EP0188994B1 - Procédé et appareil pour la fabrication d'un bloc métallique - Google Patents

Procédé et appareil pour la fabrication d'un bloc métallique Download PDF

Info

Publication number
EP0188994B1
EP0188994B1 EP85730135A EP85730135A EP0188994B1 EP 0188994 B1 EP0188994 B1 EP 0188994B1 EP 85730135 A EP85730135 A EP 85730135A EP 85730135 A EP85730135 A EP 85730135A EP 0188994 B1 EP0188994 B1 EP 0188994B1
Authority
EP
European Patent Office
Prior art keywords
mandrel
starting piece
rotation
axis
boundary surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85730135A
Other languages
German (de)
English (en)
Other versions
EP0188994A1 (fr
Inventor
Herbert Dipl.-Ing. Bungeroth
Otto Dipl.-Ing. Wessel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE3447557A external-priority patent/DE3447557A1/de
Priority claimed from DE19853517691 external-priority patent/DE3517691A1/de
Application filed by Mannesmann AG filed Critical Mannesmann AG
Publication of EP0188994A1 publication Critical patent/EP0188994A1/fr
Application granted granted Critical
Publication of EP0188994B1 publication Critical patent/EP0188994B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • C23C4/185Separation of the coating from the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/003Moulding by spraying metal on a surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal

Definitions

  • the invention relates to a method and a device for producing a metallic block, with a solid or hollow profile, by atomizing a molten metal by means of compressed gas and collecting the atomizing particles on a collecting surface.
  • the block forms as a coherent agglomerate of the atomizing particles.
  • Such a block is further processed as a semi-finished product, for example to form wires, tubes or other profiles.
  • Blocks are usually produced by casting in molds and subsequent rolling or by continuous casting.
  • DE-C-810 223 discloses a process for the production of moldings by collecting the atomizing jet, the device used for this also offering the possibility of producing hollow cylinders.
  • An inclined mandrel is provided below the atomizing jet, which is provided with a trigger device which is displaceable on the mandrel and has a starting piece.
  • this known spraying method has one major disadvantage: the rotatable and longitudinally displaceable mandrel must have a surface to which the sprayed particles adhere so that they do not fall off the mandrel during the rotational movement.
  • this has the consequence that the mandrel cannot be pulled out of the hollow cylinder after the spraying process, which is also shrunk when it cools down. If the mandrel is made of a brittle material, e.g. B. ceramics, it must be smashed and its fragments must be removed completely, which is associated with considerable effort.
  • the object of the present invention is to avoid these disadvantages.
  • the invention is based on the assumption that a molten metal is atomized into small particles by a compressed gas in a manner known per se.
  • atomizing particles are collected in a device on a collecting surface, which is subject to both a rotational movement and simultaneously executes a longitudinal movement (in the sense of a withdrawal movement) in the direction of the axis of rotation. It is advisable to set the axis of rotation at an angle that is greater than 90 ° and less than 180 °, inclined to the direction of the atomizing jet. As a result of the rotational movement, the impact zone of the atomizing jet constantly migrates over the collecting surface and forms a layer-by-layer growing agglomerate of coherent atomization particles.
  • the shaping of the surface areas extending in the longitudinal direction of the resulting block is carried out in the sense of free-form by means of the atomizing jet by controlling the movement of the agglomerate and additionally or alternatively with the aid of at least one boundary surface which is held in a fixed manner and which is hit by part of the atomizing jet. without sticking to it.
  • a per se stationary boundary surface is understood to mean an arrangement in which the boundary surface is not moved out of the area of the spray jet; In addition to a rigid arrangement, rotation and oscillating movements (with a short stroke) around a central position are also permitted.
  • the distance of the collecting surface (i.e. the uppermost layer of the atomizing particles) from the atomizing nozzle, which is preferably designed as an annular slot nozzle, is set to a desired value before the atomization begins.
  • the porosity of the block produced can be influenced by changing this distance. The greater the distance, the more the atomization particles have solidified when they hit the collecting surface and deform the less, so that the porosity increases.
  • the rotational movement and the longitudinal movement are regulated as a function of the melt quantity atomized per unit of time so that the distance from the impact zone remains constant on the collecting surface of the atomizing nozzle.
