EP0189843B1 - Aufschäumbares Kunststoffgranulat und daraus hergestelltes Packmaterial - Google Patents

Aufschäumbares Kunststoffgranulat und daraus hergestelltes Packmaterial Download PDF

Info

Publication number
EP0189843B1
EP0189843B1 EP86100880A EP86100880A EP0189843B1 EP 0189843 B1 EP0189843 B1 EP 0189843B1 EP 86100880 A EP86100880 A EP 86100880A EP 86100880 A EP86100880 A EP 86100880A EP 0189843 B1 EP0189843 B1 EP 0189843B1
Authority
EP
European Patent Office
Prior art keywords
particles
granular material
packaging material
orifice
plastics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86100880A
Other languages
English (en)
French (fr)
Other versions
EP0189843A2 (de
EP0189843A3 (en
Inventor
Günter Kohaut
Werner Dr. Weber
Herman Groenendijk
Adrianus Cornelis Poppelaars
Wilhelmus Henrikus J. Janssen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Priority to AT86100880T priority Critical patent/ATE56415T1/de
Publication of EP0189843A2 publication Critical patent/EP0189843A2/de
Publication of EP0189843A3 publication Critical patent/EP0189843A3/de
Application granted granted Critical
Publication of EP0189843B1 publication Critical patent/EP0189843B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/02Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage
    • B65D81/05Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents
    • B65D81/09Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents using flowable discrete elements of shock-absorbing material, e.g. pellets or popcorn
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S206/00Special receptacle or package
    • Y10S206/814Space filler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2975Tubular or cellular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • Packing or filling materials made of loose foamed plastic particles are known and are used in large quantities. The main reasons for this are their freedom from dust, resistance to moisture and mold, abrasion resistance and their inert behavior towards the packaged goods as well as their low weight.
  • plastic particles are usually made available as compact, blowing agent-containing, non-foamed granules and are only foamed to the final shape by known methods in the packaging plant.
  • the effect of the foamed plastic particles as packaging material is based on the fact that they interlock or interlock with each other after the packaging goods have been embedded and also enclose a large void volume.
  • the void volume is the volume enclosed, but not filled, by the particles when the material is poured into the pile. This creates a kind of "resilient shell” around the goods.
  • the mutual interlocking with the simultaneous formation of a large void volume is particularly important in order to prevent the packaged article from "wandering" through the packaging particles as a result of the transporter vibration and to achieve an optimal permanent "spring effect".
  • the particles forming the packaging material In contrast to the ability to interlock with other particles and thereby form a large void volume, there is a requirement that the particles forming the packaging material also have good flow properties.
  • the light, foamed plastic particles are usually brought into storage containers in free fall from storage silos. To this end, the particles must be able to flow freely, since otherwise the particles become “bridged” in the storage bunker and the uniform outflow and thus the quantity metering of the particles is disturbed or prevented. This leads to sensitive malfunctions, particularly in fully automatic packaging systems.
  • the object of the invention was therefore to avoid the disadvantages of the known particle shapes and in particular to provide a foamed plastic granulate which, after foaming, gives a packaging material which has good flow properties, good toothing properties and at the same time a large void volume of the bed.
  • the invention proposes a plastic granulate made of foamable particles in a star shape, which consists of particles which are derived from a first or cloverleaf-shaped base body with at least three legs lying in one plane, characterized in that the particles have at least one Have omission (a hole).
  • the invention further relates to the use of these foamable plastic granules for the production of appropriately foamed packaging materials and to the foamed packaging materials themselves.
  • the number of legs is at least three, in particular three, four, fifth or six. According to the invention, preference is given to granular particles which have three or six legs.
  • the outlet (s) of the granule particles according to the invention can be located in one of the legs or in the center of the granule particles.
  • parts are preferred which have omissions in all legs; further preferred are those particles in which the omission is only in the center, which applies in particular to six-legged particles. If the omissions are only relatively small and their size is in the lower part of the ranges mentioned below, it may be advantageous in some cases to add an omission in the center of the granule particles in addition to the omissions in the legs.
  • the omissions are preferably predominantly round to oval or lenticular in shape; however, other shapes, such as polygons, for example triangles, quadrangles, hexagons, etc., are also possible in principle.
  • the size of these omissions is generally such that their area is approximately 25% to approximately 75%, preferably 30% to 60%, based on the respective leg area or the total area with only one omission in the center.
  • the diameter or the largest clear width of these omissions is usually 0.2 to 2.0 mm, preferably 0.3 to 1.5 mm.
  • the wall thickness (cutting length) of the granulate particles according to the invention is generally in the range from 2.5 to 7.0 mm, preferably 3.0 to 6.0 mm.
  • the particle width, particle height and particle thickness in the case of three-legged granulate particles are usually 4 to 6.5 mm, 4 to 6 mm and 2.5 to 7 mm.
  • the corresponding preferred values are 4.5 to 6 mm (A), 4.5 to 5.5 mm (B) and 3 to 6 mm (C).
  • the angle a between the legs 1 and 2 expediently moves between 100 and 140 °, preferably 110 and 130 °.
  • the ratio of (A) to (B) is 1: 0.6 to 1: 1.5, preferably 1: 0.75 to 1: 1.25, the ratio of (A) to (C ) 1: 0.4 to 1: 1.75 preferably 1: 0.5 to 1: 1.4 and the ratio (B) to (C) 1: 0.4 to 1: 1.75 preferably 1: 0, 6 to 1: 1.35.
  • the legs of the granulate particles according to the invention lie in one plane. Without departing from the scope of the invention, however, at least some of it can also have a slight curvature, for example in such a way that all the legs deviate from an imaginary plane in the same direction. In addition, in some particles individual legs can also be curved in opposite directions.
  • the angle of curvature (deviation from the plane) is a maximum of 20 °, preferably a maximum of 10 °.
  • thermoplastics for the particles according to the invention are the thermoplastics commonly used for packaging materials, such as e.g. Styrene polymers, polyolefins such as polyethylene, VC polymers and the like. Polystyrene is preferably used.
  • This foamable, blowing agent-containing, compact plastic granulate is produced in a known manner by melting the plastic in an extrusion press, metering in a suitable blowing agent under pressure into the plastic melt, pressing out the blowing agent-containing melt through a corresponding star-shaped (cloverleaf-like) mold opening and then granulating.
  • This mold opening is provided with mold cores (thorns), the shape and number of which corresponds to that of the desired omissions.
  • the strands emerging from the extrusion press are cooled rapidly, expediently by means of a water bath.
  • the length of the cheapest water bath route and the withdrawal speed of the strands can easily be determined for the person skilled in the art by means of a few routine tests.
