen in der hohlen Kurbelwelle 6 gelangt das Öl zur Schmierung und Abdichtung an die gegeneinander beweglichen Oberflächen des Verdichters. Das Druckgas tritt zusammen mit dem überschüssigen Öl am motorseitigen Ende 132 der hohlen Kurbelwelle 6 aus. Das überschüssige Öl wird gegen die Kompressorgehäusewand 16 geschleudert und fließt von dort aus zum Ölsumpf 12 zurück. Das Druckgas wird über einen Auslaßstutzen 18, der gegenüber dem motorseitigen Ende 132 der hohlen Kurbelwelle 6 am Kompressorgehäuse 2 angebracht ist, zu einem in der Figur nicht dargestellten Kondensator weitergeführt.
  • In Figur 2 ist die Ölsaugvorrichtung 10 gemäß der Erfindung weiter verdeutlicht. Der Rollkolbenverdichter 8 enthält einen im Zylindergehäuse 82 exzentrisch umlaufenden Rollkolben 20. Ein am Zylindergehäuse 82 mittels einer Feder beweglich angebrachter Trennschieber 80 teilt den zwischen Zylindergehäuse 82 und Rollkolben 20 befindlichen Raum in einen Druckraum und einen Saugraum auf. Das durch den umlaufenden Rollkolben 20 im Druckraum verdichtete Gas wird über ein Druckventil 22 ausgestoßen und über eine erste Umlenkkammer 24 und eine Druckgasleitung 26 zum vom Antrieb abgewandten offenen Ende 130 der hohlen Kurbelwelle 6 geführt. Ein Teil 262 der Druckgasleitung befindet sich im Zylindergehäuse 82. Ein Umlenkkörper 50 ist über einen Dichtring 40 mit dem Zylindergehäuse 82 fest verbunden. Das Druckgas wird im Umlenkkörper 50 durch eine Gasleitung 264 zu einer zweiten Umlenkkammer 266 geführt und dort in die Düse 104 gelenkt. Die Düse 104 ist als Rotationskörper gestaltet und kann in einer vorteilhaften Ausführungsform ein in den Umlenkkörper 50 eingesetztes auswechselbares Bauteil bilden. Die Düse 104 mündet in einen ebenfalls rotationssymmetrischen Mischraum 110, an den sich ein Diffusor 106 anschließt, in dem die Geschwindigkeitsenergie verlustarm in Druckenergie rückgewandelt wird. Die Ebene der Austrittsöffnung 1042 der Düse 104, die Außenwand der Düse 104 und ein Teil der Innenwand des Mischraumes 110 bilden die Begrenzungsflächen eines Saugraumes 108. In diesen Saugraum 108 münden radial zur Achse 200 verlaufende Bohrungen 112, die zur Druckentnahme dienen. Diese Bohrungen 112 gehen von einer Nut 114 mit rechteckigem Querschnitt aus, die den Umlenkkörper 50 an seiner Außenwand ringförmig umgibt. Die Nut 114 wird von einer an der Außenwand des Umlenkkörpers 50 anliegenden, um die Achse 200 drehbaren Hohlwelle umgeben, die als Lager 62 für den Ölsaugstutzen 60 dient. Am Außenmantel des Lagers 62 ist ein beispielsweise zylindrischer Stutzen 64 angebracht, dessen Zylinderachse senkrecht zur Achse 200 verläuft. Der zylindrische Stutzen 64 ist innen hohl und seine Bohrung mündet in die Ringnut 114. Das Lager 62 und der hohlzylindrische Stutzen 64 bilden den drehbar gelagerten Ölsaugstutzen 60. Der Schwerpunkt S des Ölsaugstutzens 60 befindet sich außerhalb der Achse 200 im Stutzen 64. Die Mitte 0 der Öffnung 642 und der Schwerpunkt S des Ölsaugstutzens sind so gelegen, daß die Verlängerung ihrer Verbindungslinie L die Achse 200 in einem Schnittpunkt P schneidet. Dadurch wird bewirkt, daß sich der Ölsaugstutzen 60 im Schwerefeld stets so ausrichtet, daß der zylindrische Stutzen 64 wenigstens annähernd in der Richtung des Schwerefeldes orientiert ist. Somit ist gewährleistet, daß in jeder Lage des Rollkolbenverdichters, die sich durch beliebige Drehung um die waagrechte Achse 200 oder einer dazu parallelen Achse ergibt, sich eine am Ende des zylindrischen Stutzens 64 befindliche Öffnung 642 im Ölsumpf 12 befindet. Der Stutzen 64 ist vorzugsweise so lang, daß sich die Öffnung 642 in einem geringen Abstand zur Innenwand des Kompressorgehäuses 2 befindet. Der Ölsaugstutzen 60 ist auf den Umlenkkörper 50 aufgeschoben und durch eine Kontervorrichtung 52 gegen ein Abrutschen gesichert. Durch die düsenförmige Querschnittsverengung der Düse 104 in der Druckgasleitung 26 entsteht somit im Saugraum 108 ein Unterdruck gegenüber dem Ölraum 120. Das Schmieröl wird über den zylindrischen Stutzen 64 zu den Druckentnahme-Bohrungen 112 gesaugt und gelangt von dort aus in den Saugraum 108 und vermischt sich im Mischraum 110 mit dem Druckgas und wird dann als Druckgas-Ölgemisch in den Diffusor 106 und von dort aus in die hohle Kurbelwelle 6 weiterbefördert. In der hohlen Kurbelwelle 6 befinden sich Ölversorgungsbohrungen 140 durch die das Öl zur Schmierung und Abdichtung an die Wandungen der gegeneinander beweglichen Teile des Rollkolbenverdichters 8 gelangt.
