WO2014008868A1 - 压缩机 - Google Patents

压缩机 Download PDF

Info

Publication number
WO2014008868A1
WO2014008868A1 PCT/CN2013/079259 CN2013079259W WO2014008868A1 WO 2014008868 A1 WO2014008868 A1 WO 2014008868A1 CN 2013079259 W CN2013079259 W CN 2013079259W WO 2014008868 A1 WO2014008868 A1 WO 2014008868A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
lubricating oil
housing
gas introduction
disposed
Prior art date
Application number
PCT/CN2013/079259
Other languages
English (en)
French (fr)
Inventor
马宏伟
徐恺
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 201220342698 external-priority patent/CN202732355U/zh
Priority claimed from CN201210244630.4A external-priority patent/CN103541905B/zh
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Publication of WO2014008868A1 publication Critical patent/WO2014008868A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/021Control systems for the circulation of the lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0207Lubrication with lubrication control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • F04B39/0238Hermetic compressors with oil distribution channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0042Systems for the equilibration of forces acting on the machines or pump
    • F04C15/0049Equalization of pressure pulses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Definitions

  • the present invention relates to a compressor and, more particularly, to a compressor including a lubrication system. Background technique
  • a compressor e.g., a scroll compressor
  • Lubricating oil not only provides lubrication for the relevant components of the compressor, but also provides cooling and cleaning.
  • Another object of one or more embodiments of the present invention is to provide a compressor having an oil pressure pulsation eliminating device that is easy to maintain.
  • a compressor comprising: a housing, an internal space defined by the housing being partitioned into a high pressure side and a low pressure side; a drive mechanism; a compression mechanism housed in the housing and driven by the drive mechanism; and a lubrication system including a lubricating oil circuit and a gas introduction passage for introducing a working gas Into the lubricating oil circuit.
  • a refrigerant gas (preferably a small amount of high pressure refrigerant gas) is introduced into the lubricating oil circuit of the lubrication system (preferably a batch type introduced into the lubricating oil circuit)
  • the upstream of the oil supply device i.e., introduced into the first lubricating oil passage, causes the lubricating oil to become a "compressible" oily mixture having a cushioning property, thereby reducing oil pressure pulsation in the lubricating oil circuit.
  • the hydraulic pulsation cancellation mode employed is convenient for maintenance. Specifically, with this hydraulic pulsation elimination method, since there is no moving part and there is no need to periodically inspect and replace the worn part, since there is no rubber part, there is no need to check compatibility with different refrigerants, and since it does not pass through the pressure chamber Pulsating without periodic inspection and pressure measurement.
  • the hydraulic pulsation elimination method employed improves flexibility in use. Specifically, for compressors with different oil pressure pulsation ranges, it is only necessary to adjust the diameter and/or length of the gas introduction passage to match.
  • FIG. 1 is a schematic structural view showing a compressor according to a first embodiment of the present invention
  • FIG. 2 is a longitudinal perspective sectional view showing a compressor according to a first embodiment of the present invention
  • Figure 3 is a detailed view showing an intermittent type oil supply device according to a first embodiment of the present invention.
  • FIG. 4 is a schematic structural view showing a compressor according to a second embodiment of the present invention.
  • Figure 5 is a longitudinal perspective sectional view showing a compressor according to a second embodiment of the present invention.
  • FIG. 6 is a schematic structural view showing a compressor according to a third embodiment of the present invention.
  • Figure 7 is a longitudinal perspective sectional view showing a compressor according to a third embodiment of the present invention.
  • Fig. 8 is a schematic structural view showing a compressor according to an alternative embodiment of the first embodiment of the present invention. detailed description
  • FIG. 1 is a schematic structural view showing a compressor according to a first embodiment of the present invention
  • FIG. 2 is a longitudinal perspective sectional view showing the compressor according to the first embodiment of the present invention
  • FIG. 3 is specifically shown according to the present invention.
  • the compressor 100 may include: a housing 110; a driving mechanism 120 housed in the housing 110; a compression mechanism 130 housed in the housing 110 and driven by the driving mechanism 120; And a lubrication system 140.
  • the housing 110 may include: a housing body 111; a front end cover 112; and a rear end cover 113.
  • the compressor 100 may also include a diaphragm (muffler plate) 150 that divides the interior space of the compressor 100 defined by the housing 110 into a high pressure side 170 and a low pressure side 180.
  • a diaphragm (muffler plate) 150 that divides the interior space of the compressor 100 defined by the housing 110 into a high pressure side 170 and a low pressure side 180.
  • the space surrounded by the front end cover 112 and the partition 150 constitutes a high pressure side 170 for temporarily accommodating the compressed high pressure refrigerant (working fluid) for discharging the compressed high pressure refrigerant.
  • the space surrounded by the casing body 111, the rear end cover 113, and the partition 150 constitutes a low pressure side 180 for drawing in a low pressure refrigerant (working fluid).
  • the drive mechanism 120 can include a motor stator 121, a motor rotor 122, and a rotating shaft 123 (shown in Figure 1).
  • the compression mechanism 130 may be a scroll compression mechanism including a fixed scroll member 131 and an orbiting scroll member 132.
  • Lubrication system 140 includes a lube circuit that may include: an oil sump 141 disposed in high pressure side 170; an intermittent oil supply 142 disposed in low pressure side 180; extending from oil sump 141 to intermittent oil supply a first lubricating oil passage 143 of the device 142; a second lubricating oil passage 144 extending from the intermittent oil supply device 142 and disposed in the rotating shaft 123; and a heat exchanger 145.
  • the intermittent type oil supply device 142 may include: a first through hole 1421 provided at a shaft wall of the rear end of the rotating shaft 123, the first through hole 1421 being radially Extendingly communicating with the second lubricating oil passage 144; and a second through hole 1422 provided at a bearing (not shown) supporting the rear end of the rotating shaft 123, the second through hole 1422 is in communication with the first lubricating oil passage 143.
  • the rotary shaft 123 rotates, so that the first through hole 1421 intermittently communicates with the second through hole 1422, thereby achieving intermittent supply of the lubricating oil.
