EP0201752A2 - Verfahren zur Herstellung von Titandioxid-Konzentraten - Google Patents
Verfahren zur Herstellung von Titandioxid-Konzentraten Download PDFInfo
- Publication number
- EP0201752A2 EP0201752A2 EP86105350A EP86105350A EP0201752A2 EP 0201752 A2 EP0201752 A2 EP 0201752A2 EP 86105350 A EP86105350 A EP 86105350A EP 86105350 A EP86105350 A EP 86105350A EP 0201752 A2 EP0201752 A2 EP 0201752A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- chlorine
- zone
- temperatures
- containing gases
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/10—Obtaining titanium, zirconium or hafnium
- C22B34/12—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
- C22B34/1204—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 preliminary treatment of ores or scrap to eliminate non- titanium constituents, e.g. iron, without attacking the titanium constituent
- C22B34/1209—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 preliminary treatment of ores or scrap to eliminate non- titanium constituents, e.g. iron, without attacking the titanium constituent by dry processes, e.g. with selective chlorination of iron or with formation of a titanium bearing slag
Definitions
- the present invention relates to a process for the preparation of titanium dioxide concentrates by removing the iron and optionally the manganese and vanadium from their oxide-containing titanium oxide-containing material with the aid of chlorine-containing gases without the addition of carbon in a chlorination zone at temperatures of over 900 ° C. with the release of Oxygen and volatile iron chlorides and optionally manganese chloride and vanadium chlorides.
- ZA-PS 83/0699 discloses a process for the production of titanium dioxide concentrates by removing the iron from titanium oxide-containing material without the addition of carbon with the aid of chlorine-containing gases.
- the titanium oxide-containing material is allowed to move in the direction of gravity through a reaction zone heated to 800 to 1300 ° C. and is reacted with the chlorine-containing gases which are conducted in countercurrent, during which iron-III-chloride is evaporated.
- a residue essentially consisting of titanium dioxide remains.
- US Pat. No. 3,865,920 discloses a process for producing rutile from ores containing titanium oxide, in which the ores containing titanium oxide are reacted with chlorine in a fluidized bed at elevated temperatures together with 10 to 30% by weight of coke.
- the volatile iron chloride is reacted with oxygen in a chamber above the fluidized bed at temperatures of 980 to 1100 ° C, iron oxide and chlorine being formed from part of the iron chloride, while the rest of the iron chloride is converted to iron in a cooled tube oxide and chlorine are oxidized. Finally, the chlorine is separated from the iron oxide and unreacted iron chloride.
- a disadvantage of the last-mentioned process is that the chlorine obtained has to be condensed in a complex manner before it can be reused in order to separate it from the carbon dioxide it contains.
- This is achieved in the chlorination of the titanium oxide-containing material without the addition of carbon according to the invention in that the gas phase flowing out of the chlorination zone in a downstream oxygenation zone at temperatures from 550 to 900 ° C, preferably from 650 to 850 ° C, with the formation of chlorine and Metal oxides can react and that the chlorine-containing gases are separated from the metal oxides contaminated with unreacted portions of the metal chlorides at temperatures of less than 300 ° C.
- the gases leaving the oxygenation zone are free of carbon monoxide and carbon dioxide in the process according to the invention, they can be returned to the chlorination zone immediately after removal of the metal oxides from them - if appropriate after adding fresh chlorine.
- the reducing atmosphere when the titanium oxide-containing material is heated before it is used in the chlorination zone is obtained in the process according to the invention by treating the titanium oxide-containing material with hydrogen, carbon monoxide or natural gas.
- Ilmenite main constituents: FeTiO 3 , Fe 2 O 3 , TiO 2
- leukoxene weathering product of ilmenite
- titanium magnetite main constituents: Fe 3 0 4 , Fe 2 O 3 , Ti0 2
- TiO 2 titanium oxide-containing material
- the loss of Ti0 2 due to volatilization of titanium IV chloride formed was less than 1%, based on the Ti0 2 contained in the ilmenite.
- a vertical,. 300 cm long quartz tube was used, into which a D1 frit was melted 20 cm from its lower end. 10 cm above the D1 frit, the quartz tube was provided with an upward-facing nozzle for the introduction of ilmenite and on the opposite side with a downward-pointing nozzle for discharging the synthetic rutile. Above the connecting pieces, the quartz tube was lined with Al 2 O 3 ceramic tubes ( ⁇ 50 mm) in order to protect the quartz tube from being attacked by the aggressive gaseous metal chlorides. The chlorine was introduced into the quartz tube from below. The lower part of the quartz tube forming the chlorination zone and reaching to the nozzle was surrounded by a heating coil. The oxygenation zone (inner ⁇ 42 mm; 260 cm long; reaction volume: 3570 cm 3 ), which is lined with the Al 2 O 3 ceramic tubes and adjoins the chlorination zone at the top, is surrounded by electrically heated tube furnaces.
- the gas phase flowing out of the chlorination zone consisting essentially of iron chlorides, chlorine and oxygen, was passed through the oxygenation zone, which was kept in a temperature range from 735 to 810 ° C., with a residence time of 7 s based on chlorine.
- the iron oxide dust formed and unreacted iron chlorides were at a temperature of about 70 ° C, downstream dust separators.
- the chlorine mainly contained in the exhaust gas flow from the dust separator was condensed in a cold trap kept at -70 ° C, while the remaining chlorine gas was washed out with sodium hydroxide solution.
- the remaining oxygen was passed through a gas meter. Ilmenite dosing was carried out for 2 hours; During this time, 3.04 kg of chlorine gas were introduced.
- the synthetic rutile discharged from the chlorination zone through the downward-pointing nozzle contained 94.6% TiO 2 .
- the dust separators contained 740 g of iron oxide.
- the cold trap contained 2.38 kg of chlorine, while an additional 98 g of chlorine gas were washed out with sodium hydroxide solution, ie 81% of the chlorine introduced was recovered.
- Example 2 was repeated with the change that the oxygenation zone was kept in the temperature range from 590 to 631 ° C. Ilmenite dosing was carried out for 1.5 hours; 1.98 kg of chlorine gas were introduced during this time. The synthetic rutile discharged from the chlorination zone contained 95.2% Ti0 2 . After separating iron oxide and iron chlorides from the waste gas stream of the oxygenation zone, 1.09 kg of chlorine were recovered by condensation and washing with sodium hydroxide solution; this corresponds to 55% of the chlorine gas introduced.
- Example 2 was repeated with the change that the oxygenation zone was kept in the temperature range from 839 to 888 ° C.
- Ilmenite dosing was carried out for 2 hours; 2.90 kg of chlorine gas were introduced during this time.
- the synthetic rutile discharged from the chlorination zone contained 95.0% Ti0 2 .
- the dust separators contained 660 g of iron oxide with a content of 0.01% Mn0 and ⁇ 0.001% V 2 0 5 .
- the total of the chlorine condensed in the cold trap and washed out with sodium hydroxide solution was 2.01 kg, ie 69% of the chlorine introduced was recovered.
- Example 2 was repeated with the changes that 20 l / h of oxygen were added to the chlorine gas before it was introduced into the chlorination zone and that the oxygenation zone was kept in the temperature range from 731 to 795 ° C. Ilmenite dosing was carried out for 2 hours; 3.10 kg of chlorine gas were introduced during this time.
- the synthetic rutile discharged from the chlorination zone contained 94.8% Ti0 2 .
- the dust separators contained 730 g of iron oxide after washing out the soluble fractions present in them.
- the total of the chlorine condensed in the cold trap and washed out with sodium hydroxide solution was 2.60 kg, ie 84% of the chlorine introduced was recovered.
- Example 5 was repeated with the changes that 30 l / h of oxygen were added to the chlorine gas before it was introduced into the chlorination zone and that the oxygenation zone was kept in the temperature range from 738 to 784 ° C.
- Ilmenite dosing was carried out for 2 hours; 3.20 kg of chlorine gas were introduced during this time.
- the synthetic rutile discharged from the chlorination zone held 95.2% Ti0 2 .
- the total of the chlorine condensed in the cold trap and washed out with sodium hydroxide solution was 2.60 kg, ie 81% of the chlorine introduced was recovered.
- Example 2 was repeated with the changes that 3.05 kg of chlorine gas had been introduced after two hours of ilmenite metering, that 40 l / h of oxygen were additionally introduced above the fluidized bed and that the oxygenation zone was kept in the temperature range from 730 to 789 ° C.
- the synthetic rutile discharged from the chlorination zone contained 95.3% Ti0 2 . After washing out the soluble fractions contained in them, the dust separators contained 780 g of iron oxide. The total of the chlorine condensed in the cold trap and washed out with sodium hydroxide solution was 2.50 kg, ie 82% of the chlorine introduced was recovered.
- Example 7 was repeated with the change that the oxygenation zone was kept in the temperature range from 740 to 781 ° C.
- Example 2 was repeated with the changes that the ilmenite throughput to 0.62 kg / h and the chlorine through were reduced to 200 1 / h and that the oxygenation zone was kept in the temperature range from 749 to 788 ° C.
- the gas phase flowing out of the chlorination zone was passed through the oxygenation zone with a residence time of 18 s based on chlorine.
- Ilmenite dosing was carried out for 3 hours; During this time, 1.78 kg of chlorine gas were introduced.
- the synthetic rutile discharged from the chlorination zone contained 96.6% Ti0 2 .
- the total of the chlorine condensed in the cold trap and washed out with sodium hydroxide solution was 1.57 kg, ie 88% of the chlorine introduced was recovered.
- Example 9 was repeated with the changes that the oxygenation zone had been extended from 260 to 460 cm, that the oxygenation zone was kept in the temperature range from 745 to 772 ° C. and that the gas phase flowing out of the chlorination zone had a residence time of 32 s based on chlorine passed through the oxygenation zone.
- Ilmenite dosing was carried out for 2 hours; During this time, 1.20 kg of chlorine were introduced.
- the synthetic rutile discharged from the chlorination zone contained 96.4% Ti0 2 .
- the total of the chlorine condensed in the cold trap and washed out with sodium hydroxide solution was 1.09 kg, ie 91% of the chlorine introduced was recovered.
- Example 2 was repeated with the changes that 3.9 kg / h with hydrogen at a temperature of 800 3 C pre-reduced, 8.1% metallic iron containing ilmenite were metered in and that the oxygenation zone in Temperature range from 692 to 763 ° C was kept.
- the chlorination zone was heated to 800 ° C before the start of chlorination; a few minutes after the start of chlorination, the temperature in the chlorination zone rose to 1000 to 1050 ° C.
- the Ilmenit metering was carried out for 1 hour.
- the ilmenite was whirled up with 1.2 m 3 / h of chlorine gas, while an additional 80 1 / h of oxygen were introduced above the fluidized bed. A total of 3.70 kg of chlorine gas was introduced.
- the synthetic rutile discharged from the chlorination zone contained 96.5% Ti0 2 .
- the total of the chlorine condensed in the cold trap and washed out with sodium hydroxide solution was 2.90 kg, ie 78% of
- Example 11 was repeated with the changes that an additional 120 l / h of oxygen were introduced above the fluidized bed, that 1 kg / h of dust-like iron oxide (grain diameter: ⁇ 80 pm) was metered in as catalyst together with the ilmenite and that the temperature in the oxygenation zone was kept between 698 and 741 ° C.
- the ilmenit dosage was carried out for 1 hour; 3.55 kg of chlorine gas were introduced during this time.
- the synthetic rutile released from the chlorination zone contained 95.8% Ti0 2 .
- the total of the chlorine condensed in the cold trap and washed out with sodium hydroxide solution was 3.20 kg, ie 90% of the chlorine introduced was recovered.
- Example 2 was repeated with the modification that 27.1% Ti0 2 , 52.9% Fe and 0.4% V 2 0 5 was metered in instead of ilmenite titanium magnetite.
- Titanomagnetite dosingong was carried out for 1 hour; 1.5 kg of chlorine gas were introduced during this time.
- the oxygenation zone was kept in the temperature range from 895 to 748 ° C.
- the synthetic rutile discharged from the chlorination zone contained 93.8% Ti0 2 , 1.8% Fe and 0.01% V 2 O 5 . After washing out the soluble fractions contained in them, the dust separators contained 520 g of iron oxide. The total of the chlorine condensed in the cold trap and washed out with sodium hydroxide solution was 1.29 kg, ie 86% of the chlorine introduced was recovered.
Landscapes
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Compounds Of Iron (AREA)
Abstract
Description
- Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Titandioxid-Konzentraten durch Entfernen des Eisens und gegebenenfalls des Mangans und Vanadiums aus deren Oxide aufweisendem titanoxidhaltigem Material mit Hilfe von chlorhaltigen Gasen ohne Zusatz von Kohlenstoff in einer Chlorierungszone bei Temperaturen von über 900°C unter Freisetzen von Sauerstoff sowie flüchtiger Eisenchloride und gegebenenfalls von Manganchlorid und Vanadiumchloriden.
- Aus der ZA-PS 83/0699 ist ein Verfahren zur Herstellung von Titandioxid-Konzentraten durch Entfernen des Eisens aus Eisenoxide aufweisendem titanoxidhaltigem Material ohne Zusatz von Kohlenstoff mit Hilfe von chlorhaltigen Gasen bekannt. Dabei läßt man das titanoxidhaltige Material sich in Richtung der Schwerkraft durch eine auf 800 bis 1300°C erhitzte Reaktionszone bewegen und setzt es dabei mit den im Gegenstrom geführten chlorhaltigen Gasen um, wobei sich bildendes Eisen-III-chlorid verflüchtigt wird. Es verbleibt ein im wesentlichen aus Titandioxid bestehender Rückstand.
- Weiterhin ist aus der US-PS 3 865 920 ein Verfahren zur Herstellung von Rutil aus titanoxidhaltigen Erzen bekannt, bei welchem die titanoxidhaltigen Erze zusammen mit 10 bis 30 Gewichts% Koks mit Chlor in einem Fließbett bei höheren Temperaturen umgesetzt werden. Das sich dabei verflüchtigende Eisenchlorid wird in einer Kammer oberhalb des Fließbettes bei Temperaturen von 980 bis 1100°C mit Sauerstoff umgesetzt, wobei sich aus einem Teil des Eisenchlorids Eisenoxid und Chlor bilden, während das restliche Eisenchlorid in einem gekühlten Rohr zu Eisenoxid und Chlor oxidiert werden. Schließlich wird das Chlor vom Eisenoxid und nicht umgesetztem Eisenchlorid abgetrennt.
- Nachteilig ist bei dem zuletzt genannten Verfahren, daß dabei das anfallende Chlor vor seiner Wiederverwendung in aufwendiger Weise kondensiert werden muß, um es von dem in ihm vorwiegend enthaltenen Kohlendioxid abzutrennen.
- Es ist daher Aufgabe der vorliegenden Erfindung, ein Verfahren zur Herstellung von Titandioxid-Konzentraten aus Oxide des Eisens und gegebenenfalls des Mangans und Vanadiums aufweisendem titanoxidhaltigem Material anzugeben, bei welchen die Kondensation des bei der Oxygenierung des Eisenchlorids gebildeten Chlors nicht zwingend erforderlich ist. Das wird bei der Chlorierung des titanoxidhaltigen Materials ohne Zugabe von Kohlenstoff erfindungsgemäß dadurch erreicht, daß man die aus der Chlorierungszone abströmende Gasphase in einer nachgeschalteten Oxygenierungszone bei Temperaturen von 550 bis 900°C, vorzugsweise von 650 bis 850°C, unter Bildung von Chlor und Metalloxiden reagieren läßt und daß man die chlorhaligen Gase bei Temperaturen von weniger als 300 °C von den mit nicht umgesetzten Anteilen der Metallchloride verunreinigten Metalloxiden abtrennt.
- Das Verfahren gemäß der Erfindung kann weiterhin wahlweise auch noch dadurch ausgestaltet sein, daß
- a) man die chlorhaltigen Gase in die Chlorierungszone zurückführt;
- b) man die chlorhaltigen Gase nach Zusatz von frischem Chlor in die Chlorierungszone zurückführt;
- cj man in die Oxygenierungszone zusätzlich sauerstoffhaltige Gase einbringt;
- d) man die Gasphase in der Oxygenierungszone 2 bis 50 s, vorzugsweise 5 bis 30 s, verweilen läßt;
- e) man die Gasphase mit sauerstoffhaltigen Gasen im stöchiometrischen Verhältnis 0 : Me von (1,0 bis 1,8) : 1 reagieren läßt;
- f) man in die Oxygenierungszone zusätzlich feinteiliges Eisenoxid einbringt;
- g) das Eisenoxid Korndurchmesser von 2 bis 50 um aufweist;
- h) man das Eisenoxid vorher auf Temperaturen von 550 bis 800°C erhitzt;
- i) man das titanoxidhaltige Material vor seinem Einsatz in die Chlorierungszone auf Temperaturen von 800 bis 1100°C erhitzt;
- j) das Erhitzen in reduzierender Atmosphäre erfolgt.
- Da die die Oxygenierungszone verlassenden Gase beim erfindungsgemäßen Verfahren frei von Kohlenmonoxid und Kohlendioxid sind, können sie nach Entfernung der Metalloxide aus ihnen unmittelbar wieder - gegebenenfalls nach Zusatz von frischem Chlor - in die Chlorierungszone zurückgeführt werden.
- Beim Verfahren gemäß der Erfindung ist es nicht möglich, in der Oxygenierungszone eine genaue Temperatur einzustellen. Vielmehr ist es wegen des Auftretens von zeitlichen und örtlichen Temperaturschwankungen in der Oxygenierungszone durch die exotherme Reaktion nur möglich, darin ein Temperaturintervall aufrechtzuerhalten.
- Die reduzierende Atmosphäre beim Erhitzen des titanoxidhaltigen Materials vor seinem Einsatz in der Chlorierungszone wird beim Verfahren gemäß der Erfindung durch Behandlung des titanoxidhaltigen Materials mit Wasserstoff, Kohlenmonoxid oder Erdgas erhalten.
- Beim erfindungsgemäßen Verfahren können als titanoxidhaltiges Material insbesondere Ilmenit (Hauptbestandteile: FeTiO3, Fe2O3, TiO2), Leukoxen (Verwitterungsprodukt des Ilmenits) oder Titanomagnetit (Hauptbestandteile : Fe304, Fe2O3, Ti02) eingesetzt werden.
- In den folgenden Beispielen bedeuten die Prozentangaben, wenn nichts anderes vermerkt ist, Gewichtsprozente.
- In einem senkrecht stehenden Quarzrohr (40 mm 0) mit eingeschmolzener D1-Fritte wurden 80 g Ilmenit mit einer Schüttdichte von 2400 g/l sowie der Zusammensetzung 53,5 % TiO2, 21,5 % Fe0, 20,9 % Fe2O3, 0,9 % Al2O3, 0,5 % SiO2, 0,01 % CaO, 1,5 % Mn0 und 0,13 % V2O5 unter Aufwirbelung mit Stickstoff auf 1090°C erhitzt. Unter Aufrechterhaltung dieser Temperatur wurde dann als Wirbelgas-Chlor mit einer Strömungsgeschwindigkeit von 5,0 bis 5,5 cm/s (bezogen auf Normalbedingungen und auf das leere Quarzrohr) durchgeleitet. Das sich sofort bildende-gasförmige Eisen-III-chlorid wurde in nachgeschalteten Abscheidegefäßen niedergeschlagen. Die Chlorierung wurde 30 Minuten durchgeführt.
- Als Rückstand verblieben im Quarzrohr 43,5 g eines lockeren grauweißen Pulvers mit einem Ti02-Gehalt von 97,7 % sowie mit 0,3 % Eisen, 0,1 % Mangan und 0,0027 % Vanadium.
- Der Ti02-Verlust durch Verflüchtigung von mitgebildetem Titan-IV-chlorid betrug weniger als 1 %, bezogen auf das im Ilmenit enthaltene Ti02.
- Als Reaktor wurde ein senkrecht stehendes,. 300 cm langes Quarzrohr verwendet, in welches 20 cm von seinem unteren Ende entfernt eine D1-Fritte eingeschmolzen war. 10 cm oberhalb der D1-Fritte war das Quarzrohr mit einem nach oben weisenden Stutzen zum Eintrag von Ilmenit und auf der entgegengesetzten Seite mit einem nach unten weisenden Stutzen zum Austragen des synthetischen Rutils versehen. Oberhalb der Stutzen war das Quarzrohr mit Al2O3-Keramik- rohren (Ø 50 mm) ausgekleidet, um das Quarzrohr vor dem Angriff durch die aggressiven gasförmigen Metallchloride zu schützen. Die Chloreinleitung in das Quarzrohr erfolgte von unten her. Der die Chlorierungszone bildende, untere, bis zu den Stutzen reichende Teil des Quarzrohres war von einer Heizwicklung umgeben. Die sich an die Chlorierungszone nach oben anschließende, mit den Al2O3-Keramikrohren ausgekleidete Oxygenierungszone (Innen-Ø 42 mm; 260 cm lang; Reaktionsvolumen: 3570 cm3) ist von elektrisch beheizbaren Rohröfen umgeben.
- Nachdem die Chlorierungszone mit Hilfe der Heizwicklung auf 1040°C erhitzt worden war, wurden 1,5 kg/h Ilmenit der Zusammensetzung 53,7 % TiO2, 20,7 % Fe0, 21,5 % Fe 2 0 3, 0,9 % A1203, 0,5 % Si02, 0,01 % CaO, 1,4 % Mn0 und 0,01 % V2O5 mit Hilfe eines Zellenrades durch den nach oben weisenden Stutzen dosiert und mit 500 1/h Chlorgas unter Aufwirbeln zur Reaktion gebracht (die genau eingebrachte Chlormenge wurde durch Rückwägung der Chlorflasche ermittelt). Die aus der Chlorierungszone abströmende, im wesentlichen aus Eisenchloriden, Chlor und Sauerstoff bestehende Gasphase wurde durch die in einem Temperaturbereich von 735 bis 810°C gehaltene Oxygenierungszone mit einer auf Chlor bezogenen Verweilzeit von 7 s geleitet. Der dabei gebildete Eisenoxid-Staub und nicht umgesetzte Eisenchloride wurden in auf einer Temperatur von etwa 70°C gehaltenen, nachgeschalteten Staubabscheidern abgetrennt. Das im Abgasstrom der Staubabscheider hauptsächlich enthaltene Chlor wurde in einer auf -70°C gehaltenen Kühlfalle kondensiert, während restliches Chlorgas mit Natronlauge ausgewaschen wurde. Der schließlich verbleibende Sauerstoff wurde durch eine Gasuhr geleitet. Die Ilmenit-Dosierung wurde 2 Stunden durchgeführt; in dieser Zeit wurden 3,04 kg Chlorgas eingeleitet. Der aus der Chlorierungszone durch den nach unten weisenden Stutzen ausgetragene synthetische Rutil enthielt 94,6 % Ti02. Die Staubabscheider enthielten nach Auswaschen der in ihnen vorhandenen löslichen Anteile 740 g Eisenoxid. In der Kühlfalle befanden sich 2,38 kg Chlor, während mit Natronlauge zusätzlich 98 g Chlorgas ausgewaschen wurden, d. h. 81 % des eingeleiteten Chlors wurden zurückgewonnen.
- Beispiel 2 wurde mit der Änderung wiederholt, daß die Oxygenierungszone im Temperaturbereich von 590 bis 631°C gehalten wurde. Die Ilmenit-Dosierung wurde 1,5 Stunden durchgeführt; in dieser Zeit wurden 1,98 kg Chlorgas eingeleitet. Der aus der Chlorierungszone ausgetragene synthetische Rutil enthielt 95,2 % Ti02. Nach Abtrennen von Eisenoxid und Eisenchloriden aus dem Abgasstrom der Oxygenierungszone wurden durch Kondensation und Natronlauge-Wäsche 1,09 kg Chlor zurückgewonnen; das entspricht 55 % des eingeleiteten Chlorgases.
- Beispiel 2 wurde'mit der Änderung wiederholt, daß die Oxygenierungszone im Temperaturbereich von 839 bis 888°C gehalten wurde.
- Die Ilmenit-Dosierung wurde 2 Stunden durchgeführt; in dieser Zeit wurden 2,90 kg Chlorgas eingeleitet. Der aus der Chlorierungszone ausgetragene synthetische Rutil enthielt 95,0 % Ti02. Die Staubabscheider enthielten nach Auswaschen der in ihnen vorhandenen löslichen Anteile 660 g Eisenoxid mit einem Gehalt von 0,01 % Mn0 und < 0,001 % V205. Die Summe des in der Kühlfalle kondensierten und mit Natronlauge ausgewaschenen Chlors betrug 2,01 kg, d. h. 69 % des eingeleiteten Chlors wurden zurückgewonnen.
- Beispiel 2 wurde mit den Änderungen wiederholt, daß dem Chlorgas, bevor es in die Chlorierungszone eingeleitet wurde, 20 1/h Sauerstoff zugemischt wurden und daß die Oxygenierungszone im Temperaturbereich von 731 bis 795°C gehalten wurde. Die Ilmenit-Dosierung wurde 2 Stunden durchgeführt; in dieser Zeit wurden 3,10 kg Chlorgas eingeleitet. Der aus der Chlorierungszone ausgetragene synthetische Rutil enthielt 94,8 % Ti02. Die Staubabscheider enthielten nach Auswaschen der in ihnen vorhandenen löslichen Anteile 730 g Eisenoxid. Die Summe des in der Kühlfalle kondensierten und mit Natronlauge ausgewaschenen Chlors betrug 2,60 kg, d. h. 84 % des eingeleiteten Chlors wurden zurückgewonnen.
- Beispiel 5 wurde mit den Änderungen wiederholt, daß dem Chlorgas, bevor es in die Chlorierungszone eingeleitet wurde, 30 1/h Sauerstoff zugemischt wurden und daß die Oxygenierungszone im Temperaturbereich von 738 bis 784°C gehalten wurde.
- Die Ilmenit-Dosierung wurde 2 Stunden durchgeführt; in dieser Zeit wurden 3,20 kg Chlorgas eingeleitet. Der aus der Chlorierungszone ausgetragene synthetische Rutil enthielt 95,2 % Ti02. Die Summe des in der Kühlfalle kondensierten und mit Natronlauge ausgewaschenen Chlors betrug 2,60 kg, d. h. 81 % des eingeleiteten Chlors wurden zurückgewonnen.
- Beispiel 2 wurde mit den Änderungen wiederholt, daß nach zweistündiger Ilmenit-Dosierung 3,05 kg Chlorgas eingeleitet waren, daß oberhalb der Wirbelschicht 40 1/h Sauerstoff zusätzlich eingeleitet wurden und daß die Oxygenierungszone im Temperaturbereich von 730 bis 789°C gehalten wurde.
- Der aus der Chlorierungszone ausgetragene synthetische Rutil enthielt 95,3 % Ti02. Die Staubabscheider enthielten nach Auswaschen der in ihnen enthaltenen löslichen Anteile 780 g Eisenoxid. Die Summe des in der Kühlfalle kondensierten und mit Natronlauge ausgewaschenen Chlors betrug 2,50 kg, d. h. 82 % des eingeleiteten Chlors wurden zurückgewonnen.
- Beispiel 7 wurde mit der Änderung wiederholt, daß die 0xygenierungszone im Temperaturbereich von 740 bis 781°C gehalten wurde.
- Während der Ilmenit-Dosierung wurden 2,92 kg Chlorgas eingeleitet. Der aus der Chlorierungszone ausgetragene synthetische Rutil enthielt 95,8 % Ti02. Die Summe des in der Kühlfalle kondensierten und mit Natronlauge ausgewaschenen Chlors betrug 2,72 kg, d. h. 93 % des eingeleiteten Chlors wurden zurückgewonnen.
- Beispiel 2 wurde mit den Änderungen wiederholt, daß der Ilmenit-Durchsatz auf 0,62 kg/h sowie der Chlor-Durchsatz auf 200 1/h reduziert wurden und daß die Oxygenierungszone im Temperaturbereich von 749 bis 788°C gehalten wurde.
- Die aus der Chlorierungszone abströmende Gasphase wurde mit einer auf Chlor bezogenen Verweilzeit von 18 s durch die Oxygenierungszone geführt.
- Die Ilmenit-Dosierung wurde 3 Stunden durchgeführt; in dieser Zeit wurden 1,78 kg Chlorgas eingeleitet. Der aus der Chlorierungszone ausgetragene synthetische Rutil enthielt 96,6 % Ti02. Die Summe des in der Kühlfalle kondensierten und mit Natronlauge ausgewaschenen Chlors betrug 1,57 kg, d. h. 88 % des eingeleiteten Chlors wurden zurückgewonnen.
- Beispiel 9 wurde mit den Änderungen wiederholt, daß die Oxygenierungszone von 260 auf 460 cm verlängert worden war, daß die Oxygenierungszone im Temperaturbereich von 745 bis 772°C gehalten wurde und daß die aus der Chlorierungszone abströmende Gasphase mit einer auf Chlor bezogenen Verweilzeit von 32 s durch die Oxygenierungszone geführt wurde.
- Die Ilmenit-Dosierung wurde 2 Stunden durchgeführt; in dieser Zeit wurden 1,20 kg Chlor eingeleitet. Der aus der Chlorierungszone ausgetragene synthetische Rutil enthielt 96,4 % Ti02. Die Summe des in der Kühlfalle kondensierten und mit Natronlauge ausgewaschenen Chlors betrug 1,09 kg, d. h. 91 % des eingeleiteten Chlors wurden zurückgewonnen.
- Beispiel 2 wurde mit den Änderungen wiederholt, daß 3,9 kg/h mit Wasserstoff bei einer Temperatur von 8003C vorreduzierter, 8,1 % metallisches Eisen enthaltender Ilmenit dosiert wurden und daß die Oxygenierungszone im Temperaturbereich von 692 bis 763°C gehalten wurde. Dabei wurde die Chlorierungszone vor Beginn der Chlorierung auf 800°C erhitzt; wenige Minuten nach Beginn der Chlorierung stieg die Temperatur in der Chlorierungszone auf 1000 bis 1050°C an. Die Ilmenit-Dosierung wurde 1 Stunde durchgeführt. Der Ilmenit wurde mit 1,2 m3/h Chlorgas aufgewirbelt, während oberhalb der Wirbelschicht zusätzlich 80 1/h Sauerstoff eingeleitet wurden. Insgesamt wurden 3,70 kg Chlorgas eingeleitet. Der aus der Chlorierungszone ausgetragene synthetische Rutil enthielt 96,5 % Ti02. Die Summe des in der Kühlfalle kondensierten und mit Natronlauge ausgewaschenen Chlors betrug 2,90 kg, d. h. 78 % des eingeleiteten Chlors wurden zurückgewonnen.
- Beispiel 11 wurde mit den Änderungen wiederholt, daß oberhalb der Wirbelschicht zusätzlich 120 l/h Sauerstoff eingeleitet wurden, daß gemeinsam mit dem Ilmenit 1 kg/h staubförmiges Eisenoxid (Korndurchmesser: < 80 pm) als Katalysator eindosiert wurde und daß die Temperatur in der Oxygenierungszone zwischen 698 und 741°C gehalten wurde. Die ilmenit-Dosierung wurde 1 Stunde durchgeführt; in dieser Zeit wurden 3,55 kg Chlorgas eingeleitet. Der aus der Chlorierungszone ausgebrachte synthetische Rutil enthielt 95,8 % Ti02. Die Summe des in der Kühlfalle kondensierten und mit Natronlauge ausgewaschenen Chlors betrug 3,20 kg, d. h. 90 % des eingeleiteten Chlors wurden zurückgewonnen.
- Beispiel 2 wurde mit der Abänderung wiederholt, daß anstelle von Ilmenit Titanomagnetit der Zusammensetzung 27,1 % Ti02, 52,9 % Fe und 0,4 % V205 dosiert wurde.
- Die Titanomagnetit-Dosierong wurde 1 Stunde durchgeführt; in dieser Zeit wurden 1,5 kg Chlorgas eingeleitet. Die Oxygenierungszone wurde im Temperaturbereich von 895 bis 748°C gehalten.
- Der aus der Chlorierungszone ausgetragene synthetische Rutil enthielt 93,8 % Ti02, 1,8 % Fe und 0,01 % V2O5. Die Staubabscheider enthielten nach Auswaschen der in ihnen vorhandenen löslichen Anteile 520 g Eisenoxid. Die Summe des in der Kühlfalle kondensierten und mit Natronlauge ausgewaschenen Chlors betrug 1,29 kg, d. h. 86 % des eingeleiteten Chlors wurden zurückgewonnen.
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3516549 | 1985-05-08 | ||
DE19853516549 DE3516549A1 (de) | 1985-05-08 | 1985-05-08 | Verfahren zur herstellung von titandioxid-konzentraten |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0201752A2 true EP0201752A2 (de) | 1986-11-20 |
EP0201752A3 EP0201752A3 (de) | 1988-02-03 |
Family
ID=6270152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86105350A Withdrawn EP0201752A3 (de) | 1985-05-08 | 1986-04-17 | Verfahren zur Herstellung von Titandioxid-Konzentraten |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0201752A3 (de) |
AU (1) | AU5723086A (de) |
BR (1) | BR8602047A (de) |
DE (1) | DE3516549A1 (de) |
ZA (1) | ZA863398B (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0234807A2 (de) * | 1986-02-14 | 1987-09-02 | E.I. Du Pont De Nemours And Company | Verfahren zum selektiven Chlorieren von Eisen in titanhaltigen Erzen |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2657976A (en) * | 1949-10-19 | 1953-11-03 | Nat Lead Co | Process for producing iron oxide and titanium tetrachloride from titaniferous iron ores |
FR1124980A (fr) * | 1954-04-03 | 1956-10-22 | Schweizerhall Saeurefab | Procédé de chloruration sélective des matières premières contenant de l'oxyde de titane et de l'oxyde de fer, en particulier de l'ilménite |
FR1125152A (fr) * | 1955-04-28 | 1956-10-25 | Thann Fab Prod Chem | Procédé de préparation d'oxydes de titane et de fer à partir d'ilménites |
US3006728A (en) * | 1959-09-10 | 1961-10-31 | Horizons Inc | Preparation of ceramic grade titanium dioxide |
AU5160864A (en) * | 1964-11-11 | 1966-05-12 | Wilcox Barnardo. | Removal of iron from titanium andiron-bearing ores |
FR1550400A (de) * | 1967-11-08 | 1968-12-20 | ||
DE2350469B1 (de) * | 1973-10-08 | 1975-02-06 | Kronos Titan Gmbh | Verfahren zur Herstellung feinteiliger Oxide von Elementen,deren Chloride leichtfluechtig sind |
US3865920A (en) * | 1973-03-14 | 1975-02-11 | Rutile & Zircon Mines Newcastl | Process for beneficiating a titaniferous ore and production of chlorine and iron oxide |
FR2371378A1 (fr) * | 1976-11-17 | 1978-06-16 | Mineral Process Licensing Corp | Procede pour recuperer le chlore dans le chlorure de fer obtenu comme sous-produit de la chloruration de l'ilmenite |
EP0085345A1 (de) * | 1982-02-03 | 1983-08-10 | Hoechst Aktiengesellschaft | Verfahren zur Herstellung von Titandioxid-Konzentraten |
-
1985
- 1985-05-08 DE DE19853516549 patent/DE3516549A1/de not_active Withdrawn
-
1986
- 1986-04-17 EP EP86105350A patent/EP0201752A3/de not_active Withdrawn
- 1986-05-07 BR BR8602047A patent/BR8602047A/pt unknown
- 1986-05-07 ZA ZA863398A patent/ZA863398B/xx unknown
- 1986-05-07 AU AU57230/86A patent/AU5723086A/en not_active Abandoned
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2657976A (en) * | 1949-10-19 | 1953-11-03 | Nat Lead Co | Process for producing iron oxide and titanium tetrachloride from titaniferous iron ores |