  • In Figur 3 ist zur weiteren Erläuterung der Ölsaugstutzen 60 in einer Lage dargestellt, in der der zylindrische Stutzen 64 nicht parallel zum Schwerefeld oder zu einem durch Rotation des Rollkolbenverdichters um die Achse 200 oder einer dazu parallelen Achse verursachten Trägheitsfeld ausgerichtet ist. Auf den Ölsaugstutzen wirkt die Schwerkraft oder die Trägheitskraft F, die ein Drehmoment M um die Achse 200 erzeugt. Durch das Drehmoment M wird der Saugstutzen 64 wenig stens annähernd parallel zum Schwere- oder Trägheitsfeld ausgerichtet. Seine Öffnung 642 befindet sich somit in der Gleichg ewichtslage stets im Ölsumpf 12.
  • In der vorteilhaften Ausführungsform gemäß Figur 4 hat der Stutzen 68 des Ölsaugstutzens 60 etwa die Gestalt eines Kreisscheibensektors. Der Abstand des Schwerpunktes S zur Achse 200 und das von der Schwer- bzw. Trägheitskraft erzeugte Drehmoment M wird somit gegenüber der Ausführungsform eines zylindrischen Stutzens entsprechend vergrößert. Dadurch werden Lagerreibungskräfte, welche die Ausrichtung des Ölsaugstutzens 60 hemmen können, leichter überwunden.
  • In der Ausführungsform nach Figur 5 ist das Druckventil 22 in dem vom Antrieb abgewandten Teil des Zylindergehäuses 82 untergebracht. Über die Druckgasleitung 26 gelangt das Druckgas direkt zur Umlenkkammer 266. Die Kurbelwelle 6 ist nur innerhalb des Zylindergehäuses 82 hohl und dort mit radialen Bohrungen 140 versehen. Der Diffusor 106 schließt an das eine offene Ende der Kurbelwelle 6 an und ist mittels radialer Auslaß-Bohrungen 34 mit dem Ölraum 120 verbunden. Das Druckgas-Öl-Gemisch strömt aus dem Diffusor 106 in den Ölraum 120 und von dort aus beispielsweise durch in der Zeichnung nicht dargestellte, parallel zur Kurbelwelle verlaufende Bohrungen im Läufer des Elektromotors 4 zum Auslaßstutzen 18. Dadurch erfolgt gleichzeitig eine Kühlung des Elektromotors 4.
  • Ein Teil 54 der Außenfläche des Umlenkkörpers 50 wird durch die Mantelfläche einer Kugelzone gebildet und ist von einer Nut 116 ringförmig umgeben. Die Querschnittsfläche der Nut 116 ist beispielsweise ein Kreisringsektor. Die Nut 116 ist mittels senkrecht zur Achse 200 verlaufender Bohrungen 112 mit dem Saugraum 108 verbunden. Die Nut 116 wird von einem auf dem Teil 52 der Außenfläche des Umlenkkörpers 50 anliegenden Kalottenlager 66 des Ölsaugstutzen 60 umgeben. Das Kalottenlager 66 kann an seiner Innenfläche ebenfalls mit einer ringförmig umlaufenden Nut 118 versehen sein, in welche die Bohrung eines beispielsweise zylindrischen Stutzens 64 mündet. Durch diesen Aufbau ist gewährleistet, daß der Ölsaugstutzen 60 auch dann noch frei durch die Schwer- oder Trägheitskraft um die Achse 200 gedreht werden kann, wenn diese innerhalb eines vorbestimmten Winkelbereiches α gegen die Oberfläche des Ölsumpfes 12 geneigt ist. Bei zylindrischen Lagerflächen besteht bei solchen Neigungen nämlich die Möglichkeit, daß sich der Ölsaugstutzen 60 verkantet und an seiner Drehbewegung gehindert ist. Ein weiterer Vorteil der kalottenförmigen Lagerung des Ölsaugstutzens 60 besteht auch darin, daß der Neigungswinkel α der Kurbelwelle 6 gegen die Oberfläche des Ölsumpfes 12, bis zu dem sich die Öffnung 642 des Stutzens 6 noch im Ölsumpf 12 befindet, gegenüber der Ausführungsform mit einer zylindrischen Lagerfläche des Ölsaugstutzens 60 vergrößert ist.

