EP0206253B1 - Circuit d'alimentation d'une charge électrique à partir d'un générateur solaire - Google Patents

Circuit d'alimentation d'une charge électrique à partir d'un générateur solaire Download PDF

Info

Publication number
EP0206253B1
EP0206253B1 EP86108341A EP86108341A EP0206253B1 EP 0206253 B1 EP0206253 B1 EP 0206253B1 EP 86108341 A EP86108341 A EP 86108341A EP 86108341 A EP86108341 A EP 86108341A EP 0206253 B1 EP0206253 B1 EP 0206253B1
Authority
EP
European Patent Office
Prior art keywords
circuit
solar generator
generator
current
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86108341A
Other languages
German (de)
English (en)
Other versions
EP0206253A1 (fr
Inventor
Günther Dipl.-Ing. Mieth (FH)
Ulf Dipl.-Ing. Schwarz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT86108341T priority Critical patent/ATE58603T1/de
Publication of EP0206253A1 publication Critical patent/EP0206253A1/fr
Application granted granted Critical
Publication of EP0206253B1 publication Critical patent/EP0206253B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S136/00Batteries: thermoelectric and photoelectric
    • Y10S136/291Applications
    • Y10S136/293Circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/906Solar cell systems

Definitions

  • the invention relates to a circuit arrangement as specified in the preamble of claim 1.
  • Such a circuit arrangement is already known from DE-OS 2 043 423.
  • the known circuit arrangement is a two-point controller, which is fed from a solar generator.
  • the two-point controller is designed and dimensioned so that the current emitted by the solar generator is in a predetermined ratio to the short-circuit current of a reference solar generator.
  • This ratio is determined using the characteristic field of the solar generator as the factor by which the short-circuit current is to be multiplied in order to obtain the current at the operating point of maximum power.
  • a test cell belonging to the solar cell generator serves as the reference solar generator.
  • the solar generator feeding the consumer and the solar generator whose short-circuit current is measured are therefore of the same design. In this way, the operating point of maximum power is achieved with good approximation in a large temperature range of the solar generator and this with relatively simple means.
  • the circuit arrangement is used in particular for charging a battery or for feeding consumers that are buffered with the aid of a battery.
  • the proposed type of current adjustment can also be advantageous for other consumers if the greatest possible utilization of the solar generator is aimed for.
  • the circuit arrangement can be part of a regulator or an arrangement for so-called forward regulation, in which the actuator is controlled in a predetermined dependence on the measured short-circuit current. Since the test cell is permanently loaded by a measuring resistor, it is not available for supplying the consumer. In addition, the measured value of the short-circuit current of the test cell, which serves as a criterion for the short-circuit current of the solar generator, is only an approximate value, since the properties of the test cell are used to infer that of the entire solar generator.
  • a switching regulator is connected to a solar generator, with the aid of which the output voltage of the circuit arrangement is kept at a predetermined value. This is achieved in that the actual value input of the switching regulator is connected to the tap of a first voltage divider which is parallel to the output of the circuit arrangement.
  • the switching regulator has another control input that is routed internally to a reference voltage source. This control input is due to a tap of a second voltage divider, which is connected to the solar generator.
  • a photodiode is attached directly next to the solar generator and is arranged in parallel with a resistor of the second voltage divider.
  • the solar generator is to be given a maximum of power in that the reference voltage effective in connection with a voltage regulation is correspondingly influenced by the photodiode when the light irradiation changes.
  • the temperature in addition to the radiation density, the temperature also has a significant influence on the generator voltage at the operating point of maximum power.
  • the latter is not taken into account in the known circuit arrangement.
  • a typical characteristic field of a solar generator is e.g. from the brochure Solar Modules, Type Series SM36 from Interatom.
  • a particularly simple type of adaptation would be to determine the current drawn for a frequent average radiation intensity.
  • this would have the disadvantage that the possible higher current could not be used in the case of stronger radiation and the voltage would collapse in the case of weaker radiation and charging would no longer be possible.
  • the object of the invention is to design a circuit arrangement of the type mentioned at the outset in such a way that it ensures, with comparatively little effort, that the solar generator operates at a working point which in a large working area largely comes close to the working point of maximum power.
  • the object is achieved by the measures specified in the characterizing part of claim 1.
  • the short-circuit current of the solar generator feeding the load is evaluated periodically.
  • the short-circuit current of the solar generator is measured particularly precisely and with particularly low power consumption.
  • the circuit arrangement therefore works with a particularly good efficiency.
  • circuit arrangement is expediently designed in the manner specified in the characterizing part of patent claim 2.
  • the pulse-pause ratio of the pulse train that closes the first controllable switch can in particular be 1: 1000, so that the efficiency is practically not impaired.
  • the battery 9 is fed from the solar generator 1 via a control device.