  • the chilled strands are then cut perpendicularly to the take-off direction into particles of the thickness indicated above.
  • the strand temperature should expediently be chosen so that the proportion of dust and splinters when cutting is as low as possible.
  • the expandable particles so formed can be heated to above their softening point, e.g. by steam to be foamed into the packing material bodies according to the invention. This foaming is usually carried out only at the consumer.
  • a plastic blowing agent can be added to the plastic before the extrusion process. Water vapor, carbonic acid or nitrogen is split off, mixed in.
  • the packaging material obtained consists predominantly, preferably more than 90% and in particular more than 95% of particles of the form described above, i.e. in the form of a star-shaped particle with three, four, five or more, preferably three or six legs lying in one plane, each leg having at least one opening (a hole). Slight deviations from the flat shape are also possible here, as described for the granulate particles.
  • the wall thickness of the particles of the packaging material according to the invention is generally 8 to 20 mm, preferably 10 to 16 mm, the wall thickness generally being greatest in the center of the particle and falling towards the edge regions. Under certain circumstances, this drop can be up to 70%, in particular up to 50%.
  • the dimensions (A '), (B') and (C ') in the case of three-legged particles are usually 16 to 40 mm, 16 to 40 mm and 8 to 20 mm.
  • the corresponding preferred values are 20 to 38 mm (A '), 18 to 36 mm (B') and 10 to 18 mm (C ').
  • the angle a 'between the legs 2 and 4 (FIG. 3) expediently moves between 100 and 140 °, preferably 100 and 130 °.
  • the ratio of (A ') to (B') is 1: 0.4 to 1: 2.5, preferably 1: 0.5 to 1: 1.8, the ratio of (A ') to (C ') 1: 0.2 to 1: 1.25, preferably 1: 0.26 to 1: 0.9 and the ratio (B') to (C ') 1: 0.2 to 1: 1 , 25, preferably 1: 0.25 to 1: 1.
  • the dimensions, angles and proportions of the four-, five-, six- and multi-legged particles are quite appropriate.
  • the omissions in the packaging material particles are - corresponding to those in the granulate particles - preferably round, oval and / or lenticular and are preferably found on all legs or only the center preferably has an omission.
  • the area of this omission (s) is generally about 25% to about 75%, preferably 30% to 60%, based on the respective leg surfaces or on the total area.
  • the diameter or the largest clear width of this omission (s) is usually 3 to 15 mm, preferably 6 to 12 mm.
  • the center of the packaging material particles may also have an omission.
  • the size of the omissions in the packaging material particles, as also in the granulate particles is not critical and can assume values that are larger or smaller than the percentages given above, but then with certain disadvantages.
  • the surface of the packaging material particles contains a more or less large number of cracks (craters), which are caused by the escaping blowing agent.
  • the void volume of the unshaken bed of the packaging material according to the invention is generally more than 60%, preferably 60 to 90%, in particular 65 to 80%.
  • the star-shaped, omitted shape of the packing material body according to the invention not only forms a particularly large cavity volume of the bed, but also results in an elastic deformation behavior of the particles without permanent deformation or even destruction of the foam structure.
  • the packaging material according to the invention can contain the usual additives such as flame retardants, UV and heat stabilizers, dyes and external equipment in the usual amounts.
  • Figures 1 and 2 represent a foamable three-legged granulate in high magnification
  • Figures 3 to 5 relate to the particles of the packaging material according to the invention obtained by foaming
  • Figures 5 to 9 show other embodiments of foamed particles according to the invention.
  • Figure 1 which shows a front view of a granule particle (1) according to the invention
  • (2), (3) and (4) mean the three legs of the particle and (5) the omissions.
  • (A), (B) and (C) represent the dimensions of the particle in the three spatial directions.
  • a represents the angle between the two legs (3) and (4).
  • Figure 2 shows the particle (1) of Figure 1 in side view.
  • (C) means the wall thickness (cutting length).
  • FIG. 3 shows a particle (1 ') of the packaging material according to the invention, which was created by foaming the granulate particle (1) of FIG. 1.
  • (2 '), (3') and (4 ') again mean the three legs, (5') the omissions, while (A '), (B') and (C ') the dimensions of this particle in the three spatial directions express.
  • a ' represents an angle between the two legs (3') and (4 ').
  • Figure 4 shows the particle (1 ') of Figure 3 in section IV-IV.
  • (C ') means the thickness.
  • the packing behavior of foamed plastic particles is essentially determined by the bulk density, the void volume and the flowability.
  • the cylinder drop test provides an additional important statement.
  • the test funnel consisted of sheet metal with a smooth surface, had a slide in the outlet and had the following dimensions:
  • test funnel Such a test funnel is described, for example, in "Technical Delivery Conditions TL 8135-0032, Edition 2 (March 1982)", pp. 1 to 6 of the Federal Office of Defense Technology and Procurement of the Federal Republic of Germany.
  • the upper edge of the measuring cup was then wiped off with a ruler.
  • the net weight divided by 10 gave the bulk density of the unshaken bed in grams per liter.
  • the measuring cup described under 1) was filled with packaging particles in free fall with the aid of the test funnel also described under 1). During the filling process, the measuring cup was continuously pushed onto a solid surface at short intervals until no further volume contraction of the bed took place. The measuring cup was then wiped off with a ruler. The net weight divided by 10 gave the bulk density of the shaken bed in grams per liter.
  • the measuring cup above was filled with packaging particles as described under 1). After painting over the upper edge of the measuring cup with a ruler, the measuring cup was closed with a wire sieve. Then the measuring cup was immersed in water and rotated on all sides so that all the voids in the bed filled with water. The volume of water required to fill the cavities corresponded to the cavity volume of the unshaken bed.
  • Said measuring cup was, as listed under 2), filled and shaken to the tightest particle packing.
  • the measuring cup was then immersed in water and rotated on all sides so that all of the cavities were filled with water.
  • the volume of water required to fill the cavities corresponded to the cavity volume of the vibrated bed.
  • the cylinder hitting with the horizontal longitudinal axis only caused a short-term deformation of the packing material particle bed and then jumped back dampened from the level of the filling level.
  • the steel cylinder only slightly penetrated the bed the second time it hit the bed, but remained fixed in this position (Table 1, packing material 1).
  • the distance from the level of the filling level to the penetrated lower metal line of the steel cylinder is given as the penetration depth in cm.
  • Table 1 shows that the packaging material particles I according to the invention are superior to particles A in terms of bulk density, cavity volume, cylinder drop test, penetration depth and trickle time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wrappers (AREA)
  • Buffer Packaging (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Packages (AREA)
  • Molding Of Porous Articles (AREA)
  • Sealing Material Composition (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Laminated Bodies (AREA)
  • Cosmetics (AREA)

Description

  • Pack- oder Füllmaterialien aus losen aufgeschäumten Kunststoffteilchen sind bekannt und werden in großen Mengen eingesetzt. Maßgebend dafür sind vor allem ihre Staubfreiheit, die Widerstandsfähigkeit gegen Feuchtigkeit und Schimmelbildung, die Abriebfestigkeit und ihr inertes Verhalten gegenüber dem Verpackungsgut sowie ihr geringes Gewicht. Üblicherweise werden solche Kunststoffteilchen als kompakte, treibmittelhaltige, nichtaufgeschäumte Granulate zur Verfügung gestellt und erst im Verpackungsbetrieb nach bekannten Verfahren zur endgültigen Form aufgeschäumt.
  • Die Wirkung der geschäumten Kunststoffteilchen als Packmaterial beruht darauf, daß sie nach dem Einbetten des Verpackungsgutes sich gegenseitig verhaken bzw. verzahnen und zudem ein großes Hohlraumvolumen einschließen. Das Hohlraumvolumen ist dabei das von den Teilchen eingeschlossene, aber nicht ausgefüllte Volumen bei der Schüttung zum Haufwerk. Dadurch wird eine Art "federnde Hülle" um das Gut gebildet. Die gegenseitige Verzahnung bei gleichzeitiger Bildung eines großen Hohlraumvolumens ist besonders wichtig, um das "Wandern" des verpackten Gegenstandes durch die Packmittelteilchen infolge der Transporterschütterung zu verhindern und eine optimale bleibende "Federwirkung" zu erreichen.
  • Im Gegensatz zu der Fähigkeit, sich mit anderen Teilchen zu verzahnen und dabei ein großes Hohlraumvolumen zu bilden, steht die Forderung, daß die das Packmaterial bildenden Teilchen zugleich auch eine gute Rieselfähigkeit aufweisen. Die leichten, geschäumten Kunststoffteilchen werden nämlich üblicherweise aus Vorratsilos in freiem Fall in die jeweiligen Packbehältnisse eingebracht. Dazu ist eine enwandfreie Rieselfähigkeit der Teilchen Voraussetzung, da andernfalls durch Verhaken der Teilchen eine "Brückenbildung" im Vorratsbunker stattfindet und das gleichmäßige Ausfließen und damit die Mengendosierung der Teilchen gestört oder verhindert wird. Besonders bei vollautomatischen Verpackungsanlagen führt dies zu empfindlichen Störungen.
  • Man hat versucht, durch bestimmte Formgebung der geschäumten Kunststoffteilchen diese sich widersprechenden Anforderungen an das Packmaterial zu erfüllen, also bei großem Hohlraumvolumen und guter Verhakung oder Verzahnung der Teilchen im Verpackungsbehältnis zugleich eine gute Rieselfähigkeit bei der Entnahme aus dem Vorratsbehälter zu erreichen. Als Beispiele für die Form solcher Teilchen seien genannt: S-Form, Y-Form, gewellte längliche oder runde Blättchen, Ringe, aufgeschlitzte Ringe, 8-förmige Hohlkörper, spiralige Körper, Teilchen in der form von Kartoffel-Chips, Halb-kugeln, sattelförmige Teilchen, hantelförmige Teilchen, Flocken, und Sternforme mit drei in einer Ebene liegende Schenkeln (DE-A-28 48 338).
  • Die vorstehend genannten Teilchenformen zeigen zwar häufig zufriedenstellende Verzahnungseigenschaften bei annehmbarer Rieseleigenshaft, jedoch bleibt das für das Packverhalten wesentlichen Hohlraumvolumen unter der erwünschten Größe.
  • Aufgabe der Erfindung was es daher, die Nachteile der bekannten Teilchenformen zu vermeiden und insbesondere ein verschäumtes Kunststoffgranulat bereitzustellen, das nach dem Aufschäumen ein Packmaterial ergibt, das eine gute Rieselfähigkeit, eine gute Verzahnungseigenschaft und zugleich ein großes Hohlraumvolumen der Schüttung aufweist.
  • Zur Lösung dieser Aufgabe schlägt die Erfindung ein Kunststoffgranulat aus verschäumbaren Teilchen in Sternform vor, wobei es aus Teilchen besteht, die sich von einem ersten- bzw. kleeblattförmigen Grundkörper mit mindestens drei in einer Ebene liegenden Schenkeln ableiten, dadurch gekennzeichnet, daß die Teilchen mindestens eine Auslassung (ein Loch) aufweisen.
  • Die Erfindung betrifft weiterhin die Verwendung dieser verschäumbaren Kunststoffgranulate zur Herstellung von entsprechend aufgeschäumten Packmaterialien sowie die so erhaltenen aufgeschäumten Packmaterialien selbst.
  • Die Zahl der Schenkel beträgt erfindungsgemäß mindestens drei, insbesondere drei, vier, fünft oder sechs. Bevorzugt sind erfindungsgemäß Granulatteilchen, die drei- oder sechsschenkelig ausgebildet sind.
  • Die Auslassung(en) der erfindungsgemäßen Granulatteilchen kann (können) sich in einem der Schenkel oder im Zentrum der Granulatteilchen befinden. Bevorzugt sind erfindungsgemäß Teilen, die in allen Schenkeln Auslassungen aufweisen; bevorzugt sind weiterhin solche Teilchen, bei denen sich die Auslassung nur im Zentrum befindet, was insbesondere für sechsschenkelige Teilchen gilt. Sofern die Auslassungen nur relativ klein sind und sich deren Größe im unteren Teil der nachstehend genannten Bereiche bewegt, kann es in manchen Fällen günstig sein, neben den Auslassungen in den Schenkeln auch noch eine Auslassung im Zentrum der Granulatteilchen anzubringen.
  • Die Auslassungen haben vorzugsweise überwiegend runde bis ovale oder linsenförmige Form; jedoch sind grundsätzlich auch andere Formgebungen, wie Vielecke, beispielsweise Dreiecke, Vierecke, Sechsecke, etc. möglich.
  • Die Größe dieser Auslassungen ist im allgemeinen so bemessen, daß deren Fläche etwa 25% bis etwa 75%, vorzugsweise 30% bis 60% beträgt, bezogen auf die jeweilige Schenkelfläche bzw. auf die Gesamtfläche bei nur einer Auslassung im Zentrum. Der Durchmesser bzw. die größte lichte Weite dieser Auslassungen liegt zumeist bei 0,2 bis 2,0 mm, vorzugsweise 0,3 bis 1,5 mm.
  • Die Wanddicke (Schnittlänge) der erfindungsgemäßen Granulatteilchen liegt im allgemeinen im Bereich von 2,5 bis 7,0 mm, vorzugsweise 3,0 bis 6,0 mm.
  • Die Teilchenbreite, Teilchenhöhe und Teilchendicke im Falle von dreischenkeligen Granulatteilchen (vgl. Maße A, B und C, Figuren 1 und 2) betragen zumeist 4 bis 6,5 mm, 4 bis 6 mm und 2,5 bis 7 mm. Die entsprechenden Vorzugswerte liegen bei 4,5 bis 6 mm (A), 4,5 bis 5,5 mm (B) und 3 bis 6 mm (C). Der Winkel a zwischen den Schenkeln 1 und 2 (Fig. 1) bewegt sich zweckmäßigerweise zwischen 100 und 140°, vorzugsweise 110 und 130°.
  • Im allgemeinen beträgt bei dreischenkeligen Granulatteilchen das Verhältnis von (A) zu (B) 1:0,6 bis 1:1,5, vorzugsweise 1:0,75 bis 1:1,25, das Verhältnis von (A) zu (C) 1:0,4 bis 1:1,75 vorzugsweise 1:0,5 bis 1:1,4 und das Verhältnis (B) zu (C) 1:0,4 bis 1:1,75 vorzugsweise 1:0,6 bis 1:1,35.
  • Die Maße, Winkel und Maßverhältnisse bei den vier-, fünf-, sechs- und mehrschenkeligen Teilchen liegen ganz entsprechend.
  • Wie ausgeführt, liegen die Schenkel der erfindungsgemäßen Granulatteilchen in einer Ebene. Ohne den Rahmen der Erfindung zu verlassen, kann zumindest ein Teil davon jedoch auch eine geringfügige Verwölbung aufweisen, etwa derart, daß alle Schenkel in der gleichen Richtung von einer gedachten Ebene abweichen. Daneben können in manchen Teilchen einzelne Schenkel auch entgegengesetzt zueinander gekrümmt sein. Der Krümmungswinkel (Abweichung von der Ebene) beträgt maximal 20°, vorzugsweise maximal 10°.
  • Als Kunststoffe für die erfindungsgemäßen Teilchen eignen sich die üblicherweise für Packmaterialien verwendeten Thermoplaste, wie z.B. Styrolpolymerisate, Polyolefine wie Polyäthylen, VC-Polymerisate und dergleichen. Bevorzugt wird Polystyrol eingesetzt.
  • Die Herstellung dieses verschäumbaren, treibmittelhaltigen, kompakten Kunststoffgranulats erfolgt in bekannter Weise durch Aufschmelzen des Kunststoffes in einer Strangpresse, Eindosieren eines geeigneten Treibmittels unter Druck in die Kunststoffschmelze, Auspressen der treibmittelhaltigen Schmelze durch eine entsprechende sternförmige (kleeblattähnliche) Formöffnung und anschließendes Granulieren. Diese Formöffnung ist mit Formkernen (Dornen) versehen, deren Form und Anzahl denen der gewünschten Auslassungen entspricht. Um ein Aufschäumen bei der Extrusion zu verhindern, werden die aus der Strangpresse austretenden Stränge rasch, zweckmäßigerweise durch ein Wasserbad, abgekühlt. Die Länge der günstigsten Wasserbadstrecke und die Abzugsgeschwindigkeit der Stränge lassen sich für den Fachmann leicht durch einige wenige Routineversuche ermitteln. Anschließend werden die gekühlten Stränge senkrecht zur Abzugsrichtung in Teilchen der oben angegebenen Dicke geschnitten. Die Strangtemperatur sollte dabei zweckmäßigerweise so gewählt werden, daß der Anteil an Staub und Splittern beim Schneiden möglichst gering ist.
  • Die so entstandenen expandierbaren Teilchen können durch Erwärmen über ihren Erweichungspunkt, z.B. durch Wasserdampf, zu den erfindungsgemäßen Packmaterialkörpern aufgeschäumt werden. Üblicherweise wird diese Verschäumung erst beim Verbraucher ausgeführt. Anstelle eines physikalischen Treibmittels kann dem Kunststoff auch vor der Extrusion ein chemisches Treibmittel, das beim Erwärmen Gase, z.B. Wasserdampf, Kohlensäure oder Stickstoff abspaltet, eingemischt werden.
  • Das erhaltene Packmaterial besteht überwiegend, vorzugsweise zu mehr als 90% und insbesondere zu mehr als 95% aus Teilchen der oben beschriebenen Form, d.h. der Form eines sternförmigen Teilchens mit drei, vier, fünf oder mehr, vorzugsweise drei oder sechs in einer Ebene liegenden Schenkeln, wobei jeder Schenkel mindestens eine Auslassung (ein Loch) aufweist. Geringe Abweichungen von der ebenen Form sind auch hier, wie bei den Granulatteilchen beschrieben, möglich.
  • Die Wanddicke der Teilchen des erfindungsgemäßen Packmaterials beträgt im allgemeinen 8 bis 20 mm, vorzugsweise 10 bis 16 mm, wobei die Wanddicke im Zentrum des Teilchens im allgemeinen am größten ist und zu den Randbereichen abfällt. Unter Umständen kann dieser Abfall bis zu 70%, insbesondere bis zu 50% betragen.
  • Die Maße (A'), (B') und (C') im Falle von dreischenkeligen Teilchen (vgl. Figuren 3 bis 5) betragen zumeist 16 bis 40 mm, 16 bis 40 mm und 8 bis 20 mm. Die entsprechenden Vorzugswerte liegen bei 20 bis 38 mm (A'), 18 bis 36 mm (B') und 10 bis 18 mm (C'). Die Winkel a' zwischen den Schenkeln 2 und 4 (Fig. 3) bewegt sich zweckmaßigerweise zwischen 100 und 140°, vorzugsweise 100 und 130°.
  • Im allgemeinen beträgt bei dreischenkeligen Teilchen das Verhältnis von (A') zu (B') 1:0,4 bis 1:2,5, vorzugsweise 1:0,5 bis 1:1,8, das Verhältnis von (A') zu (C') 1:0,2 bis 1:1,25, vorzugsweise 1:0,26 bis 1:0,9 und das Verhältnis (B') zu (C') 1:0,2 bis 1:1,25, vorzugsweise 1:0,25 bis 1:1. Die Maße, Winkel und Maßverhältnisse bei den vier-, fünf-, sechs- und mehrschenkeligen Teilchen liegen ganz entsprechend.
  • Die Auslassungen in den Packmaterialteilchen sind-entsprechend denen in den Granulatteilchen-vorzugsweise rund, oval und/oder linsenförmig und finden sich vorzugsweise auf allen Schenkeln oder nur das Zentrum weist vorzugsweise eine Auslassung auf. Die Fläche dieser Auslassung(en) beträgt in der Regel etwa 25% bis etwa 75%, vorzugsweise 30% bis 60%, bezogen auf die jeweiligen Schenkelflächen bzw. auf die Gesamtfläche. Der Durchmesser bzw. die größte lichte Weite dieser Auslassung(en) liegt zumeist bei 3 bis 15 mm, vorzugsweise 6 bis 12 mm. Entsprechend den Granulatteilchen kann auch bei den Packmaterialteilchen dren Zentrum gegebenenfalls auch noch eine Auslassung aufweisen. Grundsätzlich ist die Größe der Auslassungen in den Packmaterialteilchen, wie auch in den Granulatteilchen, nicht kritisch und kann größere oder kleinere Werte als die vorstehend angegebenen Prozentzahlen einnehmen, dann jedoch unter Inkaufnahme gewisser Nachteile.
  • Die Oberfläche der Packmaterialteilchen enthält je nach Aufschäumgrad etc. eine mehr oder weniger große Zahl von Aufbrüchen (Kratern), die durch das entweichende Treibmittel entstanden sind.
  • Das Hohlraumvolumen der ungerüttelten Schüttung des erfindungsgemäßen Packmaterials (bestimmt nach der weiter unten beschriebenen Meßmethode) beträgt im allgemeinen mehr als 60%, vorzugsweise 60 bis 90%, insbesondere 65 bis 80%.
  • Durch die sternförmige, mit Auslassungen versehene Gestalt der erfindungsgemäßen Packmaterialkörper wird nicht nur ein besonders großes Hohlraumvolumen der Schüttung gebildet, wondern darüber hinaus ergibt sich ein elastisches Verformungsverhalten der Teilchen, ohne daß eine bleibende Deformation oder gar eine Zerstörung der Schaumstruktur eintritt.
  • Das erfindungsgemäße Packmaterial kann die üblichen Zusatzstoffe wie Flammschutzmittel, UV- und Wärmestabilisatoren, Farbstoffe und äußerlich aufzubringende Ausrüstungsmittel in den üblichen Mengen enthalten.
  • Die Erfindung wird anhand der Zeichnungen näher erläutert. Die Figuren 1 und 2 stellen dabei ein verschäumbares dreischenkeliges Granulatteilchen in starker Vergrößerung dar, während die Figuren 3 bis 5 das daraus durch Verschäumen gewonnene Teilchen des erfindungsgemäßen Packmaterials betreffen. Die Figuren 5 bis 9 geben andere erfindungsgemäße Ausgestaltungsformen von aufgeschäumten Teilchen wieder.
  • In Figur 1, die eine Vorderansicht eines erfindungsgemäßen Granulatteilchens (1) zeigt, bedeuten (2), (3) und (4) die drei Schenkel des Teilchens und (5) die Auslassungen. (A), (B) und (C) geben die Maße des Teilchens in den drei Raumrichtungen wieder. a stellt den Winkel zwischen den beiden Schenkeln (3) und (4) dar.
  • Figur 2 zeigt das Teilchen (1) der Figur 1 in der Seitenansicht. (C) bedeutet darin die Wanddicke (Schnittlänge).
  • Figur 3 stellt ein Teilchen (1') des erfindungsgemäßen Verpackungsmaterials dar, das durch Verschäumen des Granulatteilchens (1) der Figur 1 entstanden ist. (2'), (3') und (4') bedeutet wiederum die drei Schenkel, (5') die Auslassungen, während (A'), (B') und (C') die Maße dieses Teilchens in den drei Raumrichtungen ausdrücken. a' gibt ein Winkel zwischen den beiden Schenkeln (3') und (4') wieder.
  • Die Figur 4 zeigt das Teilchen (1') der Figur 3 im Schnitt IV-IV. (C') bedeutet darin die Dicke.
  • Beispiele
  • Das Packverhalten von geschäumten Kunststoffteilchen wird im wesentlichen bestimmt durch die Schüttdichte, das Hohlraumvolumen und die Rieselfähigkeit. Eine zusätzlich wichtige Aussage gibt der Zylinderfalltest.
  • In der folgenden Tabelle 1 sind diese das Packverhalten bestimmende Werte des erfindungsgemäßen Packmaterials denen des Packmaterials gemäß der DE-Offenlegungsschrift 2.848.338 gegenübergestellt.
  • Die Prüfungen wurden folgendermaßen durchgeführt und sind in der Tabelle 1 zusammengefaßt:
  • 1. Ermittlung der Schüttdichtezunahme der Schüttung durch Rütteln
  • Ein Meßbecher mit 10 Liter Inhalt und den Abmessungen D=189 mm φ und H=357 mm wurde unter Zuhilfenahme eines Testtrichters mit Packmittelteilchen im freien Fall gefüllt. Der Testtrichter bestand aus Metallblech mit glatter Oberfläche, besaß im Auslauf einen Schieber und hatte folgende Abmessungen:
    Figure imgb0001
  • Ein derartiger Testtrichter ist beispielsweise beschrieben in "Technische Lieferbedingungen TL 8135-0032, Ausgabe 2 (März 1982)", S. 1 bis 6 des Bundesamtes für Wehrtechnik und Beschaffung der BR-Deutschland.
  • Danach wurde die Oberkante des Meßbechers mit einem Lineal abgestrichen. Das Nettogewicht dividiert durch 10 ergab die Schüttdichte der ungerüttelten Schüttung in Gramm je Liter.
  • 2. Ermittlung der Schüttdichte der gerüttelten Schüttung:
  • Der unter 1) beschriebene Meßbecher wurde unter Zuhilfenahme des ebenfalls unter 1) beschriebenen Testtrichters mit Packmittelteilchen im freien Fall gefüllt. Während des Füllvorganges wurde der Meßbecher ständig in kurzen Abständen so lange auf einer massiven Unterlage aufgestoßen, bis keine weitere Volumenkontraktion der Schüttung mehr erfolgte. Danach wurde der Meßbecher mit einem Lineal abgestrichen. Das Nettogewicht dividiert durch 10 ergab die Schüttdichte der gerüttelten Schüttung in Gramm je Liter.
  • 3. Ermittlung der Verdichtung der Schüttung durch Rütteln (Rüttelverdichtung):
  • Die Verdichtung der Schüttung durch Rütteln ergab sich aus dem Quotienten
  • (Schüttdichte gerüttelte Schüttung-Schüttdichte ungerüttelte Schüttung) - 100/Schüttdichte ungerüttelte Schüttung
  • in den vorliegenden Fällen zu:
    Figure imgb0002
  • 4. Ermittlung ds Hohlraumvolumens der ungerüttelten Schüttung.
  • Der obige Meßbecher wurde die unter 1) geschildert mit Packmittelteilchen gefüllt. Nach dem Überstreichen der Meßbecheroberkante mit einem Lineal wurde der Meßbecher mit einem Drahtsieb verschlossen. Dann wurde der Meßbecher unter Wasser getaucht und allseitig so gedreht, daß sich alle Hohlräume der Schüttung mit Wasserfüllten. Das zum Füllen der Hohlräume erforderliche Wasservolumen entsprach dem Hohlraumvolumen der ungerüttelten Schüttung.
  • 5. Ermittlung des Hohlraumvolumens der gerüttelten Schüttung.
  • Der besagte Meßbecher wurde, wie unter 2) aufgeführt, gefüllt und bis zur dichtesten Teilchenpackung gerüttelt. Danach wurde der Meßbecher unter Wasser getaucht und allseitig so gedreht, daß sich alle Hohlräume mit Wasser füllten. Das zum Füllen der Hohlräume erforderliche Wasservolumen entsprach dem Hohlraumvolumen der gerüttelten Schüttung.
  • 6. Ermittlung der Rieselzeit (Fließverhalten):
  • Dieser Versuch wurde fünfmal durchgeführt. Die Schaumstoffteilchen wurden dabei bis zur Gewichtskonstanz auf Normklima 23/50-2 DIN 50 014 klimatisiert. Der Auslauf des unter 1) beschriebenen Trichters wurde durch den Schieber verschlossen und mit dem zu pröfenden Material bis zum Rand gefüllt. Anschließend wurde der Schieber herausgezogen und die Zeit bis zum vollständigen Auslaufen gemessen.
  • 7. Ermittlung der Eindringtiefe beim Zylinderfalltest:
  • Die hierzu benutzte Versuchsanordnung ist beschrieben in der Firmenbroschüre der HOECHST AG ""Hostastar" (Ausgabe September 1981). Ein 1,65 kg schwerer Stahlzvlinder (Durchmesser 44 mm, Länge 140 mm) wurde das 1 m Höhe in einen mit Packmittelteilchen gefüllten und kurz angerüttelten Behälter (Durchmesser oben: 420 mm; Durchmesser unter: 360 mm; Füllhöhe: 370 mm) fallengelassen.
  • Der mit waagerechter Längsachse auftreffende Zylinder bewirkte lediglich eine kurzfristige Deformation der Packmittelteilchenschüttung und sprang dann vom Niveau der Füllhöhe gedämpft zurück. Erst beim zweiten Auftreffen auf die Schüttung drang der Stahlzylinder geringfügig in die Schüttung ein, blieb aber in dieser Position fixiert (Tabelle 1, Packmaterial 1). Der Abstand vom Niveau der Füllhöhe bis zur eingedrungenen unteren Metallinie des Stahlzylinders wird als Eindringtiefe in cm angegeben.
  • 8. Zurückfedern des Zylinders von der Oberfläche der Schüttung.
  • Mit diesem Beurteilungskriterium lassen sich die Pack- und Fixiereigenschaften von Packmittelschüttungen gut differenzieren. Erfolgt keine Rückfederung beim ersten Auftreffen des Stahlzylinders auf die Schüttung, so ist stets die Eindringtiefe größer als bei Packmittelschüttungen, die aufgrund ihrer guten Verhakungs- und Polstereigenschaften den Stahlzylinder zur Rückfederung zwingen und nur sehr geringe Eindringtiefen beim zweiten bzw. dritten Aufprall auf die Schüttung der aus der Rückfederung resultiert, zulassen.
    Figure imgb0003
    • I=erfindungsgemäßes Packmaterial mit ovalen bis linsenförmigen Auslassungen in allen drei
    • Schenkeln; lichte Weite dieser Auslassungen ca. 30% bis 60% der jeweiligen Schenkelfläche). A=Packmaterial gemäß DE-Offenlegungsschrift 2.848.338.
  • Aus der Tabelle 1 geht hervor, daß die erfindungsgemäßen Packmittelteilchen I in Schüttdichte, Hohlraumvolumen, Zylinderfalltest, Eindringtiefe und Rieselzeit den Teilchen A überlegen sind.

Claims (16)

1. Kunststoffgranulat aus verschäumbaren Teilchen in sternform wobei das Kunststoffgranulat aus Teilchen besteht, die sich von einem stern- bzw. kleeblattförmigen Grundkörper mit mindestens drei in einer Ebene liegenden Schenkeln ableiten, dadurch gekennzeichnet, daß der Teilchen mindestens eine Auslassung aufweisen.
2. Kunststoffgranulat nach Anspruch 1, dadurch gekennzeichnet, daß mindestens einer der Schenkel eine Auslassung aufweist.
3. Kunststoffgranulat nach Anspruch 1, dadurch gekennzeichnet, daß das Zentrum der Teilchen eine Auslassung aufweist.
4. Kunststoffgranulat nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Auslassung rund bis oval und/oder linsenförmig gestaltet ist.
5. Kunststoffgranulat nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Fläche der Auslassung 25% bis 75% der jeweiligen Schenkelfläche beträgt.
6. Kunststoffgranulat nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Teilchen drei- oder sechsschenkelig, insbesondere dreischenkelig sind.
7. Kunststoffgranulat nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Dicke der Teilchen 2,5 bis 7 mm beträgt.
8. Kunststoffgranulat nach einer oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Granulatteilchen dreischenkelig sind und die Teilchenbreite (Maß A) 4 bis 6,5 mm, die Teilchenhöhe (Maß B) 4 bis 6 mm und die Teilchendicke (Maß C) 2,5 bis 7,0 mm betragen.
9. Verwendung des Kunststoffgranulats gemäß einem oder mehreren der Ansprüche 1 bis 8 zur Herstellung des Packmaterials gemäß einem oder mehreren der nachfolgenden Ansprüche 10 bis 16.
10. Packmaterial aus geschäumten Kunststoffteilchen, erhalten durch Verschäumen des Kunststoffgranulats gemäß einem oder mehreren der Ansprüche 1 bis 8 (vgl. Figuren 3 bis 9).
11. Packmaterial nach Anspruch 10, dadurch gekennzeichnet, daß mindestens einer der Schenkel eine Auslassung aufweist.
12. Packmaterial nach Anspruch 10, dadurch gekennzeichnet, daß das Zentrum der Teilchen eine Auslassung aufweist.
13. Packmaterial nach einem oder mehreren der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß Dicke der Teilchen bei 8 bis 20 mm liegt.
14. Packmaterial nach einem oder mehreren der Ansprüche 10 bis 13, dadurch gekennzeichnet, daß die Packmaterialteilchen dreischenkelig sind und die Teilchenbreite (Maß A') 16 bis 40 mm, die Teilchenhöhe (Maß B') 16 bis 40 mm und die Teilchendicke (Maß C') 8 bis 20 mm betragen.
15. Packmaterial nach einem oder mehreren der Ansprüche 10 bis 14, dadurch gekennzeichnet, daß bei der Schüttung zum Haufwerk das Hohlraumvolumen der ungerüttelten Schüttung mindestens 60% beträgt.
16. Packmaterial nach einem oder mehreren der Ansprüche 10 bis 15, dadurch gekennzeichnet, daß die Teilchen aus Polystyrol bestehen und mit einem an sich üblichen Treibmittel aufgeschäumt wurden.
EP86100880A 1985-01-30 1986-01-23 Aufschäumbares Kunststoffgranulat und daraus hergestelltes Packmaterial Expired - Lifetime EP0189843B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86100880T ATE56415T1 (de) 1985-01-30 1986-01-23 Aufschaeumbares kunststoffgranulat und daraus hergestelltes packmaterial.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853503057 DE3503057A1 (de) 1985-01-30 1985-01-30 Aufschaeumbares kunststoffgranulat und daraus hergestelltes packmaterial
DE3503057 1985-01-30

Publications (3)

Publication Number Publication Date
EP0189843A2 EP0189843A2 (de) 1986-08-06
EP0189843A3 EP0189843A3 (en) 1988-01-13
EP0189843B1 true EP0189843B1 (de) 1990-09-12

Family

ID=6261155

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86100880A Expired - Lifetime EP0189843B1 (de) 1985-01-30 1986-01-23 Aufschäumbares Kunststoffgranulat und daraus hergestelltes Packmaterial

Country Status (8)

Country Link
US (1) US4621022A (de)
EP (1) EP0189843B1 (de)
JP (1) JPH074824B2 (de)
AT (1) ATE56415T1 (de)
CA (1) CA1282041C (de)
DE (2) DE3503057A1 (de)
DK (1) DK164587C (de)
ES (1) ES291980Y (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4824059A (en) * 1988-02-01 1989-04-25 Butler Les I Cushioning device for remote control television equipment, and assembly thereof
USRE33970E (en) * 1988-02-01 1992-06-23 Cushioning device for remote control television equipment, and assembly thereof
US5151312A (en) * 1990-10-18 1992-09-29 Boeri John L Hollow, non-nestable packing peanuts of recycled newspaper
US5569519A (en) * 1991-03-13 1996-10-29 Enviro-Pac Inc. Loose fill packing element
US5186990A (en) * 1991-04-05 1993-02-16 Eagle Scientific Co. Biodegradable and water soluble packaging material
US5188880A (en) * 1991-12-11 1993-02-23 Tether Russell W Void fill material
US5946994A (en) * 1991-12-11 1999-09-07 Corropak, Inc. Void fill material and process for manufacturing same
US5254389A (en) * 1991-12-11 1993-10-19 Corropak, Inc. Void fill material
US5382325A (en) * 1992-01-13 1995-01-17 Envirocube, Inc. Method and apparatus for manufacturing dunnage material
US5312665A (en) * 1992-08-20 1994-05-17 Michelsen Packaging Company Biodegradable loose-fill packing material
US5288740A (en) * 1992-10-23 1994-02-22 The Dow Chemical Company Process for making alkenyl aromatic foam packing bodies with carbon dioxide and/or ethane blowing agent systems
US5486417A (en) * 1993-09-28 1996-01-23 Basf Corporation Mixed cross-section carpet yarn
CA2106421C (en) * 1992-12-10 1999-02-02 Gerry A. Hagen Mixed cross-section carpet yarn
US5322736A (en) * 1993-06-24 1994-06-21 Alliedsignal Inc. Hollow-trilobal cross-section filaments
TW294691B (en) * 1994-08-16 1997-01-01 Jsp Corp Expansion-molded article of polyolefin resin having open voids and production thereof
USD383066S (en) * 1995-05-22 1997-09-02 Free-Flow Packaging Corporation Loose fill packing material
US5701629A (en) * 1995-07-19 1997-12-30 Speciality Filaments, Inc. Hollow brush bristle with radiating spokes
US5900119A (en) * 1996-10-09 1999-05-04 E-Tech Products, Inc. Method of forming improved loose fill packing material from recycled paper
FR2786309B1 (fr) * 1998-11-23 2001-01-26 Transp S De L Ind Nucleaire Tr Dispositif amortisseur de chocs pour conteneurs de matieres radioactives
US6632525B1 (en) * 2000-10-11 2003-10-14 Textron Automotive Company, Inc. Material and method for manufacturing plastic parts
WO2004001375A2 (en) * 2002-06-21 2003-12-31 Burntside Partners Inc Multi-functional product markers and methods for making and using the same
US20030236219A1 (en) * 2002-06-21 2003-12-25 Nightingale Stephen D. Edible product markers and methods for making and using edible product markers
US7654391B2 (en) * 2005-06-09 2010-02-02 Langer Associates, Inc. Readily configurable plastic foam packaging
US9943679B2 (en) * 2011-01-28 2018-04-17 Johan-Christoph Geller Stopcock on a catheter-like or a sheath-like medical installation
US20170340131A1 (en) * 2016-05-24 2017-11-30 Healthcare Co., Ltd Foam filling elements
US10810988B2 (en) * 2017-12-01 2020-10-20 Spirit Aerosystems, Inc. Acoustic panel employing rounded particles in septum layer and system and method for making same
KR102477119B1 (ko) * 2020-07-09 2022-12-13 홍성권 쿠션부재용 충전재

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3400037A (en) * 1964-11-13 1968-09-03 Alta Ind Method of manufacturing cellular packing materials
US3855053A (en) * 1972-01-31 1974-12-17 Free Flow Packaging Corp Improved packing material
US3961000A (en) * 1972-11-28 1976-06-01 Altainer Incorporated Method of manufacturing a nesting or interlocking loose-fill cellular packing material
DE2848338A1 (de) * 1978-11-08 1980-05-22 Hoechst Ag Freifliessendes packmaterial aus aufgeschaeumtem kunststoff
US4500586A (en) * 1981-01-29 1985-02-19 Bussey Harry Jun Billowed filling elements for packaging
JPS59115264A (ja) * 1982-12-14 1984-07-03 三菱電機株式会社 包装用緩衝体
DE3435440A1 (de) * 1983-12-10 1985-06-20 Hoechst Ag, 6230 Frankfurt Aufschaeumbares kunststoffgranulat und daraus hergestelltes packmaterial

Also Published As

Publication number Publication date
DK164587C (da) 1992-12-07
DK164587B (da) 1992-07-20
DK43986D0 (da) 1986-01-29
US4621022A (en) 1986-11-04
EP0189843A2 (de) 1986-08-06
DK43986A (da) 1986-07-31
ES291980U (es) 1986-05-16
DE3503057A1 (de) 1986-07-31
DE3674012D1 (de) 1990-10-18
ATE56415T1 (de) 1990-09-15
JPS61175024A (ja) 1986-08-06
ES291980Y (es) 1987-01-16
EP0189843A3 (en) 1988-01-13
CA1282041C (en) 1991-03-26
JPH074824B2 (ja) 1995-01-25

Similar Documents

Publication Publication Date Title
EP0189843B1 (de) Aufschäumbares Kunststoffgranulat und daraus hergestelltes Packmaterial
DE3750476T2 (de) Schaum einer mischung von polyolefin und polystyrolharz.
DE1914236C3 (de) Packungsmaterial aus aufgeschäumtem Kunststoff in Form von rohrförmigen Hohlkörpern
DE69010948T2 (de) Gruppe von Trägheits-Aufpralldämpfern.
DE69509071T2 (de) Extrudierter propylenpolymerharzschaum
DE2834965C3 (de) Verfahren zur Herstellung feinteiliger geschäumter Teilchen aus vernetztem Olefinpolymerisat, die feinteiligen geschäumten Teilchen sowie ihre Verwendung zur Herstellung von Formteilen
CH654633A5 (de) Vorrichtung zur energie-absorption bei scher- und druckkraeften.
DE1569189A1 (de) Geschaeumte Kunststoffe sowie Verfahren und Vorrichtung zu deren Herstellung
DE2046958A1 (de) Mit Spritzguß hergestellter becherförmiger Gegenstand
EP0144961B1 (de) Aufschäumbares Kunststoffgranulat und daraus hergestelltes Packmaterial
DE3229762A1 (de) Verfahren zur herstellung von gegenstaenden aus expandiertem kunststoffmaterial mit verschiedenen physikalischen eigenschaften
DE2359282C3 (de) Vorrichtung zur Herstellung von Profilen aus geschäumten Thermoplasten
EP0011215B1 (de) Als Packmaterial dienende geschäumte Kunststoffteilchen
DE1694787A1 (de) Verfahren zur Herstellung geformter Gegenstaende aus beschichteten zellfoermigen Glaskugeln
DE69916508T2 (de) Vorexpandierte Teilchen aus Polypropylenharz
DE9017926U1 (de) Schüttfähiger Packmaterialkörper
DE8335441U1 (de) Geschaeumtes Kunststoffteilchen zur Herstellung von Packmaterial
DE8502398U1 (de) Geschäumtes Kunststoffteilchen zur Herstellung von Packmaterial
AT395238B (de) Fuellkoerper, insbesondere als verpackungsfuellstoff
DE3413268C2 (de) Füllmischung für Polster
DE2953281A1 (en) Module built shock absorbing system
DE3726906C2 (de)
DE2538655A1 (de) Aus formgepressten fasern bestehendes futter als daempfender einsatz in einer giessform
DE3544717C2 (de)
DE9321379U1 (de) Variables Formteil insbesondere aus nachwachsenden Rohstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19880511

17Q First examination report despatched

Effective date: 19890728

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 56415

Country of ref document: AT

Date of ref document: 19900915

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3674012

Country of ref document: DE

Date of ref document: 19901018

ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: GB

Ref legal event code: 777B

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86100880.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961126

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19961210

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961220

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19961224

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970106

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970130

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970207

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970402

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980123

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980131

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980131

BERE Be: lapsed

Owner name: SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V.

Effective date: 19980131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980123

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981001

EUG Se: european patent has lapsed

Ref document number: 86100880.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050123