Claims (7)

1. Hermetisch gekapselter ölgeschmierter Rollkolbenverdichter mit einer
- waagrecht angeordneten wenigstens innerhalb des Zylindergehäuses (82) hohlen Kurbelwelle (6), die an wenigstens einem Ende offen und mit radialen Bohrungen (110) versehen ist,
- einer Druckgasleitung (26), die einen Druckraum des Rollkolbenverdichters (8) mit dem vom Antrieb (4) abgewandten offenen Ende der hohlen Kurbelwelle (6) verbindet,
- einer in der Druckgasleitung (26) befindlichen Querschnittsverengung (104) und
- einem Ölsaugstutzen (60), der die Querschnittsverengung (104) mit einem Ölsumpf (12) verbindet, gekennzeichnet durch folgende Merkmale:
- der Ölsaugstutzen (60) ist um die Achse (200) der Kurbelwelle (6) drehbar gelagert,
- der Schwerpunkt (S) des Ölsaugstutzen (60) befindet sich entfernt von der Achse (200),
- die Verlängerung der Verbindungslinie zwischen der Mitte der Öffnung (642) des Ölsaugstutzens (60), die in den Ölsumpf (12) eintaucht, und dem Schwerpunkt (S) schneidet die Achse (200).
2. Rollkolbenverdichter nach Anspruch 1, dadurch gekennzeichnet, daß eine Düse (104) und ein Diffusor (106) vorgesehen sind.
3. Rollkolbenver dichter nach Anspruch 2, dadurch gekennzeichnet, daß eine auswechselbare rotationssymmetrische Düse (104) vorgesehen ist.
4. Rollkolbenverdichter nach Anspruch 3, dadurch gekennzeichnet, daß die Düse (104) koaxial zur Kurbelwelle (6) angeordnet ist.
5. Rollkolbenverdichter nach Anspruch 3, dadurch gekennzeichnet, daß die Düse (104) in einen Mischraum (110) mündet, an den der Diffusor (106) angrenzt.
6. Rollkolbenverdichter nach Anspruch 4, dadurch gekennzeichnet, daß ein Saugraum (108) mittels Bohrungen (112) mit dem Ölsaugstutzen (60) verbunden ist.
7. Rollkolbenverdichter nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Ölsaugstutzen (60) um eine zur Achse (200) der Kurbelwelle (6) senkrechte Achse innerhalb eines vorbestimmten Winkelbereiches (α) drehbar gelagert ist.
EP86105874A 1985-05-08 1986-04-29 Gekapselter Rollkolbenverdichter Expired - Lifetime EP0210349B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3516593 1985-05-08
DE3516593 1985-05-08