  • this distance during the atomization process it is also possible to specifically change this distance during the atomization process in order to create zones with different structures, that is to say with different density and porosity, in the block.
  • the atomization particles are collected on a starting piece from a surface which is preferably provided with grooves or pins in order to achieve a positive connection with the agglomerate formed from the atomization particles.
  • the atomization particles are collected by the layer deposited during the previous revolution.
  • Smooth surfaces are obtained if stationary boundary surfaces are used, the shape of which is a negative image of the desired inner and / or outer block surface shape.
  • the shaping takes place in such a way that a part of the atomizing jet strikes such a boundary surface without baking on the boundary surface; the remaining part of the atomizing jet strikes the surface of the agglomerate already formed, so that overall a coherent shaped body is formed, the surface shape of which is determined by the boundary surface.
  • the boundary surfaces must be aligned parallel to the direction of withdrawal. In this respect, there is a certain similarity to the shape during continuous casting.
  • the boundary surfaces can completely or partly surround the outer contour of the collecting surface.
  • the boundary surface is in principle kept stationary. However, as already mentioned, this does not necessarily mean a rigid attachment; rather, it is intended to express that the boundary surface is not removed with the resulting block and is so far arranged in a stationary manner. However, it can be advantageous to allow the boundary surface to oscillate around a central position with a small stroke (for example 3 mm) in order to prevent the agglomerate from caking on the boundary surface.
  • This oscillating movement takes place in the direction of the axis of rotation of the collecting surface;
  • it can also be carried out as a rotary movement (e.g. angle 5 - 10 °) around the axis of rotation of the collecting surface.
  • a boundary surface in the form of a mandrel is used for the shaping of the inner surface, which is held in a position which is inherently stationary, that is to say not pulled off together with the agglomerate formed.
  • the mandrel can in turn perform oscillating longitudinal and / or rotary movements (the latter only with a cylindrical inner surface) with respect to the axis of rotation of the collecting surface in order to prevent the agglomerate from sticking.
  • the mandrel the surface of which, insofar as it serves for forming, corresponds to a negative image of the inner surface of the hollow block, must rotate with the agglomerate formed so that the withdrawal movement is not blocked. The removal can be facilitated by making the mandrel slightly conical in the withdrawal direction.
  • a mandrel is advantageously used, the surface of which is cylindrical only in a partial area, namely on the side facing the atomizing jet.
  • the partial lateral surface of this cylinder extends - viewed in cross section from the cylinder axis - over a circular sector with an opening angle of less than 180 °.
  • the remaining surface areas of the mandrel, as far as they are on the side of the agglomerate to be removed, z. B. just be flat (prismatic); they only have to lie within the imaginary cylinder, ie within the cylinder corresponding to the inner surface of the hollow block. This shape prevents the agglomerate that forms from shrinking onto the mandrel.
  • the agglomerate already formed is removed in a continuous withdrawal movement, this withdrawal movement being carried out in a helical manner.
  • the agglomerate is therefore not only pulled off the mandrel in a longitudinal movement, but is also rotated about the longitudinal axis of the mandrel at the same time.
  • the spray jet is directed onto the pushed-on head area of the start-up piece, so that the melt particles combine with this start-up piece. As a result, it is easily possible to transfer the withdrawal movement to the resulting deposit.
  • the start-up piece is beveled conically on the outside in the head area, it may also be useful to provide pins or grooves in this beveled area, which ensure a positive connection of the start-up piece with the deposit produced.
  • This head part of the approach piece should be designed to be easily exchangeable, since it is separated from the hollow cylinder before it is further processed.
  • agglomerate that forms must not adhere to the boundary surfaces, but must slide over these surfaces in the withdrawal movement, it is advantageous to use these surfaces, for. B. to coat with hard metal or ceramic or to vaporize with hard materials (z. B. Titanium nitride, titanium oxide, aluminum oxide). At the very least, they should be hardened and therefore have increased wear resistance so that their roughness remains low for as long as possible. It is also beneficial to cool the boundary surfaces. For this purpose, appropriate cooling channels for the passage of a cooling medium should be provided, especially in areas near the surface.