  • the first lubricating oil passage 143 includes: a first outer lubricating oil passage 1431 disposed outside the housing 110; and a base material disposed on the housing 100 (or a base material of the housing 100) And a first internal lubricating oil passage 1432 in the base material of the partition 150.
  • the first internal lubricating oil passage 1432 is composed of a plurality of lubricating oil passage sections extending in the front end cover 112, the partition 150, the front portion of the housing body 111, the rear portion of the housing body 111, and the rear end cover 113.
  • a heat exchanger 145 which may be a plate heat exchanger, is disposed outside of the housing 110.
  • a refrigerant gas working gas
  • a high-pressure refrigerant gas is introduced into the lubricating oil circuit of the lubrication system.
  • the gas introduction passage 147 is provided in the lubrication system 140.
  • a gas introduction passage 147 extends from the high pressure side 170 to the first lubricating oil passage 143.
  • the gas introduction passage 147 may include: an inner section 1471 provided in the front end cover 112, the partition 150, and the front portion of the housing body 111; and an outer section 1472 disposed outside the housing 110.
  • the front end of the outer section 1472 is connected in fluid communication with the inner section 1471 at the front connection point 1475, and the rear end of the outer section 1472 is fluidly connected to the first lubricating oil passage 143 at the rear connection point 1476.
  • the location downstream of the heat exchanger 145 i.e., the gas introduction channel 147 is in parallel with respect to the heat exchanger 145).
  • gas introduction passage 147 may extend from the high pressure side 170 through the base material of the front end cover 112, the base material of the partition 150, and the base material of the housing body 111 to reach, for example, the first internal lubricating oil passage 1432. A section in the rear of the body 111.
  • the gas introduction passage 147 can be set to have a suitable length and inner diameter.
  • the gas introduction passage 147 may be constituted by a capillary tube, or may be constituted by a pipe having a small pore, or may be constituted by a pipe provided with a small pore plug which serves as a throttle member according to the present invention.
  • a sieve may be provided in the gas introduction passage 147 to prevent clogging.
  • the lubricating oil stored in the oil groove 141 is extruded from the oil groove 141 to the first lubricating oil passage 143 by the high pressure in the high pressure side 170.
  • the lubricating oil is cooled by heat exchange with the cold refrigerant fluid also flowing through the heat exchanger 145.
  • the cooled lubricating oil continues to flow to the intermittent type oil supply device 142, and then flows into the second lubricating oil passage 144 via the intermittent type oil supply device 142.
  • the lubricating oil is delivered to each of the components requiring lubrication (for example, the fixed scroll member 131 and the movable scroll member 132 of the compression mechanism 130) via the second lubricating oil passage 144, and is also passed through It is mixed with the refrigerant to circulate from the low pressure side to the high pressure side.
  • the refrigerant containing lubricating oil is separated on the high pressure side by the oil separator 190 (see Figs. 5 and 7), and the separated refrigerant is discharged through the exhaust joint 200 (see Fig. 5), and the separated lubricating oil is collected.
  • the oil sump 141 in the high pressure side 170 is for the next lubrication cycle.
  • a refrigerant gas preferably a small amount of high-pressure refrigerant gas
  • the lubricating oil circuit of the lubrication system preferably upstream of the intermittent oil supply device introduced into the lubricating oil circuit
  • the lubricating oil becomes a "compressible" oily mixture having a cushioning property, thereby reducing oil pressure pulsation in the lubricating oil circuit.
  • the employed oil pressure pulsation eliminating mode is convenient for maintenance. Specifically, with this hydraulic pulsation elimination method, since there is no moving part and there is no need to periodically inspect and replace the worn part, since there is no rubber part, there is no need to check compatibility with different refrigerants, and since it does not pass through the pressure chamber Pulsating without periodic inspection and pressure measurement.
  • the employed oil pressure pulsation eliminating method improves the use flexibility. Specifically, for compressors with different oil pressure pulsation ranges, it is only necessary to adjust the pipe diameter and/or length of the gas introduction passage to match.
  • FIG. 4 is a schematic structural view showing a compressor according to a second embodiment of the present invention
  • FIG. 5 is a longitudinal perspective sectional view showing the compressor according to the second embodiment of the present invention.
  • the second embodiment differs from the first embodiment in the position at which the high-pressure refrigerant gas is taken out. Therefore, the same aspects as the first embodiment in the second embodiment will not be repeatedly described herein.
  • a refrigerant gas (working gas), preferably a high-pressure refrigerant gas, is also introduced into the lubricating oil circuit of the lubrication system.
  • the gas introduction passage 147A is provided in the lubrication system 140.
  • the gas introduction passage 147A extends from the exhaust joint 200 to the first lubricating oil passage 143.
  • the gas introduction passage 147A may include only the outer section 1472A disposed outside the housing 110.
  • the front end of the outer section 1472A is connected in fluid communication with the exhaust connection 200 at the front connection point 1475A, and the rear end of the outer section 1472A is fluidly connected to the first lubrication passage 143 at the rear connection point 1476A.
  • a location downstream of the heat exchanger 145 introduces high pressure gas in the vent connection 200 to the first lubrication passage 143.
  • FIG. 6 is a schematic structural view showing a compressor according to a third embodiment of the present invention
  • FIG. 7 is a longitudinal perspective sectional view showing the compressor according to the third embodiment of the present invention.
  • the third embodiment differs from the first embodiment in the position at which the high-pressure refrigerant gas is taken out. Therefore, the same aspects as the first embodiment in the third embodiment will not be repeatedly described herein.
  • a refrigerant gas (working gas), preferably a high-pressure refrigerant gas, is also introduced into the lubricating oil circuit of the lubrication system.
  • the gas introduction passage 147B is provided in the lubrication system 140.
  • the gas introduction passage 147B extends from the exhaust port 133 of the compression mechanism 130 to the first lubricating oil passage 143.
  • the gas introduction passage 147B may include: an inner section 1471B provided in the partition 150; and an outer section 1472B provided outside the casing 110.