Publications (3)

Publication Number Publication Date
EP0210349A2 true EP0210349A2 (de) 1987-02-04
EP0210349A3 EP0210349A3 (en) 1988-03-30
EP0210349B1 EP0210349B1 (de) 1990-03-21

Family

ID=6270181

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86105874A Expired - Lifetime EP0210349B1 (de) 1985-05-08 1986-04-29 Gekapselter Rollkolbenverdichter

Country Status (4)

Country Link
US (1) US4729728A (de)
EP (1) EP0210349B1 (de)
JP (1) JPS61255293A (de)
DE (1) DE3669754D1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792288A (en) * 1986-11-28 1988-12-20 Siemens Aktiengesellschaft Encapsulated compressor
EP0601960A1 (de) * 1992-12-07 1994-06-15 Carrier Corporation Ölzufuhrsystem für Rotationsverdichter der Horizontalbauart
WO2014008868A1 (zh) * 2012-07-13 2014-01-16 艾默生环境优化技术(苏州)有限公司 压缩机

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5060759A (en) * 1990-04-13 1991-10-29 Sundstrand Corporation Compressor oil supply system
US5221191A (en) * 1992-04-29 1993-06-22 Carrier Corporation Horizontal rotary compressor
EP0958952A1 (de) * 1998-05-20 1999-11-24 Carrier Corporation LKW-Kühlaggregat mit einem horizontalen Rotationskolbenverdichter
US20050281693A1 (en) * 2004-06-17 2005-12-22 Roberts Freddie R Machine for drawing fluid from a sump for circulation
DE102004056291B4 (de) * 2004-11-22 2009-06-25 Audi Ag Vorrichtung zur Versorgung eines Fahrzeugantriebs mit flüssigem Schmiermittel
DE102005004858A1 (de) * 2005-02-02 2006-08-10 Siemens Ag Maschineneinrichtung mit Thermosyphon-Kühlung ihrer supraleitenden Rotorwicklung
CN102678570A (zh) * 2011-03-11 2012-09-19 广东美芝制冷设备有限公司 卧式旋转压缩机的油供应装置
CN103541905B (zh) * 2012-07-13 2017-06-13 艾默生环境优化技术(苏州)有限公司 压缩机
CN103557162B (zh) * 2013-10-22 2017-01-25 广东美芝制冷设备有限公司 旋转式压缩机
CN109441826A (zh) * 2018-11-19 2019-03-08 珠海凌达压缩机有限公司 用于压缩机的上油组件、压缩机及空调器
US11655820B2 (en) * 2020-02-04 2023-05-23 Aspen Compressor, Llc Horizontal rotary compressor with enhanced tiltability during operation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB496796A (en) * 1938-04-23 1938-12-06 Miroslav Sigmund Improvements in rotary air pumps
FR1364063A (fr) * 1963-05-07 1964-06-19 Vide Soc Gen Du Perfectionnements aux pompes mécaniques
US3627078A (en) * 1970-11-12 1971-12-14 Lockheed Aircraft Corp Rotary liquid pickup
DE2026868A1 (de) * 1970-06-02 1971-12-16 Limbach, Peter, 5201 Sassenberg Schmiervorrichtung fur Triebwerke mit lageunempfindlicher Ölversorgung
FR2211990A5 (de) * 1972-12-22 1974-07-19 Bosch Gmbh Robert
US4391573A (en) * 1978-12-28 1983-07-05 Mitsubishi Denki Kabushiki Kaisha Horizontal rotary compressor with oil forced by gas discharge into crankshaft bore