  • FIG. 1 shows a device for producing blocks of any length with any cross-sectional shape.
  • the starting piece 8 the head of which can be exchanged and the cross section of which corresponds over its entire length to that of the block to be produced, is held by a plurality of rollers 20 pressed by spring force and driven in the longitudinal direction by these.
  • the rollers 20 are themselves mounted in a cage 21 which can be rotated in the housing 22 and which transfers the rotary movement to the starting piece 8.
  • the drives for the rollers 20, the cage 21 and the carriage 17 are not shown.
  • a simultaneous rotary and longitudinal movement can be achieved in blocks 10, provided that they have a circular cross section, in that the axes of the driving rollers 20 are arranged pivotably and are inclined to the longitudinal axis of the starting piece 8.
  • boundary surfaces are used to form the lateral surfaces of the block.
  • the particles of the atomizing jet 6 are collected by the collecting surface 7 of the starting piece 8, which is located in the bush 23 at the beginning of the spraying process.
  • This bushing 23 determines the outer contour of the block 10 and is rotatably mounted (for example by means of ball bearings 24) via a receptacle 19 in the housing 22.
  • an oscillating movement in the direction of the longitudinal axis of the approach piece 8 is advantageously given to the sleeve 23 via the receptacle 19.
  • the drive for this is not shown.
  • the receptacle 19 is arranged fixedly in relation to the housing 22.
  • the starting head 8 executes the rotary and longitudinal movement. It can have any cross-sectional shape, e.g. B. circle or square, and transmits the rotational movement to the bushing 23 receiving the block 10.
  • a rotatable mounting of the bushing 23 is not necessary, since such a block can also rotate in a stationary cylindrical bushing 23.
  • FIG. 2 shows an advantageous embodiment for the production of blocks with a circular cross section.
  • a sleeve 18, which is closed only in the area of incidence of the atomizing jet 6, has the shape of a partial hollow cylinder and is fixed in place with regard to the rotational and longitudinal movement of the starting piece 8.
  • the bushing 18 perform an oscillating movement about its inherently fixed central position, namely as a longitudinal and / or rotational movement with respect to the axis of rotation of the approach piece 8.
  • FIG. 3 the essential components of a device according to the invention for the production of hollow blocks are shown without the trigger device.
  • the atomizing jet 6 strikes a mandrel 27 which is arranged in a stationary manner below the ring slot nozzle 5.
  • the mandrel 27 has a partially cylindrical surface 28 in the region facing the atomizing jet 6, as can be seen in FIG. 5.
  • the partial jacket surface of this cylinder extends in cross-section over an angle of approximately 135 °. In the remaining area, the mandrel 27 is made smaller than the imaginary cylinder belonging to its partial cylinder surface.
  • the removable head piece 25 of a starting piece 8 designed as a cylindrical hollow shaft is pushed onto the mandrel 27.
  • the head piece 25 is fastened to the hollow shaft 8 with a screw 26.
  • the head piece 25 is flattened conically in its end region.
  • the atomization jet 6 strikes the conical region of the head piece 25 and forms the deposit 10 there.
  • the deposit 10 connects to the head piece 25 and is additionally held in a form-fitting manner by the pin 9.
  • the deposit 10 is subject to a continuous helical withdrawal movement.
  • this is transmitted by a trigger device (not shown) via the approach piece 8, 25, 26.
  • the withdrawal movement is taken up directly by the already solidified part of the hollow cylinder.
  • a metallic hollow cylindrical block of "infinite" length is created. Its inner surface is comparatively smooth thanks to the shape of the cylindrical part of the mandrel, while its outer surface has been freely shaped by the atomizing jet 6 and is therefore rough.
  • the extraction device used to produce cylindrical hollow blocks is advantageously one in which the extraction movement is transmitted to the agglomerate to be extracted by means of disks, wheels or rollers, the axis angle setting and speed of which can be regulated.
  • the desired feed per revolution can be set by changing the axis angle, while the speed of the movement can be set by changing the speed. Under otherwise constant conditions, this is decisive for the resulting wall thickness of the hollow cylinder.