  • the front end of the outer section 1472B is connected in fluid communication with the inner section 1471B at the front connection point 1475B, and the rear end of the outer section 1472B is fluidly connected to the first lubricating oil passage 143 at the rear connection point 1476B.
  • the compressor according to the third embodiment can provide substantially the same advantageous effects as those which can be provided by the compressor according to the first embodiment as described above.
  • FIG. 8 is a schematic structural view showing a compressor according to an alternative embodiment of the first embodiment of the present invention.
  • the alternative embodiment differs from the first embodiment in the introduction of a high pressure refrigerant gas The introduction position into the lubrication system 140. Therefore, the same aspects of the alternative embodiment as those of the first embodiment will not be repeatedly described herein.
  • the high pressure refrigerant gas is introduced into the lubricating oil circuit of the lubrication system 140 at a point in the first lubricating oil passage 143 located upstream of the heat exchanger 145. (That is, the gas introduction passage 147 is connected in series with respect to the heat exchanger 145).
  • the gas introduction passage 147 may be fluidly connected to the first lubricating oil passage 143 inside the casing 110.
  • the compressor according to this alternative embodiment can provide substantially the same advantageous effects as can be provided by the compressor according to the first embodiment as described above.
  • the second embodiment and the third embodiment may have such an alternative embodiment.
  • the compressor as described above may allow for a plurality of different [72] Although it has been described that a portion of the lubricating oil circuit of the lubrication system 140 (ie, the first outer lubricating oil passage 1431 of the first lubricating oil passage 143) is disposed outside the housing 110, the first lubricating oil passage 143 may be entirely
  • the base material of the casing 100 (or the base material of the casing 100 and the partition 150) is disposed inside or all of the inside of the casing 110, and the heat exchanger 145 is omitted. In this case, other structural weaknesses in the lubricating oil circuit that are not heat exchangers can be protected by the hydraulic pulsation elimination method according to the present invention.
  • the lubrication system 140 has been described as including the intermittent type oil supply unit 142, the present invention is also applicable to a lubrication system that does not include the intermittent type oil supply unit.
  • the compressor may be a scroll compressor including a scroll compression mechanism
  • the present invention is also applicable to other types of compressors, such as piston compressors, rotor compressors, and screw compressors. Wait.
  • the present invention can also be applied to a vertical compressor.
  • the compressor further includes a partition that partitions the interior space defined by the housing into the high pressure side and the low pressure side.
  • the housing includes a housing body, a front end cover, and a rear end cover, and a space surrounded by the front end cover and the partition constitutes the high pressure side, and the housing body The space surrounded by the rear end cover and the partition constitutes the low pressure side.
  • the gas introduction passage extends from the high pressure side to the lubricating oil circuit.
  • the gas introduction passage comprises: an inner section disposed in a base material of the housing or disposed in a base material of the housing and a base material of the partition; and An outer section of the exterior of the housing.
  • the gas introduction passage extends from the exhaust connection of the compressor to the lubricating oil circuit.
  • the gas introduction passage comprises only an outer section provided outside the casing.
  • the gas introduction passage extends from the exhaust port of the compression mechanism to the lubricating oil circuit.
  • the gas introduction channel comprises: an inner section disposed in a base material of the separator or disposed in a base material of the separator and a base material of the casing; An outer section of the exterior of the housing.
  • the gas introduction passages are all provided in the base material of the casing and/or the base material of the separator.
  • the gas introduction passages are all disposed inside the casing.
  • the lubricating oil circuit includes an oil supply device.
  • the oil supply device is disposed in the low pressure side
  • the lubricating oil circuit further includes: an oil groove disposed in the high pressure side; and extending from the oil groove to the oil supply device a lubricating oil passage; and a second lubricating oil passage extending from the oil supply device and disposed in a rotating shaft of the driving mechanism, and the gas introduction passage extends to the first lubricating oil passage.
  • the first lubricating oil passage comprises: a first external lubricating oil passage disposed outside the housing; and a base body disposed in the base material of the housing or disposed on the housing a first internal lubricating oil passage in the material and the base material of the separator.
  • the lubricating oil circuit further includes a heat exchanger disposed outside the housing, a portion of the first outer lubricating oil passage extending through the heat exchanger.
  • the gas introduction passage is fluidly connected to a point in the first lubricating oil passage downstream of the heat exchanger.
  • the gas introduction passage is fluidly connected to a point in the first lubricating oil passage upstream of the heat exchanger.
  • the gas introduction passage is fluidly connected to the first lubricating oil passage inside the casing.
  • the first lubricating oil passages are all disposed in the base material of the housing or in the base material of the housing and the base material of the partition.
  • the oil supply device is a batch type oil supply device.
  • the intermittent oil supply device includes a first through hole and a second through hole, the A through hole is intermittently communicated with the second through hole.
  • the first through hole is disposed at a shaft wall of a rear end of the rotating shaft and extends radially to communicate with the second lubricating oil passage, and the second through hole is disposed to support the A bearing at a rear end of the rotating shaft is in communication with the first lubricating oil passage.
  • the gas introduction channel comprises a throttling element.
  • the throttling element is a capillary tube, a tube with small pores, or a tube provided with a small pore plug.
  • a screen is provided in the gas introduction passage.
  • the compressor is a scroll compressor, a piston compressor, a rotor compressor, or a screw compressor.
  • orientation terms “front” and “rear” may correspond to the high side and low side directions of the compressor, respectively, as shown in Figures 2, 4 and 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种压缩机,包括:壳体(110),由壳体(110)限定的内部空间被分隔成高压侧(170)和低压侧(180);驱动机构(120);压缩机构(130),其容纳在壳体(110)中并由驱动机构(120)驱动;以及润滑系统(140),包括润滑油回路和气体引入通道(147,147A,147B),气体引入通道(147,147A,147B)用于将工作气体引入到润滑油路中。该压缩机降低了润滑油回路中的油压脉动,便于维护,提高了使用灵活性。