  • the main circuit H runs from the positive pole of the solar generator 1 via the diode 31 which is polarized in the forward direction, the inductor 4 and the diode 5 which is polarized in the forward direction to the positive pole of the battery 9 and from the negative pole of the battery 9 via the measuring resistor 7 to the negative pole of the solar generator 1.
  • a series connection of the electronic switch 24 controlled by the clock generator 21 and the short-circuit current measured value 2 is located in a first shunt branch.
  • the resistor 22 can be arranged in a longitudinal branch between the solar generator 1 and the first transverse branch instead of in the first transverse branch. Lower losses result from an arrangement in the first transverse branch.
  • the capacitor 32 lies between the connection point of the diode 31 with the inductor 4 on the one hand and the connection point of the resistor 7 and the load 9 on the other hand.
  • the electronic switch 6 which is controlled by the control circuit 8, is located in a third transverse branch.
  • the control circuit 8 is supplied with voltage from the solar generator 1 in a manner not shown.
  • the negative pole of the battery 9 also serves as a ground connection or reference potential.
  • the setpoint input 82 of the control circuit 8 is connected to the output of the sample and hold circuit 23 of the setpoint generator 2a.
  • the actual value input 81 of the control circuit 8 is connected to the terminal of the current measuring resistor 7 facing away from the battery 9.
  • the storage choke 4, the electronic switch 6 and the rectifier 5 represent the power components of a step-up converter known per se.
  • the switch expediently consists of a semiconductor component.
  • the converter charges the battery 9 from the solar generator 1.
  • the control device or control circuit 8 compares the current of the solar generator measured at the measuring resistor 7 with the value of the short-circuit current measuring resistor 22 measured at the short-circuit current measuring resistor 22 and regulates the current to a predetermined fraction of the respective measured value of the short-circuit current.
  • the regulated current results from the pulse-pause ratio of the pulses that close the second switch.
  • the pulse-pause ratio can be achieved by pulse duration modulation for a fixed switching frequency or by varying the frequency for a fixed pulse duration.
  • the capacitor 32 serves to provide the step-up converter with the necessary current pulses and also with a sufficient input voltage during the short periods in which the short-circuit current is measured.
  • the diode 31 ensures that the capacitor 32 is not discharged when the electronic switch 24 is closed.
  • control circuit 8 switches to voltage regulation and prevents a further rise in voltage or switches back to the lower value for trickle charging, as a result of which the current consumed can decrease.
  • the productivity of the solar generator is then no longer fully utilized.
  • the measuring resistor 7 measures the direct current output by the solar generator 1. If the measuring resistor is arranged in deviation from FIG. 1 between the capacitor 32 and the switch 6, a voltage corresponding to the direct current can be obtained by averaging or eliminating the alternating current component caused by the switch 6.
  • a series circuit comprising the source-drain path of the field-effect transistor 24a and the short-circuit current measuring resistor 22 is connected in parallel to the 36-volt solar generator 1.
  • the field-effect transistor 24a forms the electronic switch 24 1 and is periodically closed by clock pulses from the clock generator 21.
  • the clock 21 consists of the clock module 21 a and the external circuit shown.
  • the field effect transistor 24a is driven by the clock generator 21 via an inverter stage.
  • the clock generator 21 emits pulses at intervals of 100 msec, the duration of which is 100 Ilsec in each case.
  • the pulse duty factor of the measuring pulses with which the short-circuit current of the solar generator 1 is measured is therefore 1: 1000.
  • the time module 21 b derives scanning pulses from the 100 Ilsec pulses of the clock module 21a, the duration of which is only about 85 to 90 Ilsec, so that the last 10 to 15% of the pulse width of the measuring pulse is not evaluated.
  • the sampling and holding circuit 23 is connected with its sampling pulse input c3 to the output b3 of the time module 21b. Since the scanning pulse always ends before the short-circuit current measuring pulse, decay processes of the measuring pulse cannot falsify the value to be stored in the sample and hold circuit.
  • the source electrode of the field effect transistor 24 connected to the measuring resistor 22 is led to the measuring pulse input c7 of the sample and hold circuit 23.
  • the sample and hold circuit 23 outputs a reference voltage proportional to the short-circuit current of the solar generator 1 at its output 82.
  • FIG. 2 An embodiment of the device for measuring the solar generator short-circuit current with design information is shown in FIG. 2.
  • connection number for the integrated circuit concerned.
  • connection number is preceded by an “a” for the clock module 21 a and a “b” in the time module 21 b.
  • the positive auxiliary voltage + U H and the negative auxiliary voltage - U H are, for example, ⁇ 12 V.
  • the auxiliary voltages are generated using a conventional device, which is not shown in the figures.
  • This device can contain a charging capacitor connected to the solar generator via a decoupling diode.
  • a stabilizing circuit with a transistor in the series branch and a Zener diode as setpoint generator in the cross branch can be connected to the charging capacitor.
  • a constant current diode is expediently located parallel to the base collector path of the transistor.
  • the voltage stabilized in this way is expediently fed to a converter module which outputs the positive auxiliary voltage + U H and the negative auxiliary voltage -U H.
  • An integrated circuit of type SI 7661 can be used as a converter module.