Claims (31)

1. Procédé pour réaliser un bloc métallique plein ou creux, dont la longueur est au moins double de sa dimension transversale caractéristique (par exemple diamètre ou diagonale), par pulvérisation de métal fondu au moyen de gaz comprimé et collecte des particules pulvérisées sur une surface de réception, la zone d'impact du jet de pulvérisation de métal fondu balayant régulièrement la surface de réception pour former par couches un agglomérat continu pendant la pulvérisation alors que la surface de réception est en rotation constante autour d'un axe de rotation, la direction du jet de pulvérisation étant réglée à un angle entre 90° et 180° par rapport à l'axe de rotation, une pièce de démarrage étant de plus seulement utilisée au début du procédé comme surface de réception et l'agglomérat qui se forme (au début du procédé conjointement avec la pièce de démarrage) étant tiré, de façon continue, en direction de l'axe de rotation, et les zones de surface, s'étendant en direction longitudinale, du bloc produit étant formées au moins partiellement par une surface de limitation disposée généralement parallèlement à l'axe de rotation,
caractérisé en ce que la surface de limitation, par rapport au mouvement de tirage, est maintenue stationnaire, et en ce que l'agglomérat, pendant la pulvérisation, est tiré en glissant sur la surface de limitation.
2. Procédé selon la revendication 1,
caractérisé en ce que la distance entre la buse de pulvérisation et la zone d'impact est maintenue constante.
3. Procédé selon une des revendications 1 ou 2,
caractérisé en ce que, pour créer des couches les plus uniformes possibles des particules pulvérisées, la surface de réception est déplacée, pendant la pulvérisation, selon des mouvements pendulaires à peu près perpendiculaires à la direction du jet de pulvérisation.
4. Procédé selon une des revendications 1 à 3,
caractérisé en ce que, pour créer un profilé cylindrique plein, la surface de limitation entourant étroitement la surface de réception est cylindrique et est tournée avec la pièce de démarrage, respectivement l'agglomérat.
5. Procédé selon la revendication 4,
caractérisé en ce que la surface de limitation n'est qu'une partie d'une enveloppe cylindrique et, par rapport à la rotation de la pièce de démarrage ou de l'agglomérat, est maintenue fixe en rotation.
6. Procédé selon une des revendications 1 à 3,
caractérisé en ce que, pour créer un bloc creux, on pulvérise en direction d'une surface de limitation réalisée sous forme d'un mandrin, dont la surface externe correspond à la surface interne du bloc creux.
7. Procédé selon la revendication 6,
caractérisé en ce que le mandrin est tourné, pendant la pulvérisation, conjointement à l'agglomérat autour de son axe longitudinal.
8. Procédé selon la revendication 6,
caractérisé en ce que, pour créer un bloc creux cylindrique, on utilise un mandrin présentant une forme cylindrique seulement du côté proche du jet de pulvérisation, mandrin qui, pendant la pulvérisation, ne tourne pas avec la surface de réception.
9. Procédé selon une des revendications 6 à 8,
caractérisé en ce que, au début du procédé, une pièce de démarrage creuse est poussée sur le mandrin, pièce dont la surface interne correspond, au moins à l'extrémité poussée, à celle du bloc à créer, et en ce que, lors du commencement du mouvement de traction, le jet de pulvérisation fait tout d'abord impact sur la partie poussée de la pièce de démarrage.
10. Procédé selon la revendication 1 ou une des revendications 4 à 9,
caractérisé en ce que la surface de limitation exécute, pendant la pulvérisation, un mouvement longitudinal oscillant en direction de l'axe de rotation de la surface de réception.
11. Procédé selon une des revendications 5 ou 8,
caractérisé en ce que la surface de limitation exécute, pendant la pulvérisation, un mouvement de rotation oscillant autour de l'axe de rotation de la surface de réception.
12. Procédé selon la revendication 1 ou une des revendications 4 à 11,
caractérisé en ce que la surface de limitation est refroidie.