Description

压缩机 相关申请的交叉引用
[01]本申请要求于 2012 年 7 月 13 日提交中国专利局、 申请号为 201210244630.4, 发明名称为 "压缩机" 的中国专利申清以及于 2012 年 7月 13提交中国专利局、 申请号为 201220342698.1、发明名称为 "压 缩机"的中国专利申请的优先权,其全部内容通过引用结合在本申请中。 技术领域
[02]本发明涉及一种压缩机, 更具体地, 涉及一种包括润滑系统的压缩机。 背景技术
[03]在压缩机(例如涡旋压缩机) 中, 为了保证压缩机能够正常运转, 需要为压缩机的各个活动部件供给适当的润滑。 因此, 在压缩机中需要 设置包括润滑油回路的润滑系统。
[04]润滑油不仅可以为压缩机的相关部件提供润滑作用, 而且还可以提 供冷却和清洁作用。
[05]然而, 尤其是在设置间歇型供油装置的情况下, 在润滑油回路中会 产生润滑油压力脉动 (油压脉动)。 因此, 这种油压脉动会导致在压缩 机长期运行之后润滑油回路中的结构薄弱点变形甚至开裂,从而造成润 滑系统无法正常工作。
[06]特别地, 在润滑油回路中设置热交换器以冷却润滑油的情况下, 在 压缩机长期运行之后, 会导致热交换器内部板片因油压脉动而开裂, 结 果造成输送至润滑面的油温升高、 润滑和冷却效果降低、 并且压缩机的 制冷量和能效比下降。
[07]这里, 应当指出的是, 本部分中所提供的技术内容旨在有助于本领 域技术人员对本发明的理解, 而不一定构成现有技术。 发明内容
[08]在本部分中提供本发明的总概要, 而不是本发明完全范围或本发明 所有特征的全面公开。
[09]本发明的一个或多个实施方式的一个目的是提供一种能够降低润 滑油回路中的油压脉动的压缩机
[10]本发明的一个或多个实施方式的另一目的是提供一种具有便于维 护的油压脉动消除装置的压缩机。
[11]本发明的一个或多个实施方式的又一目的是提供一种具有高使用 灵活性的油压脉动消除装置的压缩机。
[12]为了实现上述目的中的一个或多个,根据本发明,提供一种压缩机, 包括: 壳体, 由所述壳体限定的内部空间被分隔成高压侧和低压侧; 驱 动机构; 压缩机构, 所述压缩机构容纳在所述壳体中并由所述驱动机构 驱动; 以及润滑系统, 所述润滑系统包括润滑油回路和气体引入通道, 所述气体引入通道用于将工作气体引入到所述润滑油回路中。
[13]根据本发明的一个或多个实施方式, 由于将制冷剂气体(优选为少量 的高压制冷剂气体)引入到润滑系统的润滑油回路中(优选为引入到润 滑油回路中的间歇型供油装置的上游处, 即引入到第一润滑油通道中), 使得润滑油变成 "可压缩" 的因而具有緩冲性能的油气混合物, 因此降 低润滑油回路中的油压脉动。
[14]由于润滑油回路中的油压脉动得以降低, 因此可以避免润滑油回路 中的结构薄弱点变形甚至开裂, 从而确保润滑系统能够正常工作。 特别 地, 在润滑油回路中设置热交换器以冷却润滑油的情况下, 可以避免热 交换器内部板片因油压脉动而开裂以确保热交换器能够可靠地运转,从 并且最终可以确保压缩机的制冷量和能效比。
[15]另外,根据本发明的一个或多个实施方式,所采用的油压脉动消除方 式便于维护。 具体地, 采用这种油压脉动消除方式, 由于没有活动部件 而无需定期检查和更换磨损部件, 由于没有橡胶零件而无需检验与不同 制冷剂的相容性,并且由于不通过压力容腔来消除脉动而无需定期检查 及测压。
[16]另外,根据本发明的一个或多个实施方式,所采用的油压脉动消除方 式提高了使用灵活性。 具体地, 对于油压脉动范围不同的压缩机, 只需 调节气体引入通道的管径和 /或长度即可匹配。 附图说明
[17]通过以下参照附图的描述, 本发明的一个或几个实施方式的特征和 优点将变得更加容易理解, 在附图中:
[18]图 1是示出根据本发明第一实施方式的压缩机的结构示意图; [19]图 2是示出根据本发明第一实施方式的压缩机的纵向立体剖视图;
[20]图 3 是具体示出根据本发明第一实施方式的间歇型供油装置的细节 图;
[21]图 4是示出根据本发明第二实施方式的压缩机的结构示意图;
[22]图 5是示出根据本发明第二实施方式的压缩机的纵向立体剖视图;
[23]图 6是示出根据本发明第三实施方式的压缩机的结构示意图;
[24]图 7是示出根据本发明第三实施方式的压缩机的纵向立体剖视图; 以及
[25]图 8是示出根据本发明第一实施方式的替代性实施方式的压缩机的 结构示意图。 具体实施方式
[26]下面参照附图、 借助示例性实施方式对本发明进行详细描述。 对本 发明的以下详细描述仅仅是出于示范目的, 而绝不是对本发明及其应用 或用途的限制。
[27]首先, 参照图 1至图 3描述根据本发明第一实施方式的压缩机。 其 中, 图 1是示出根据本发明第一实施方式的压缩机的结构示意图, 图 2 是示出根据本发明第一实施方式的压缩机的纵向立体剖视图, 而图 3是 具体示出根据本发明第一实施方式的间歇型供油装置的细节图。
[28]根据本发明第一实施方式的压缩机 100可以包括: 壳体 110; 例如 容纳在壳体 110中的驱动机构 120;容纳在壳体 110中并由驱动机构 120 驱动的压缩机构 130; 以及润滑系统 140。
[29]壳体 110可以包括: 壳体本体 111 ; 前端盖 112; 以及后端盖 113。
[30]压缩机 100还可以包括隔板(消音板) 150, 隔板 150将压缩机 100 的、 由壳体 110限定的内部空间分隔成高压侧 170和低压侧 180。 [31]具体地, 如图 2所示, 由前端盖 112和隔板 150包围的空间构成高 压侧 170, 用于暂时容纳压缩后的高压制冷剂 (工作流体) 以便排出压 缩后的高压制冷剂, 而由壳体本体 111、 后端盖 113和隔板 150包围的 空间构成低压侧 180, 用于吸入低压制冷剂 (工作流体)。
[32]驱动机构 120可以包括马达定子 121、 马达转子 122、 以及旋转轴 123 (如图 1所示)。
[33]压缩机构 130可以是包括定涡旋部件 131和动涡旋部件 132的涡旋 压缩机构。
[34]润滑系统 140包括润滑油回路, 润滑油回路可以包括: 设置在高压 侧 170中的油槽 141 ; 设置在低压侧 180中的间歇型供油装置 142; 从 油槽 141延伸至间歇型供油装置 142的第一润滑油通道 143; 从间歇型 供油装置 142延伸并设置在旋转轴 123内的第二润滑油通道 144; 以及 热交换器 145。
[35]在第一实施方式中, 如图 3所示, 间歇型供油装置 142可以包括: 设置在旋转轴 123的后端的轴壁处的第一通孔 1421, 第一通孔 1421径 向延伸而与第二润滑油通道 144连通; 以及设置在支承旋转轴 123的后 端的轴承(未标示)处的第二通孔 1422, 第二通孔 1422与第一润滑油 通道 143连通。