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB496796A (en) * 1938-04-23 1938-12-06 Miroslav Sigmund Improvements in rotary air pumps
FR1364063A (fr) * 1963-05-07 1964-06-19 Vide Soc Gen Du Perfectionnements aux pompes mécaniques
DE2026868A1 (de) * 1970-06-02 1971-12-16 Limbach, Peter, 5201 Sassenberg Schmiervorrichtung fur Triebwerke mit lageunempfindlicher Ölversorgung
US3627078A (en) * 1970-11-12 1971-12-14 Lockheed Aircraft Corp Rotary liquid pickup
FR2211990A5 (de) * 1972-12-22 1974-07-19 Bosch Gmbh Robert
US4391573A (en) * 1978-12-28 1983-07-05 Mitsubishi Denki Kabushiki Kaisha Horizontal rotary compressor with oil forced by gas discharge into crankshaft bore

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792288A (en) * 1986-11-28 1988-12-20 Siemens Aktiengesellschaft Encapsulated compressor
EP0601960A1 (de) * 1992-12-07 1994-06-15 Carrier Corporation Ölzufuhrsystem für Rotationsverdichter der Horizontalbauart
WO2014008868A1 (zh) * 2012-07-13 2014-01-16 艾默生环境优化技术(苏州)有限公司 压缩机

Also Published As

Publication number Publication date
EP0210349B1 (de) 1990-03-21
DE3669754D1 (de) 1990-04-26
US4729728A (en) 1988-03-08
JPS61255293A (ja) 1986-11-12
EP0210349A3 (en) 1988-03-30

Similar Documents

Publication Publication Date Title
EP0210349B1 (de) Gekapselter Rollkolbenverdichter
DE69724561T2 (de) Spiralverdichter
DE102010047724B4 (de) Schraubenkompressorschmiersystem
DE69121026T2 (de) Schmiereinrichtung für Spiralmaschine
DE3730966C2 (de) Hermetisch geschlossener Rotationskolbenkompressor mit horizontaler Antriebswelle
DE69306041T2 (de) Hermetische Motor-Verdichter-Einheit der Horizontalbauart
DE69628755T2 (de) Flüssigkeitspumpe
DE2544685B2 (de) Taumelscheiben-Kompressor
DE2225327B2 (de) Vakuumpumpe mit spiralrotationskolben
DE3248407A1 (de) Schneckenverdichter
DE4215513A1 (de) Vorrichtung zum foerdern und/oder verdichten von fluiden materialien
DE4333633A1 (de) Axialkolbenkompressor mit mehreren Kolben und einem Drehventil
DE60220247T2 (de) Horizontaler spiralverdichter
DE3638000C2 (de)
DE4333634A1 (de) Axialkolbenkompressor mit mehreren Kolben und einem Drehventil
DE202015105987U1 (de) Maschinenkern des Luftkompressors
DE102006058837B4 (de) Schmiermittelgedichtete Drehschiebervakuumpumpe
DE2718843C2 (de) Hermetisch gekapselte Motorkompressor-Einheit für eine Kälteanlage
EP0268970A1 (de) Gekapselter Verdichter
DE102019208680A1 (de) Verdrängermaschine nach dem Spiralprinzip, insbesondere Scrollverdichter für eine Fahrzeugklimaanlage
DE69824919T2 (de) Schmiersystem für Hochdruckpumpen für Flüssigkeiten mit vertikal angeordneten Zylindern
DE3536714A1 (de) Zweistufige drehschieberpumpe mit einem drehaufbau innerhalb eines stationaeren aufbaues
DE69830934T2 (de) Spiralverdichter
DE10106234C2 (de) Kolbenverdichter
EP2005001A1 (de) Zellenpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR

17P Request for examination filed

Effective date: 19880425

17Q First examination report despatched

Effective date: 19881014

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 3669754

Country of ref document: DE

Date of ref document: 19900426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900427

Year of fee payment: 5

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900625

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19911230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST