EP0201507A1 - Procede de le controle non destructif de pieces en materiau non homogene - Google Patents

Procede de le controle non destructif de pieces en materiau non homogene

Info

Publication number
EP0201507A1
EP0201507A1 EP19850902446 EP85902446A EP0201507A1 EP 0201507 A1 EP0201507 A1 EP 0201507A1 EP 19850902446 EP19850902446 EP 19850902446 EP 85902446 A EP85902446 A EP 85902446A EP 0201507 A1 EP0201507 A1 EP 0201507A1
Authority
EP
European Patent Office
Prior art keywords
subject
test
einan
ray
focusing system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP19850902446
Other languages
German (de)
English (en)
Inventor
Manfred Hentschel
Rolf Hosemann
Axel Lange
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Erno Raumfahrttechnik GmbH
Original Assignee
Erno Raumfahrttechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Erno Raumfahrttechnik GmbH filed Critical Erno Raumfahrttechnik GmbH
Publication of EP0201507A1 publication Critical patent/EP0201507A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions

Definitions

  • the invention relates to a method for the non-destructive testing of components of inhomogeneous materials with regard to material and orientation-specific density distribution by means of monochromatic X-ray examination and detector imaging.
  • the invention is therefore based on the object of providing a method for the non-destructive testing of components of inhomogeneous materials which is also able to register spatial positions of different layers. This object is achieved by the characterizing features of claim 1.
  • the measure according to the invention enables the use of a focusing system to examine components of inhomogeneous materials in the third dimension.
  • Arched crystal Monochromators or totally reflecting X-ray mirrors can be used for the focusing system, a measuring gap, for example a detector, being arranged in the secondary focal point. A movement of the test specimen relative to the focusing system then enables components of inhomogeneous materials to be examined in all three spatial directions.
  • Fig. 6 shows the principle for examination on the back of inaccessible samples
  • FIG. 3 shows the functioning of a curved crystal monochromator.
  • the corners ABC of a triangle lie on a circle with the radius R. With the center M of the circle, there are three isosceles triangles AEM, BCM and CAM, which define the side angles ⁇ , ⁇ , to have.
  • the scattering angle is a beam going from A to C and diffracted there to B.
  • the point D lying in the middle between A and B defines the line CD as the bisector of the angle 2 ⁇ lying at C, because the angle ACD is equal to the angle DCB. All circles, whose center is D, have a tangent at any point C lying on the circle ABC, which uses as a mirror, reflecting a beam directed from A to C to B.
  • quartz crystal monochromators it has values of ⁇ 15o, ie ⁇ is negative and the base AB lies above the center M.
  • the circle on which the focal points A, B and the surface of the curved crystal lie is called the focusing circle.
  • Fig. 4 shows schematically the operation of a fine structure scattering chamber with a monochromator.
  • An X-ray film is placed in this cylindrical chamber.
  • the radiation generated in the focal spot of the X-ray tube is focused in the monochromator on a focal line located at the rear of the cylinder. Both focal spots and the surface of the monochromator lie on the aforementioned focusing circle.
  • a thin powder preparation is attached to the entry side of the scattering chamber as a test specimen.
  • the one from this examinee ter the Braggwinkel Scattered radiation is effective for all values from focused on another point of the X-ray film.
  • the locations where the two marginal rays penetrate the sample can be recognized as the base AB according to FIG. 3, the radiation focal point lying on the cylinder carine being a possible point C according to FIG.
  • the invention is based on the idea of not placing the short-armed focal line of a monochromator in an X-ray source, but in the irradiated test subjects, so that additional information can be obtained by the X-ray reflection generated there.
  • the monochromator according to FIG. 4 appears in FIG. 1 as a monochromator 4, which gets its radiation from the area 3.
  • Another idea of the invention is that the monochrcmator 4, due to its curved shape, can detect a beam of rays generated by a point in the region 3 at once.
  • this is of particular importance for fiber composite materials because these materials consist of microparacrystals that only produce diffuse reflections.
  • FIG. 3 on the path from the monochromator 4 to the detector 5 there is no longer any subject in the room, but the irritation which indicates the position of the examined subject's location.
  • the carbon fibers of layer 8 are now perpendicular to the drawing plane, while in layer 9 they are parallel to the drawing plane, ie, in contrast to the so-called 002 reflections of layers 8, they are not in a reflective position.
  • the test specimen can now be driven through the examination point 3 and all points of the composite material can be examined in the detector 5. It is therefore possible to explore the local position of the layers and at the same time to have them registered electronically or using a scintillation counter. Consequently, two maxima with one of the layer thickness distances can be on a registration strip of the test specimen 7 corresponding distance. If the subject 7 according to FIG.
  • the layer 9 would be in a reflective position and a maximum would appear on the registration strip.
  • the mono chromator 4 In order to be able to really catch the reflex 002 of a carbon fiber in the detector, the mono chromator 4 must be brought into a reflective position with the detector 5. For this purpose, both are firmly attached to a common support, for example on a support, which can be rotated about the focusing point 3 by means of the fine drive 10.
  • the method according to the invention works with transmission.
  • the reflections emerge on the side facing away from the x-ray tube.
  • Particularly good measurement results are obtained when the reflections generated in a composite material emerge vertically from the test subject.
  • a minimum of the disturbing scattered radiation then arrives at the detector 5.
  • the input gap at detector 5 is also adjustable, i.e. can be adjusted for optimal resolution and intensity.
  • FIG. 5 shows an example in which six reflective layers can be seen, with a larger gap apparently existing between layers 3 and 4.
  • FIG. 7 shows an example of the composite material already shown in FIG. 5. The deeper layers are disadvantaged because the primary beam and the reflected beam have to travel a longer way through the test body.
  • Fig. 7 shows an example with Molydän radiation, where the eleventh layer is only weakly recognizable. It can be seen very clearly that five reflecting layers are identified at one time and six times after rotating through 90 °, provided that this rotation takes place about an axis parallel to the layer normal.
  • the invention relates to a further device by means of which all the layers detected in the reflection method are registered with the same intensity.
  • a screen plate 11 is attached parallel to the test specimen 7 in front of the reflections 12 and 13 emerging from the composite body in such a way that its edge 14, which is adjusted parallel to the fan beam, just barely passes the beam coming from the rear surface.
  • the screen plate 11 is provided with an x-ray absorption coefficient twice as large as the test body for adaptation.
  • the setting to “depth of cut”, on which layer the boundary beam 13 is to be generated, is carried out by the fine drive 15 attached to the screen plate 11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Le contrôle est effectué au moyen d'une analyse de structure fine aux rayons X en utilisant un système focaliseur et détecteur. Le mouvement relatif de l'échantillon examiné par rapport au système focaliseur permet un contrôle tridimensionnel.
EP19850902446 1984-11-17 1985-05-07 Procede de le controle non destructif de pieces en materiau non homogene Ceased EP0201507A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3442061 1984-11-17
DE19843442061 DE3442061A1 (de) 1984-11-17 1984-11-17 Verfahren zum zerstoerungsfreien pruefen inhomogener werkstoffe

Publications (1)

Publication Number Publication Date
EP0201507A1 true EP0201507A1 (fr) 1986-11-20

Family

ID=6250539

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19850902446 Ceased EP0201507A1 (fr) 1984-11-17 1985-05-07 Procede de le controle non destructif de pieces en materiau non homogene

Country Status (5)

Country Link
EP (1) EP0201507A1 (fr)
JP (1) JPS62500802A (fr)
DE (1) DE3442061A1 (fr)
GB (1) GB2181630B (fr)
WO (1) WO1986003005A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4430615C2 (de) * 1994-08-17 1998-04-02 Deutsches Elektronen Synchr Verfahren und Vorrichtung zur abbildenden Pulverdiffraktometrie
US6704390B2 (en) * 2000-05-29 2004-03-09 Vladimir Kogan X-ray analysis apparatus provided with a multilayer mirror and an exit collimator
JP5081556B2 (ja) 2007-09-28 2012-11-28 株式会社リガク デバイシェラー光学系を備えたx線回折測定装置とそのためのx線回折測定方法
EP3121592A1 (fr) * 2009-07-01 2017-01-25 Rigaku Corporation Appareil à rayons x, son procédé d'utilisation et procédé de rayonnement de rayons x
JP5838114B2 (ja) * 2012-04-02 2015-12-24 株式会社リガク X線トポグラフィ装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2805341A (en) * 1954-07-12 1957-09-03 Andrew R Lang Diffractometer
US2887585A (en) * 1955-05-17 1959-05-19 Philips Corp X-ray diffraction method and apparatus
US3160749A (en) * 1962-10-19 1964-12-08 Philips Corp Spectrometer with novel plural crystal arrangement
DE2933047C2 (de) * 1979-08-16 1982-12-30 Stoe & Cie. GmbH, 6100 Darmstadt Verfahren und Vorrichtung der Röntgendiffraktion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8603005A1 *

Also Published As

Publication number Publication date
GB2181630A (en) 1987-04-23
DE3442061C2 (fr) 1990-12-20
GB8617437D0 (en) 1986-08-28
GB2181630B (en) 1989-01-11
JPS62500802A (ja) 1987-04-02
WO1986003005A1 (fr) 1986-05-22
DE3442061A1 (de) 1986-05-28

Similar Documents

Publication Publication Date Title
EP0153786B1 (fr) Appareil à rayons X
DE3034944C2 (de) Verfahren und Einrichtung zur photothermischen Struktur-Untersuchung fester Körper
DE2852978C3 (de) Vorrichtung zur spektroskopischen Bestimmung der Geschwindigkeit von in einer Flüssigkeit bewegten Teilchen
DE2152510C3 (de) Verfahren zum Nachweisen von Oberflächenfehlern und Vorrichtung zum Durchführen des Verfahrens
DE2611514C3 (de) Oberflächen-Abtastprüfvorrichtung
DE102006041850B4 (de) CT-Verfahren zur Prüfung von Objekten unterschiedlicher Größe
DE2933047C2 (de) Verfahren und Vorrichtung der Röntgendiffraktion
DE2714397A1 (de) Verfahren und vorrichtung fuer messungen an duennen filmen mit spiegelnden oberflaechen unter verwendung von infrarotstrahlung
DE2554898C2 (de) Verfahren und Vorrichtung zur akustischen Abbildung
EP0068045A2 (fr) Spectromètre X séquentiel à crystal
DE2748501C3 (de) Verfahren und Vorrichtung zur Erstellung von Texturtopogrammen
DE68916168T2 (de) Verfahren und Vorrichtung zur Analyse einer Oberfläche.
DE102008048917A1 (de) Röntgendiffraktionsmessapparat mit einem optischen Debye-Scherrer-System und Röntgendiffraktionsmessverfahren für diesen Apparat
DE10125454B4 (de) Gerät zur Röntgenanalyse mit einem Mehrschichtspiegel und einem Ausgangskollimator
EP0201507A1 (fr) Procede de le controle non destructif de pieces en materiau non homogene
DE3789813T2 (de) Pulverdiffraktionsverfahren und -vorrichtung.
DE2440376A1 (de) Teilchengroessen-analyse von polydispersen systemen mit hilfe der laserlichtstreuung
DE69728258T2 (de) Röntgenstrahlspektrometer mit kristallanalysator mit teilweise konstantem und ilweise variablem krümmungsradius
WO2021151792A1 (fr) Procédé et dispositif de caractérisation d'un champ lumineux cohérent en amplitude et en phase
WO2006063849A1 (fr) Dispositif pour mesurer le spectre de transmission d'impulsion de quanta de rayons x a diffusion elastique
DE4000121C1 (en) Photoelectric quality control for sealing rings - has carrier for light source slidable and pivotable about axis in parallel with its length axis
DE4137673C2 (de) Röntgenreflektometer
DE4430615C2 (de) Verfahren und Vorrichtung zur abbildenden Pulverdiffraktometrie
DE3338351A1 (de) Vorrichtung zur optischen erkennung von individuellen vielparametrischen eigenschaften von teilchen
DE19504952A1 (de) Anordnung zum Messen von in einem Untersuchungsbereich elastisch gestreuten Röntgenquanten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR

17P Request for examination filed

Effective date: 19861022

17Q First examination report despatched

Effective date: 19880525

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19900415

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOSEMANN, ROLF

Inventor name: HENTSCHEL, MANFRED

Inventor name: LANGE, AXEL