[36]这样, 当压缩机运转时, 旋转轴 123旋转, 因此第一通孔 1421 间 歇地与第二通孔 1422连通, 由此实现润滑油的间歇供应。
[37]在第一实施方式中, 第一润滑油通道 143包括: 设置在壳体 110外 部的第一外部润滑油通道 1431 ; 以及设置在壳体 100的基体材料(或者 壳体 100的基体材料和隔板 150的基体材料)中的第一内部润滑油通道 1432。 例如, 第一内部润滑油通道 1432由在前端盖 112、 隔板 150、 壳 体本体 111的前部、壳体本体 111的后部以及后端盖 113中延伸的多个 润滑油通道区段构成。
[38]关于润滑系统的润滑油回路的结构在中国专利号 201120118497. 9 (授权公告号 202091204U )中有具体描述,该专利文献的全部内容在此 通过引用而完全并入本文中。
[39]可以是板式热交换器的热交换器 145设置在壳体 110外部。 第一外 部润滑油通道 1431的一部分以及例如冷凝器流体通道 146的一部分设 置在热交换器 145中。 [40]根据第一实施方式, 将制冷剂气体(工作气体), 优选为高压制冷 剂气体, 引入到润滑系统的润滑油回路中。
[41]具体地, 根据第一实施方式, 在润滑系统 140中设置有气体引入通 道 147。 气体引入通道 147从高压侧 170延伸至第一润滑油通道 143。 气体引入通道 147可以包括: 设置在前端盖 112、 隔板 150以及壳体本 体 111的前部中的内部区段 1471;以及设置在壳体 110外部的外部区段 1472。
[42]外部区段 1472的前端在前连接点 1475处与内部区段 1471流体连 通地连接,外部区段 1472的后端在后连接点 1476处流体连通地连接至 第一润滑油通道 143中的位于热交换器 145下游的位点(亦即, 气体引 入通道 147相对于热交换器 145是并联的)。
[43]尽管如图 1和图 2所示以及如上文所述, 气体引入通道的至少一部 分设置在壳体 110外部(即所谓的气体引入通道 "外置":), 但是也可以 将气体引入通道全部设置在壳体 110的基体材料和 /或隔板 150的基体 材料中或者也可以将气体引入通道全部设置在壳体 110内侧(即所谓的 气体引入通道 "内置")。 例如, 气体引入通道 147可以从高压侧 170延 伸穿过前端盖 112的基体材料、 隔板 150的基体材料、 壳体本体 111的 基体材料而到达例如第一内部润滑油通道 1432 的设置在壳体本体 111 的后部中的区段。
[44]在第一实施方式中, 可以将气体引入通道 147设置成具有合适的长 度和内径。 气体引入通道 147可以由毛细管构成, 或可以由具有小孔隙 的管路构成, 或可以由设置有小孔隙堵头的管路构成, 这些元件用作根 据本发明的节流元件。
[45]在第一实施方式中, 可选地, 可以在气体引入通道 147中设置滤网 以防堵塞。
[46]当压缩机运转时, 存储在油槽 141中的润滑油在高压侧 170中的高 压的作用下从油槽 141中被挤出至第一润滑油通道 143。 当沿着第一润 滑油通道 143流经热交换器 145时,润滑油与同样流经热交换器 145的 冷的制冷剂流体进行热交换从而被冷却。冷却后的润滑油继续流动至间 歇型供油装置 142, 然后经由间歇型供油装置 142流入第二润滑油通道 144。 接着, 润滑油经由第二润滑油通道 144输送至各个需要润滑的部 件(例如压缩机构 130的定涡旋部件 131和动涡旋部件 132 ),并且还通 过与制冷剂混合而从低压侧循环至高压侧。含有润滑油的制冷剂在高压 侧通过油气分离器 190 (参见图 5和图 7 )进行分离, 分离后的制冷剂 通过排气接头 200 (参见图 5 )排出, 而分离后的润滑油聚集在高压侧 170中的油槽 141中, 以便进行下一个润滑油循环。
[47]在设置间歇型供油装置的情况下, 在润滑油回路中会产生较大的润 滑油压力脉动 (油压脉动)。
[48]根据第一实施方式, 由于将制冷剂气体(优选为少量的高压制冷剂 气体)引入到润滑系统的润滑油回路中(优选为引入到润滑油回路中的 间歇型供油装置的上游处, 即引入到第一润滑油通道中), 使得润滑油 变成 "可压缩" 的因而具有緩冲性能的油气混合物, 因此降低润滑油回 路中的油压脉动。
[49]由于润滑油回路中的油压脉动得以降低, 因此可以避免润滑油回路 中的结构薄弱点变形甚至开裂, 从而确保润滑系统能够正常工作。 特别 地, 在润滑油回路中设置热交换器以冷却润滑油的情况下, 可以避免热 交换器内部板片因油压脉动而开裂以确保热交换器能够可靠地运转,从 并且最终可以确保压缩机的制冷量和能效比。
[50]另外, 根据第一实施方式, 所采用的油压脉动消除方式便于维护。 具体地, 采用这种油压脉动消除方式, 由于没有活动部件而无需定期检 查和更换磨损部件, 由于没有橡胶零件而无需检验与不同制冷剂的相容 性, 并且由于不通过压力容腔来消除脉动而无需定期检查及测压。
[51]另外, 根据第一实施方式, 所采用的油压脉动消除方式提高了使用 灵活性。 具体地, 对于油压脉动范围不同的压缩机, 只需调节气体引入 通道的管径和 /或长度即可匹配。
[52]下面, 参照图 4和图 5描述根据本发明第二实施方式的压缩机。 其 中, 图 4是示出根据本发明第二实施方式的压缩机的结构示意图, 而图 5是示出根据本发明第二实施方式的压缩机的纵向立体剖视图。
[53]第二实施方式与第一实施方式的区别在于高压制冷剂气体的引出 位置。 因此, 将不在此重复描述第二实施方式中的与第一实施方式相同 的方面。
[54]根据第二实施方式, 同样将制冷剂气体(工作气体), 优选为高压 制冷剂气体, 引入到润滑系统的润滑油回路中。 [55]具体地, 根据第二实施方式, 在润滑系统 140中设置有气体引入通 道 147A。 气体引入通道 147A从排气接头 200延伸至第一润滑油通道 143。 气体引入通道 147A可以仅包括设置在壳体 110外部的外部区段 1472A。
[56]外部区段 1472A的前端在前连接点 1475A处与排气接头 200流体连 通地连接,外部区段 1472A的后端在后连接点 1476A处流体连通地连接 至第一润滑油通道 143中的位于热交换器 145下游的位点,从而将排气 接头 200中的高压气体引入到第一润滑油通道 143。
[57]显然, 根据第二实施方式的压缩机能够提供与如上所述的根据第一 实施方式的压缩机所能够提供的有益效果基本相同的有益效果。
[58]下面, 参照图 6和图 7描述根据本发明第三实施方式的压缩机。 其 中, 图 6是示出根据本发明第三实施方式的压缩机的结构示意图, 而图 7是示出根据本发明第三实施方式的压缩机的纵向立体剖视图。
[59]第三实施方式与第一实施方式的区别在于高压制冷剂气体的引出 位置。 因此, 将不在此重复描述第三实施方式中的与第一实施方式相同 的方面。
[60]根据第三实施方式, 同样将制冷剂气体(工作气体), 优选为高压 制冷剂气体, 引入到润滑系统的润滑油回路中。
[61]具体地, 根据第三实施方式, 在润滑系统 140中设置有气体引入通 道 147B。 气体引入通道 147B从压缩机构 130的排气口 133延伸至第一 润滑油通道 143。气体引入通道 147B可以包括:设置在隔板 150中的内 部区段 1471B; 以及设置在壳体 110外部的外部区段 1472B。
[62]外部区段 1472B的前端在前连接点 1475B处与内部区段 1471B流体 连通地连接,外部区段 1472B的后端在后连接点 1476B处流体连通地连 接至第一润滑油通道 143中的位于热交换器 145下游的位点。
[63]显然, 根据第三实施方式的压缩机能够提供与如上所述的根据第一 实施方式的压缩机所能够提供的有益效果基本相同的有益效果。
[64]下面, 参照图 8描述根据本发明第一实施方式的替代性实施方式。 其中, 图 8是示出根据本发明第一实施方式的替代性实施方式的压缩机 的结构示意图。
[65]该替代性实施方式与第一实施方式的区别在于高压制冷剂气体引 入到润滑系统 140中的引入位置。 因此, 将不在此重复描述该替代性实 施方式中的与第一实施方式相同的方面。
[66]根据该替代性实施方式, 与第一实施方式不同, 高压制冷剂气体在 第一润滑油通道 143中的位于热交换器 145上游的位点处引入到润滑系 统 140的润滑油回路中 (亦即, 气体引入通道 147相对于热交换器 145 是串联的)。 例如, 气体引入通道 147可以在壳体 110的内侧流体连通 地连接至第一润滑油通道 143。
[67]根据该替代性实施方式的压缩机能够提供与如上所述的根据第一 实施方式的压缩机所能够提供的有益效果基本相同的有益效果。
[68]而且, 除了第一实施方式, 第二实施方式和第三实施方式也可以具 有这种替代性实施方式。
[69]对于某一型号的压缩机, 通过对比实验发现, 采用根据本发明的油 压脉动消除方式(即, 将高压制冷剂气体引入到润滑系统的润滑油回路 中)明显降低润滑油回路中的油压脉动。 这方面可参见以下的实验结果 表。
[70]实验结果表
Figure imgf000010_0001
[71]根据本发明示例性实施方式的如上所述的压缩机可以容许多种不同的 [72]尽管已经描述润滑系统 140的润滑油回路的一部分(即第一润滑油 通道 143的第一外部润滑油通道 1431 )设置在壳体 110外部,但是也可 以将第一润滑油通道 143全部设置在壳体 100的基体材料(或者壳体 100 和隔板 150的基体材料)中或者全部设置壳体 110内侧, 并且省略热交 换器 145。 在这种情况下, 采用根据本发明的油压脉动消除方式可以保 护润滑油回路中的不是热交换器的其它结构薄弱点。
[73]尽管已经描述润滑系统 140包括间歇型供油装置 142, 但是本发明 也可以应用于不包括间歇型供油装置的润滑系统。
[74]尽管已经提及压缩机可以是包括涡旋压缩机构的涡旋压缩机, 但是 本发明也可以应用于其它类型的压缩机, 例如活塞式压缩机、 转子式压 缩机、 螺杆式压缩机等。
[75]尽管已经图示卧式压缩机, 但是本发明也可以应用于立式压缩机。
[76]具体地, 在根据本发明的压缩机中, 可以包括以下有利方案。
[77]优选地, 所述压缩机还包括隔板, 所述隔板将由所述壳体限定的所 述内部空间分隔成所述高压侧和所述低压侧。
[78]优选地, 所述壳体包括壳体本体、 前端盖以及后端盖, 并且, 由所 述前端盖和所述隔板包围的空间构成所述高压侧, 而由所述壳体本体、 所述后端盖和所述隔板包围的空间构成所述低压侧。
[79]优选地, 所述气体引入通道从所述高压侧延伸至所述润滑油回路。
[80]优选地, 所述气体引入通道包括: 设置在所述壳体的基体材料中或 者设置在所述壳体的基体材料和所述隔板的基体材料中的内部区段; 以 及设置在所述壳体外部的外部区段。
[81]可替代地, 所述气体引入通道从所述压缩机的排气接头延伸至所述 润滑油回路。
[82]优选地,所述气体引入通道仅包括设置在所述壳体外部的外部区段。
[83]可替代地, 所述气体引入通道从所述压缩机构的排气口延伸至润滑 油回路。 [84]优选地, 所述气体引入通道包括: 设置在所述隔板的基体材料中或 者设置在所述隔板的基体材料和所述壳体的基体材料中的内部区段; 以 及设置在所述壳体外部的外部区段。
[85]可替代地, 所述气体引入通道全部设置在所述壳体的基体材料和 / 或所述隔板的基体材料中。
[86]可替代地, 所述气体引入通道全部设置在所述壳体的内侧。 [87]优选地, 所述润滑油回路包括供油装置。
[88]优选地, 所述供油装置设置在所述低压侧中, 所述润滑油回路还包 括: 设置在所述高压侧中的油槽; 从所述油槽延伸至所述供油装置的第 一润滑油通道; 以及从所述供油装置延伸并设置在所述驱动机构的旋转 轴内的第二润滑油通道, 并且, 所述气体引入通道延伸至所述第一润滑 油通道。
[89]优选地, 所述第一润滑油通道包括: 设置在所述壳体外部的第一外 部润滑油通道; 以及设置在所述壳体的基体材料中或者设置在所述壳体 的基体材料和所述隔板的基体材料中的第一内部润滑油通道。
[90]优选地, 所述润滑油回路还包括设置在所述壳体外部的热交换器, 所述第一外部润滑油通道的一部分延伸穿过所述热交换器。
[91]优选地, 所述气体引入通道流体连通地连接至所述第一润滑油通道 中的位于所述热交换器下游的位点。
[92]可替代地, 所述气体引入通道流体连通地连接至所述第一润滑油通 道中的位于所述热交换器上游的位点。
[93]优选地, 所述气体引入通道在所述壳体的内侧流体连通地连接至所 述第一润滑油通道。
[94]可替代地, 所述第一润滑油通道全部设置在所述壳体的基体材料中 或者设置在所述壳体的基体材料和所述隔板的基体材料中。
[95]优选地, 所述供油装置是间歇型供油装置。
[96]优选地, 所述间歇型供油装置包括第一通孔以及第二通孔, 所述第 一通孔间歇地与所述第二通孔连通。
[97]优选地, 所述第一通孔设置在所述旋转轴的后端的轴壁处并且径向 延伸而与所述第二润滑油通道连通,所述第二通孔设置在支承所述旋转 轴的后端的轴承处并且与所述第一润滑油通道连通。
[98]优选地, 所述气体引入通道包括节流元件。
[99]优选地, 所述节流元件是毛细管、 具有小孔隙的管路、 或者设置有 小孔隙堵头的管路。
[100] 优选地, 在所述气体引入通道中设有滤网。
[101] 优选地, 所述压缩机是涡旋压缩机、 活塞式压缩机、 转子式压缩 机、 或螺杆式压缩机。
[102] 在本申请文件中, 方位术语 "前" 和 "后" 可以分别对应于压缩机 的高压侧方向和低压侧方向, 如图 2、 4和 6所示。
[103] 虽然已经参照示例性实施方式对本发明进行了描述,但是应当理解, 本发明并不局限于这里详细描述和示出的具体实施方式, 在不偏离权利要 求书所限定的范围的情况下, 本领域技术人员可以对示例性实施方式做出 各种改变。