FR1124980A (fr) * | 1954-04-03 | 1956-10-22 | Schweizerhall Saeurefab | Procédé de chloruration sélective des matières premières contenant de l'oxyde de titane et de l'oxyde de fer, en particulier de l'ilménite |
FR1125152A (fr) * | 1955-04-28 | 1956-10-25 | Thann Fab Prod Chem | Procédé de préparation d'oxydes de titane et de fer à partir d'ilménites |
US3006728A (en) * | 1959-09-10 | 1961-10-31 | Horizons Inc | Preparation of ceramic grade titanium dioxide |
AU5160864A (en) * | 1964-11-11 | 1966-05-12 | Wilcox Barnardo. | Removal of iron from titanium andiron-bearing ores |
FR1550400A (de) * | 1967-11-08 | 1968-12-20 | ||
US3865920A (en) * | 1973-03-14 | 1975-02-11 | Rutile & Zircon Mines Newcastl | Process for beneficiating a titaniferous ore and production of chlorine and iron oxide |
DE2350469B1 (de) * | 1973-10-08 | 1975-02-06 | Kronos Titan Gmbh | Verfahren zur Herstellung feinteiliger Oxide von Elementen,deren Chloride leichtfluechtig sind |
FR2371378A1 (fr) * | 1976-11-17 | 1978-06-16 | Mineral Process Licensing Corp | Procede pour recuperer le chlore dans le chlorure de fer obtenu comme sous-produit de la chloruration de l'ilmenite |
EP0085345A1 (de) * | 1982-02-03 | 1983-08-10 | Hoechst Aktiengesellschaft | Verfahren zur Herstellung von Titandioxid-Konzentraten |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0234807A2 (de) * | 1986-02-14 | 1987-09-02 | E.I. Du Pont De Nemours And Company | Verfahren zum selektiven Chlorieren von Eisen in titanhaltigen Erzen |
EP0234807A3 (en) * | 1986-02-14 | 1990-08-01 | E.I. Du Pont De Nemours And Company | Selective chlorination of iron values in titaniferous ores |
Also Published As
Publication number | Publication date |
---|---|
BR8602047A (pt) | 1987-01-06 |
ZA863398B (en) | 1987-01-28 |
EP0201752A3 (de) | 1988-02-03 |
DE3516549A1 (de) | 1986-11-13 |
AU5723086A (en) | 1986-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68913761T2 (de) | Extrahierung und reinigung von titan-erzeugnissen aus titantragenden erzen. | |
DE69005051T2 (de) | Verfahren zur Gewinnung von Uran aus oxydischen Uranverbindungen durch Chlorierung. | |
EP0741192B1 (de) | Verfahren zur Aufarbeitung von zink- und eisenoxidhaltigem Reststoff | |
DE1467357B2 (de) | Verfahren zur abscheidung von eisen (ii)-chlorid aus chlorierungsgasen von der chlorierung eisen- und titanhaltiger mineralien | |
EP1400490A1 (de) | Abscheidung eines Feststoffs durch thermische Zersetzung einer gasförmigen Substanz in einem Becherreaktor | |
EP0201752A2 (de) | Verfahren zur Herstellung von Titandioxid-Konzentraten | |
US3944647A (en) | Recovering chlorine from the chlorination of titaniferous material | |
DE2123317A1 (de) | Verfahren zur Herstellung von Titantetrachlorid | |
EP0091560B1 (de) | Verfahren zur Herstellung von Titandioxid-Konzentraten | |
US3560152A (en) | Vapor phase production of titanium dioxide pigments | |
DE2262155A1 (de) | Verfahren zur reinigung von titantetrachlorid | |
US4629607A (en) | Process of producing synthetic rutile from titaniferous product having a high reduced titanium oxide content | |
EP0085345B1 (de) | Verfahren zur Herstellung von Titandioxid-Konzentraten | |
DE2014772A1 (de) | Verfahren zur Behandlung von unreinem Aluminiumchlorid | |
US4487747A (en) | Production of metal chlorides | |
DE3625735A1 (de) | Verfahren zur herstellung von reinem feinteiligem titandioxid | |
DE2512577A1 (de) | Verfahren zur herstellung von titantetrachlorid | |
DE4237388C1 (de) | Verfahren zur Entsorgung von arsenhaltigen Kampfstoffen | |
DE4124547C2 (de) | Verfahren zur Isolierung von Titananteilen | |
DE3203482A1 (de) | Verfahren zur herstellung von titandioxid-konzentraten | |
US4519988A (en) | Two stage chlorination of titaniferous ore | |
DE3781702T2 (de) | Verfahren zum selektiven chlorieren von eisen in titanhaltigen erzen. | |
WO1992019626A1 (de) | Feinteiliges silicium mit oberflächlich gebundenem halogen, verfahren zu dessen herstellung und dessen verwendung | |
DE1961900A1 (de) | Verfahren zur chlorierenden Roestung bei niedrigen Temperaturen von in Roestprodukten vorhandenen Nichteisenmetallen und deren Auslaugen und Rueckgewinnung | |
DE3320641A1 (de) | Verfahren zur herstellung von titandioxid-konzentraten |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB NL |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Withdrawal date: 19880520 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: JOEDDEN, KLAUS, DR. Inventor name: STEPHAN, HANS-WERNER Inventor name: HEYMER, GERO, DR. Inventor name: NIELEN, HORST, DR. |