  • FIG. 3 shows a control circuit for controlling a field effect transistor 6a, which forms the switch 6 of the circuit arrangement according to FIG. 1.
  • the operational amplifier 84 is connected with its plus input to the output 82 of the sample and hold circuit 23 according to FIG. 1 or FIG. 2.
  • the measuring resistor 7 is on one side at the reference potential of the operational amplifier 84.
  • the other side of the measuring resistor 7 is connected to the minus input of the operational amplifier 84 via a further resistor.
  • There is a voltage across the measuring resistor 7 which is proportional to the instantaneous value of the current which is taken from the solar generator.
  • the residual ripple of the measuring voltage is reduced with the help of the RC element 7a.
  • the output of the operational amplifier 84 is connected to the connection d5 of the pulse width modulator 87.
  • the pulse width modulator 87 outputs permanently modulated control pulses for controlling the field effect transistor 6a at its output d7 as a function of the control deviation. This is achieved by comparing the quantity supplied to the input d5, which is proportional to the control deviation, with a sawtooth voltage supplied to the input d6.
  • the sawtooth voltage is generated using the oscillator 85, the frequency of which is e.g. Is 50 kHz.
  • the inverter 86 Between the output of the oscillator 85 and the input d5 of the pulse width modulator 87 there is the inverter 86, which distributes the edges of the output pulses of the oscillator 85. Between the output of the pulse width modulator 87 and the gate electrode of the field effect transistor 6a there is a chain circuit comprising the inverter 88, which also serves to increase the pulse edges, and the inverter 89, which serves as a driver.
  • a voltage proportional to the control deviation is obtained from the reference voltage coming from the sample and hold circuit 23 and from the actual value measured at the measuring resistor 7.
  • the value of the measuring resistor is, for example, 8 m Q
  • the short-circuit current measuring resistor 22 has, for example, a value of 6.8 m Q.
  • the resistance ratio of the resistors 7 and 22 is 0.85 in this case. This is the predetermined ratio of the current drawn from the solar generator to the measured short-circuit current of the solar generator.
  • the storage capacitor 32 has, for example, a capacity of 8000 li F and forms a low-resistance voltage source for the charge controller connected to it.
  • the rectifier 31 prevents the storage capacitor 32 from being able to discharge via the short-circuit current measuring resistor 22.
  • FIG. 3 An embodiment of the control circuit with design information is shown in FIG. 3.
  • An integrated module LM 393 serves both as oscillator 85 and as pulse width modulator 87.
  • An integrated component 4049 B is used as the inverter 86 and 88 and as the driver 89, the driver being formed by four inverters connected in parallel.
  • the designations of the connections of the oscillator 85 and the pulse width modulator 87 contain the connection numbers customary in the integrated modules LM 393. These connection numbers are preceded by a "d".
  • the characteristic curve field of a solar generator shown in FIG. 4 shows characteristic curves for different radiation densities E as parameters.
  • the voltage depends to a large extent on the temperature and the operating point of maximum power is therefore significantly influenced by the temperature of the solar generator.
  • the influence of temperature on the current is comparatively small.
  • an operating point is to be obtained at which, depending on the radiation and temperature, the largest possible product of voltage and current is utilized and made usable for battery charging.
  • Problematic when adapting to the productivity of the Ge nerators is that the power that can be supplied by the generator depends on the type and size of the radiation intensity and the temperature.
  • an operating point is selected at which the load current is in a predetermined ratio to the measured short-circuit current.
  • the predefined ratio can be determined for the solar generator used in each case by dividing the current at the operating point of maximum power by the associated short-circuit current for the relevant characteristic curves and forming an average value from the quotients obtained in this way.
  • Fig. 1 shows a preferred embodiment of the invention, which contains a step-up converter as a current regulator.
  • the generator voltage is increased to the required charging or consumer voltage.
  • step-up converters with exclusive regulation of the output voltage there is the advantage that the controller does not attempt to draw such a large current from the solar generator that the generator voltage breaks down.
  • step-up converter instead of the step-up converter shown, other known control arrangements, in particular blocking and flow-through converters, can also be used in a corresponding manner. These are usually implemented with pulse width control and have a transformer.
  • the current emitted by the solar generator is regulated.
  • a commercially available controller module designed as an integrated circuit can serve as the control circuit 8.
  • An advantageous modification of the circuit arrangement according to FIG. 1 consists in particular in that the load current measuring resistor 7 is replaced by a short circuit and the input 81 of the control circuit 8 is omitted.
  • the control circuit 8 is designed as a so-called forward regulator, which forms a predetermined control variable for controlling the actuator 6 for each measured value of the solar generator short-circuit current.
  • the control circuit 8 expediently contains a comparator which compares a sawtooth voltage with the measuring voltage proportional to the short-circuit current or a voltage derived therefrom and switches the electronic switch 6, which was switched on at the beginning of the sawtooth, in the event of equality of voltages.

Claims (5)

1. Montage pour alimenter une charge électrique (9) à partir d'un générateur solaire (1) avec une entrée (E) pour raccorder le générateur solaire (1) et avec une sortie (A) pour raccorder la charge électrique (9), du type dans lequel, entre l'entrée (E) et la sortie (A) est disposé un organe de réglage (6) qui est susceptible d'être commandé par un circuit de contrôle (8) alors que ce circuit de contrôle (8) est relié, par une entrée de tension de référence (82), à un générateur de tension de référence (2), et dans lequel le générateur de tension de référence (2) est constitué par un dispositif servant à mesurer le courant de court-circuit du générateur solaire (1) et que l'organe de réglage (6) est susceptible d'être commandé de telle façon pour le circuit de contrôle (8) que le courant prélevé du générateur solaire est dans un rapport prédéterminé avec la valeur de mesure du courant de court-circuit du générateur solaire (1), caractérisé par le fait que le générateur de tension de référence (2) est constitué par circuit série formé par un premier interrupteur commandable (24) et susceptible d'être fermé périodiquement par des impulsions de cadence issues d'un générateur de cadence, et par une résistance (22) de mesure du courant de court-circuit pour mesurer le courant de court-circuit du générateur solaire, ainsi que par un circuit de détection et de maintien (23) qui est relié à la résistance de mesure du courant de court-circuit (22), et il est relié à l'entrée (E) qui sert à raccorder ou brancher le générateur solaire (1).
2. Montage selon la revendication 1, dans lequel, de façon connue, le circuit de contrôle (8) comporte un comparateur qui est pourvu, en plus de l'entrée (82) de la tension de référence, une entrée (81) pour la valeur instantanée, et qui est relié, par l'entrée (81) pour la valeur instantanée, à un générateur de la valeur instantanée, l'organe de réglage étant susceptible d'être commandé de telle façon que la tension de mesure fournie par le générateur de valeur instantanée est approximativement au moins égale à la valeur de la tension de référence, caractérisé par le fait que le circuit de contrôle (8) est relié, par son entrée de valeur instantanée (81), à une résistance de mesure de la charge (7) disposée dans le circuit électrique principal (H) et formant le générateur de valeur instantanée, pour la mesure du courant prélevé du générateur solaire (1), et que la résistance de mesure (7) est dimensionnée de telle façon que la tension de référence et la tension de la mesure coïncident entre elles si le courant prélevé du générateur solaire (1) est dans un rapport prédéterminé avec le courant de court-circuit concerné du générateur solaire (1).
3. Montage selon la revendication 1 ou 2, caractérisé par le fait que la charge (9) est relié par l'intermédiaire d'un régulateur de commutation au premier interrupteur commandable (24), et que le régulateur de commutation comporte dans une branche longitudinale une bobine de réactance à noyau de fer et dans une branche transversale un second interrupteur (6) commandable par le circuit de commande (8), et que la charge (9) est reliée par l'intermédiaire du second interrupteur commandable (6), et qu'entre le premier interrupteur commandable (24) et le régulateur de commutation est monté un agencement à accumulation d'énergie avec une diode (31) dans une branche longitudinale et avec un condensateur (32) dans une branche transversale.
4. Montage selon l'une des revendications 1 à 3, caractérisé par le fait que le taux d'impulsions du train d'impulsions qui commande le premier interrupteur commandable (24) est inférieur à 1:10.
5. Montage selon l'une des revendications 1 à 4, caractérisé par le fait que le générateur de la tension de référence (2) comporte un module horaire (21 a) qui est relié au générateur de cadence (21), et que le circuit de détection et de maintien est susceptible d'être commandé de telle façon par le module horaire (21 a) que l'impulsion de tension qui apparaît au niveau de la résistance de mesure n'est évaluée que dans une plage temporelle partielle.
EP86108341A 1985-06-20 1986-06-19 Circuit d'alimentation d'une charge électrique à partir d'un générateur solaire Expired - Lifetime EP0206253B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86108341T ATE58603T1 (de) 1985-06-20 1986-06-19 Schaltungsanordnung zur speisung einer elektrischen last aus einem solargenerator.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3522080 1985-06-20
DE3522080 1985-06-20

Publications (2)

Publication Number Publication Date
EP0206253A1 EP0206253A1 (fr) 1986-12-30
EP0206253B1 true EP0206253B1 (fr) 1990-11-22

Family

ID=6273740

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86108341A Expired - Lifetime EP0206253B1 (fr) 1985-06-20 1986-06-19 Circuit d'alimentation d'une charge électrique à partir d'un générateur solaire

Country Status (7)

Country Link
US (1) US4695785A (fr)
EP (1) EP0206253B1 (fr)
JP (1) JPS6249421A (fr)
AT (1) ATE58603T1 (fr)
AU (1) AU579804B2 (fr)
CA (1) CA1256942A (fr)
DE (1) DE3675695D1 (fr)

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988004801A1 (fr) * 1986-12-19 1988-06-30 Stuart Maxwell Watkinson Appareil de transfert de puissance electrique
DE3721075C1 (de) * 1987-06-26 1989-01-26 Trilux Lenze Gmbh & Co Kg Gleichspannungsversorgungsschaltung
JPH01102299U (fr) * 1987-12-25 1989-07-10
DE3830016A1 (de) * 1988-01-29 1989-08-10 Philips Patentverwaltung Schaltungsanordnung zu speisung einer last
GB2220603B (en) * 1988-05-27 1992-01-29 Nada Electronics Ltd Control circuit for electric discharge machining
US4873480A (en) * 1988-08-03 1989-10-10 Lafferty Donald L Coupling network for improving conversion efficiency of photovoltaic power source
US5028861A (en) * 1989-05-24 1991-07-02 Motorola, Inc. Strobed DC-DC converter with current regulation
JP2749656B2 (ja) * 1989-08-16 1998-05-13 株式会社放電精密加工研究所 放電加工用電源回路
JPH0379307U (fr) * 1989-11-29 1991-08-13
US5027051A (en) * 1990-02-20 1991-06-25 Donald Lafferty Photovoltaic source switching regulator with maximum power transfer efficiency without voltage change
US5235266A (en) * 1990-06-02 1993-08-10 Schottel-Werft Josef Becker Gmbh & Co. Kg Energy-generating plant, particularly propeller-type ship's propulsion plant, including a solar generator
DE4017860A1 (de) * 1990-06-02 1991-12-05 Schottel Werft Energiegewinnungsanlage, insbesondere propeller-schiffsantrieb, mit speisung durch einen solargenerator
DE4030494C1 (en) * 1990-09-26 1992-04-23 Helmut 6753 Enkenbach De Jelonnek Solar power generator setter - has indicator in centre of concentric circles calibrated in ambient temperatures
DE4132376A1 (de) * 1991-09-28 1993-04-01 Siegenia Frank Kg Elektrische energieversorgungsvorrichtung fuer kleinstspannungs-gleichstromverbraucher
JP3217191B2 (ja) * 1992-07-16 2001-10-09 ビーエーエスエフ アクチェンゲゼルシャフト ヘテロ芳香族化合物およびこれを含有する植物保護剤
US5397976A (en) * 1993-09-28 1995-03-14 Space Systems/Loral, Inc. Control system for voltage controlled bilateral current source
JP3271730B2 (ja) * 1994-04-28 2002-04-08 キヤノン株式会社 発電システムの充電制御装置
US5659465A (en) * 1994-09-23 1997-08-19 Aeroviroment, Inc. Peak electrical power conversion system
US6316925B1 (en) 1994-12-16 2001-11-13 Space Systems/Loral, Inc. Solar array peak power tracker
WO1998013918A1 (fr) * 1996-09-24 1998-04-02 Siemens Aktiengesellschaft Circuit d'alimentation en energie de declencheurs electroniques
US6081104A (en) * 1998-11-20 2000-06-27 Applied Power Corporation Method and apparatus for providing energy to a lighting system
FR2832870B1 (fr) * 2001-08-14 2006-08-04 Somfy Perfectionnement pour chargeur de type photovoltaique
US7288921B2 (en) * 2004-06-25 2007-10-30 Emerson Process Management Power & Water Solutions, Inc. Method and apparatus for providing economic analysis of power generation and distribution
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
FR2904127B1 (fr) * 2006-07-19 2008-10-17 Somfy Sas Procede de fonctionnement d'un dispositif de capteur domotique autonome pour detecter l'existence et/ou mesurer l'intensite d'un phenomene physique
JP2008035609A (ja) * 2006-07-28 2008-02-14 Sharp Corp スイッチング電源回路
US9431828B2 (en) * 2006-11-27 2016-08-30 Xslent Energy Technologies Multi-source, multi-load systems with a power extractor
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US8049523B2 (en) 2007-12-05 2011-11-01 Solaredge Technologies Ltd. Current sensing on a MOSFET
EP2232690B1 (fr) 2007-12-05 2016-08-31 Solaredge Technologies Ltd. Onduleurs connectés en parallèle
CN101933209B (zh) 2007-12-05 2015-10-21 太阳能安吉有限公司 分布式电力装置中的安全机构、醒来和关闭方法
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
WO2009118682A2 (fr) 2008-03-24 2009-10-01 Solaredge Technolgies Ltd. Commutation sous intensité nulle
WO2009136358A1 (fr) 2008-05-05 2009-11-12 Solaredge Technologies Ltd. Circuit combinateur de puissance de courant continu
JP5047908B2 (ja) * 2008-09-02 2012-10-10 日本電信電話株式会社 最大電力制御装置および最大電力制御方法
US8384356B2 (en) * 2009-09-25 2013-02-26 Qi Deng Self contained power source
US8159238B1 (en) * 2009-09-30 2012-04-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for in-situ health monitoring of solar cells in space
US9063559B2 (en) * 2010-03-09 2015-06-23 Texas Instruments Incorporation Battery charger and method for collecting maximum power from energy harvester circuit
US9257892B2 (en) 2010-09-20 2016-02-09 Danmarks Tekniske Universitet Method and device for current driven electric energy conversion
JP5344042B2 (ja) * 2010-10-06 2013-11-20 トヨタ自動車株式会社 太陽電池の出力制御装置
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
EP2748916B1 (fr) 2011-08-22 2016-04-13 Franklin Electric Company Inc. Système de conversion de puissance
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
WO2013047005A1 (fr) * 2011-09-29 2013-04-04 富士電機株式会社 Circuit d'attaque de charge
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
HRPK20120648B3 (hr) 2012-08-08 2015-05-08 Icat D.O.O. Solarne ä†elije integrirane u stakloplastiäśnu ljusku oplošja plovila
ITUD20120218A1 (it) 2012-12-18 2014-06-19 Univ Degli Studi Trieste Apparato di controllo di un impianto fotovoltaico e relativo metodo di controllo
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
EP3506370B1 (fr) 2013-03-15 2023-12-20 Solaredge Technologies Ltd. Mécanisme de dérivation
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
JP6783808B2 (ja) * 2015-06-26 2020-11-11 ニューポート コーポレイション 1または複数の光電池の1または複数の特性を測定する装置
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US20230231389A1 (en) * 2022-01-14 2023-07-20 Solaredge Technologies Ltd. Power System Including a Power Storage