Claims

权利要求书
1. 一种压缩机(100), 包括:
壳体(110), 由所述壳体(110) 限定的内部空间被分隔成高压侧 ( 170)和低压侧 (180);
驱动机构 (120);
压缩机构( 130 ), 所述压缩机构( 130 )容纳在所述壳体( 110 )中 并由所述驱动机构 (120)驱动; 以及
润滑系统 (140), 所述润滑系统 (140) 包括润滑油回路和气体引 入通道(147, 147A, 147B), 所述气体引入通道( 147, 147A, 147B) 用于将工作气体引入到所述润滑油回路中。
2. 根据权利要求 1所述的压缩机( 100), 其中, 所述压缩机(100) 还包括隔板( 150 ), 所述隔板( 150 )将由所述壳体( 110 )限定的所述 内部空间分隔成所述高压侧 (170)和所述低压侧 (180)。
3. 根据权利要求 2所述的压缩机( 100 ), 其中
所述壳体( 110 )包括壳体本体 (111), 前端盖( 112 ) 以及后端盖 (113),
并且, 由所述前端盖(112)和所述隔板(150) 包围的空间构成所 述高压侧 (170), 而由所述壳体本体(111)、 所述后端盖 (113) 和所 述隔板(150) 包围的空间构成所述低压侧 (180)。
4. 根据权利要求 1至 3中任一项所述的压缩机(100), 其中, 所 述气体引入通道(147)从所述高压侧 (170)延伸至所述润滑油回路。
5. 根据权利要求 4所述的压缩机( 100), 其中, 所述气体引入通 道(147) 包括: 设置在所述壳体(100)的基体材料中或者设置在所述 壳体( 100) 的基体材料和所述隔板( 150) 的基体材料中的内部区段
(1471); 以及设置在所述壳体(110)外部的外部区段( 1472 )。
6. 根据权利要求 1至 3中任一项所述的压缩机(100), 其中, 所 述气体引入通道(147A)从所述压缩机(100) 的排气接头( 200 )延伸 至所述润滑油回路。
7. 根据权利要求 6所述的压缩机(100), 其中, 所述气体引入通 道(147A)仅包括设置在所述壳体(110)外部的外部区段( 1472A)。
8. 根据权利要求 2或 3所述的压缩机( 100), 其中, 所述气体引 入通道(147B)从所述压缩机构 (130)的排气口 (133)延伸至润滑油 回路。
9. 根据权利要求 8所述的压缩机( 100), 其中, 所述气体引入通 道(147B) 包括: 设置在所述隔板(150) 的基体材料中或者设置在所 述隔板(150)的基体材料和所述壳体(100)的基体材料中的内部区段
( 1471B); 以及设置在所述壳体 ( 110)外部的外部区段( 1472B)。
10. 根据权利要求 2或 3所述的压缩机(100), 其中, 所述气体引 入通道全部设置在所述壳体(110) 的基体材料和 /或所述隔板(150) 的基体材料中。
11. 根据权利要求 1至 3中任一项所述的压缩机(100), 其中, 所 述气体引入通道全部设置在所述壳体(110) 的内侧。
12. 根据权利要求 1至 3中任一项所述的压缩机( 100), 其中, 所 述润滑油回路包括供油装置。
13. 根据权利要求 12所述的压缩机( 100), 其中
所述供油装置设置在所述低压侧 (180) 中, 所述润滑油回路还包括:设置在所述高压侧( 170)中的油槽( 141); 从所述油槽 ( 141 )延伸至所述供油装置的第一润滑油通道( 143 ); 以 及从所述供油装置延伸并设置在所述驱动机构 (120) 的旋转轴 (123) 内的第二润滑油通道( 144),
并且, 所述气体引入通道( 147, 147A, 147B)延伸至所述第一润 滑油通道( 143)。
14. 根据权利要求 13所述的压缩机(100), 其中
所述第一润滑油通道(143) 包括: 设置在所述壳体(110)外部的 第一外部润滑油通道( 1431 ); 以及设置在所述壳体( 100 )的基体材料 中或者设置在所述壳体( 100)的基体材料和所述隔板( 150)的基体材 料中的第一内部润滑油通道( 1432 )。
15. 根据权利要求 14所述的压缩机( 100), 其中, 所述润滑油回 路还包括设置在所述壳体(110) 外部的热交换器 (145), 所述第一外 部润滑油通道( 1431 )的一部分延伸穿过所述热交换器( 145 )。
16. 根据权利要求 15所述的压缩机( 100), 其中, 所述气体引入 通道(147, 147A, 147B)流体连通地连接至所述第一润滑油通道( 143) 中的位于所述热交换器(145) 下游的位点。
17. 根据权利要求 15所述的压缩机( 100), 其中, 所述气体引入 通道(147, 147A, 147B)流体连通地连接至所述第一润滑油通道( 143) 中的位于所述热交换器(145)上游的位点。
18. 根据权利要求 17所述的压缩机( 100), 其中, 所述气体引入 通道(147, 147B)在所述壳体(110)的内侧流体连通地连接至所述第 一润滑油通道( 143)。
19. 根据权利要求 13所述的压缩机(100), 其中, 所述第一润滑 油通道(143)全部设置在所述壳体(110)的基体材料中或者设置在所 述壳体(100) 的基体材料和所述隔板(150) 的基体材料中。
20. 根据权利要求 12所述的压缩机( 100), 其中, 所述供油装置 是间歇型供油装置 (142)。
21. 根据权利要求 20所述的压缩机( 100), 其中, 所述间歇型供 油装置( I42 )包括第一通孔( 1421 )以及第二通孔( I422 ), 所述第一 通孔( 1421 ) 间歇地与所述第二通孔( I422 )连通。
22. 根据权利要求 21 所述的压缩机(100), 其中, 所述第一通孔 (1421)设置在所述旋转轴 (123) 的后端的轴壁处并且径向延伸而与 所述第二润滑油通道( 144 )连通, 所述第二通孔( 1422 )设置在支承 所述旋转轴(123) 的后端的轴承处并且与所述第一润滑油通道(143) 连通。
23. 根据权利要求 1至 3中任一项所述的压缩机( 100), 其中, 所 述气体引入通道(147, 147A, 147B) 包括节流元件。
24. 根据权利要求 23所述的压缩机( 100), 其中, 所述节流元件 是毛细管、 具有小孔隙的管路、 或者设置有小孔隙堵头的管路。
25. 根据权利要求 1至 3中任一项所述的压缩机( 100), 其中, 在 所述气体引入通道( 147, 147A, 147B) 中设有滤网。
26. 根据权利要求 1至 3中任一项所述的压缩机( 100), 其中, 所 述压缩机( 100)是涡旋压缩机、 活塞式压缩机、 转子式压缩机、 或螺 杆式压缩机。
PCT/CN2013/079259 2012-07-13 2013-07-12 压缩机 WO2014008868A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201220342698.1 2012-07-13
CN201210244630.4 2012-07-13
CN 201220342698 CN202732355U (zh) 2012-07-13 2012-07-13 压缩机
CN201210244630.4A CN103541905B (zh) 2012-07-13 2012-07-13 压缩机

Publications (1)

Publication Number Publication Date
WO2014008868A1 true WO2014008868A1 (zh) 2014-01-16

Family

ID=49915420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079259 WO2014008868A1 (zh) 2012-07-13 2013-07-12 压缩机

Country Status (1)

Country Link
WO (1) WO2014008868A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0210349A2 (de) * 1985-05-08 1987-02-04 Siemens Aktiengesellschaft Gekapselter Rollkolbenverdichter
US4781542A (en) * 1986-06-02 1988-11-01 Kabushiki Kaisha Toshiba Hermetically-sealed compressor with motor
CN1167522A (zh) * 1995-11-03 1997-12-10 运载器有限公司 回转式压缩机
CN101218433A (zh) * 2005-06-29 2008-07-09 株式会社前川制作所 用于双级螺杆式压缩机的供油方法、装置及制冷装置的运转方法
CN102459909A (zh) * 2009-06-26 2012-05-16 三菱电机株式会社 制冷剂压缩机
CN202732355U (zh) * 2012-07-13 2013-02-13 艾默生环境优化技术(苏州)有限公司 压缩机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0210349A2 (de) * 1985-05-08 1987-02-04 Siemens Aktiengesellschaft Gekapselter Rollkolbenverdichter
US4781542A (en) * 1986-06-02 1988-11-01 Kabushiki Kaisha Toshiba Hermetically-sealed compressor with motor
CN1167522A (zh) * 1995-11-03 1997-12-10 运载器有限公司 回转式压缩机
CN101218433A (zh) * 2005-06-29 2008-07-09 株式会社前川制作所 用于双级螺杆式压缩机的供油方法、装置及制冷装置的运转方法
CN102459909A (zh) * 2009-06-26 2012-05-16 三菱电机株式会社 制冷剂压缩机
CN202732355U (zh) * 2012-07-13 2013-02-13 艾默生环境优化技术(苏州)有限公司 压缩机

Similar Documents

Publication Publication Date Title
JP4946340B2 (ja) 両頭ピストン式圧縮機
CN101463820B (zh) 一种卧式旋转压缩机
JP4470914B2 (ja) 2段圧縮機
JP2010185342A (ja) 回転式電動圧縮機
JP2020051662A (ja) 冷凍空調装置及びこれに用いる密閉型電動圧縮機
JP2005146987A (ja) アキュームレータ内蔵及び熱交換器一体型横置きコンプレッサ
JP5517592B2 (ja) 圧縮機
EP2042741A2 (en) Two-stage compression rotary compressor
JP5217909B2 (ja) 圧縮機
CN205135994U (zh) 涡旋压缩机及具有其的空调器
US11680568B2 (en) Compressor oil management system
WO2014008868A1 (zh) 压缩机
JP3838186B2 (ja) 2段圧縮機
CN105332912A (zh) 涡旋压缩机及具有其的空调器
CN202732355U (zh) 压缩机
CN102086869B (zh) 回转压缩机
CN210484057U (zh) 卧式压缩机
JP6704555B1 (ja) 圧縮機及び冷凍サイクル装置
CN210135087U (zh) 具有油配给构件的压缩机
CN202326243U (zh) 双级增焓压缩机及具有其的空调器和热泵热水器
CN103541905B (zh) 压缩机
JP6619655B2 (ja) 圧縮機及び冷凍サイクル装置
JP2009108747A (ja) 密閉型電動圧縮機
JPWO2020157786A1 (ja) 圧縮機および冷凍サイクル装置
CN110848135B (zh) 卧式压缩机及热交换工作设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817405

Country of ref document: EP

Kind code of ref document: A1