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1804130A1 (de) * 1968-10-19 1970-04-30 Dornier System Gmbh Verfahren zur selbsttaetigen Optimierung eines aus zwei physikalischen Groessen gebildeten Produktes
FR2175653B1 (fr) * 1972-03-17 1977-04-01 Labo Cent Telecommunicat
US4272806A (en) * 1979-06-08 1981-06-09 Eastman Kodak Company DC to DC Converter adjustable dynamically to battery condition
US4375662A (en) * 1979-11-26 1983-03-01 Exxon Research And Engineering Co. Method of and apparatus for enabling output power of solar panel to be maximized
JPS603725A (ja) * 1983-06-21 1985-01-10 Sharp Corp 電圧制限回路
US4604567A (en) * 1983-10-11 1986-08-05 Sundstrand Corporation Maximum power transfer system for a solar cell array
US4494180A (en) * 1983-12-02 1985-01-15 Franklin Electric Co., Inc. Electrical power matching system
JPS60238918A (ja) * 1984-05-11 1985-11-27 Mitsubishi Electric Corp 可変速電動機の制御装置

Also Published As

Publication number Publication date
DE3675695D1 (de) 1991-01-03
AU579804B2 (en) 1988-12-08
EP0206253A1 (fr) 1986-12-30
CA1256942A (fr) 1989-07-04
AU5910586A (en) 1986-12-24
ATE58603T1 (de) 1990-12-15
JPS6249421A (ja) 1987-03-04
US4695785A (en) 1987-09-22

Similar Documents

Publication Publication Date Title
EP0206253B1 (fr) Circuit d'alimentation d'une charge électrique à partir d'un générateur solaire
DE60101991T2 (de) Gleichstrom zu Gleichstrom-Umwandler
EP0652137B1 (fr) Circuit d'alimentation en courant d'un ventilateur ou/et d'un accumulateur au moyen d'un générateur solaire dans une voiture
DE19618882A1 (de) Schaltungsanordnung zur Stromversorgung eines Verbrauchers durch einen Solargenerator
DE3218594A1 (de) Elektronisches schaltnetzteil
DE2445337C2 (de) Schaltungsanordnung zur Übertragung von elektrischen Meßwertsignalen
DE2818067C2 (de) Einrichtung zur Speisung einer Last
DE10214190A1 (de) Stromversorgung mit mehreren parallel geschalteten Schaltnetzteilen
DE2845511A1 (de) Batterieladeschaltung
DE3828816A1 (de) Verfahren zum betreiben eines schaltreglers
DE4243943A1 (en) AC rectifier including voltage-dropping DC=DC converter - restricts duration of flow of DC from bridge rectifier into prim. winding of transistor-switched transformer
DE3608082C2 (fr)
EP0664602A1 (fr) Convertisseur à récupération avec tension de sortie régulée
DE3221916C2 (de) Impulsbreiten-Steuerschaltung
DE2407002C3 (de) Überstrombegrenzung für einen impulsgesteuerten Gleichstrom-Fahrantrieb eines elektrischen Triebfahrzeuges
DE19646666A1 (de) Ladevorrichtung für ein batteriebetriebenes Fahrzeug
DE2903559A1 (de) Solargenerator-leistungsadapter
EP0576831B1 (fr) Dispositif de charge pour accumulateur au plomp
DE19618881B4 (de) Schaltungsanordnung zur Stromversorgung eines elektrischen Verbrauchers mittels eines Solargenerators, insbesondere in einem Fahrzeug
DE3417631C2 (fr)
DE3418362C2 (fr)
WO1990003059A1 (fr) Chargeur d'accumulateurs
DE3233248A1 (de) Schaltung fuer ein bordladegeraet zum aufladen einer batterie eines elektrofahrzeuges
DE3226203C2 (fr)
DE1938481B2 (de) Stromversorgungseinrichtung, insbesondere für ein Fahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19870127

17Q First examination report despatched

Effective date: 19880902

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19901122

Ref country code: NL

Effective date: 19901122

Ref country code: FR

Effective date: 19901122

Ref country code: GB

Effective date: 19901122

Ref country code: SE

Effective date: 19901122

Ref country code: BE

Effective date: 19901122

REF Corresponds to:

Ref document number: 58603

Country of ref document: AT

Date of ref document: 19901215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3675695

Country of ref document: DE

Date of ref document: 19910103

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920529

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920824

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920914

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19930619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930630

Ref country code: CH

Effective date: 19930630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940301