13. Dispositif pour la mise en oeuvre du procédé selon la revendication 1, comportant un dispositif pour pulvériser à l'aide de gaz un métal fondu et une surface de réception pour les particules pulvérisées, entraînée en rotation par moteur, disposée sous la buse de pulvérisation en regardant dans la direction de pulvérisation, la surface de réception, qui est entourée au moins partiellement d'une surface de limitation s'étendant généralement parallèlement à son axe de rotation, étant disposée, au début de la pulvérisation, sur une pièce de démarrage et la pièce de démarrage, ou l'agglomérat formé par la pulvérisation, pouvant être ramené en direction de l'axe de rotation au moyen d'un dispositif moteur, et l'axe de rotation étant incliné, par rapport au dispositif de pulvérisation de la buse, d'un angle a supérieur à 90° mais inférieur à 180°,
caractérisé en ce que la surface de limitation (18, 23, 28), par rapport au mouvement de rappel, est stationnaire, en ce qu'elle est montée de façon coulissante par rapport à la pièce de démarrage (8, 25) et présente une surface sur laquelle l'agglomérat ne reste pas collé.
14. Dispositif selon la revendication 13,
caractérisé en ce que l'inclinaison de l'axe de rotation de la pièce de démarrage (8) est réglable par un dispositif de pivotement (16).
15. Dispositif selon une des revendications 13 ou 14,
caractérisé en ce que la pièce de démarrage (8) est déplaçable perpendiculairement à la direction de pulvérisation au moyen d'un chariot (17).
16. Dispositif selon la revendication 15,
caractérisé en ce que la surface de limitation (23) est montée rotative conjointement avec la pièce de démarrage.
17. Dispositif selon la revendication 15,
caractérisé en ce que la pièce de démarrage (8) dont la tête présente une section transversale circulaire n'est entourée que partiellement par la surface de limitation (18), qui présente la forme d'une partie d'une enveloppe interne de cylindre.
18. Dispositif selon une des revendications 13 à 17,
caractérisé en ce que, pour créer un bloc creux, un mandrin (27) est disposé, dans la zone du jet de pulvérisation (6) de la buse (5), en tant que surface de limitation, dont la surface d'enveloppe correspond, au moins partiellement, à la surface interne du bloc à créer, la surface d'enveloppe pouvant être réalisée de façon légèrement conique, en s'écartant de la forme géométrique idéale.
19. Dispositif selon la revendication 18,
caractérisé en ce que le mandrin (27) est rotatif autour de l'axe de rotation de la pièce de démarrage (8).
20. Dispositif selon la revendication 18,
caractérisé en ce que le mandrin (27) présente une surface d'enveloppe (28) généralement cylindrique et est disposé fixe en rotation contrairement à la pièce de démarrage rotative (8).
21. Dispositif selon la revendication 20,
caractérisé en ce que la surface du mandrin (27) est cylindrique seulement sur le côté proche du jet de pulvérisation (6), la surface d'enveloppe partielle (28) du cylindre - en coupe transversale - s'étendant sur un secteur de cercle ayant un angle d'ouverture inférieur à 180° et les zones restantes de la surface du mandrin (27) se trouvant à l'intérieur du cylindre imaginaire.
22. Dispositif selon une des revendications 18 à 21,
caractérisé en ce que la fixation du mandrin (27) est réglable, pour le réglage de l'angle a entre l'axe longitudinal du mandrin (27) et l'axe central du jet de pulvérisation (6).
23. Dispositif selon une des revendications 13 à 22,
caractérisé en ce que la surface de limitation (18, 23), ou le mandrin (27), est déplaçable, par l'intermédiaire d'un excitateur d'oscillation, selon un mouvement longitudinal oscillant en direction de l'axe de rotation de la pièce de démarrage (8).
24. Dispositif selon une des revendications 17, 20 ou 21,
caractérisé en ce que le mandrin (27), ou la surface de limitation cylindrique (18), est déplaçable, par l'intermédiaire d'un excitateur d'oscillation, selon un mouvement rotatif oscillant autour de l'axe de rotation de la pièce de démarrage (8).
25. Dispositif selon une des revendications 13 à 24,
caractérisé en ce que le mandrin (27), ou la surface de limitation (18, 23), est traversé de canaux (29) pour le passage d'un fluide de refroidissement.
26. Dispositif selon une des revendications 13 à 25,
caractérisé en ce que le mandrin (27), ou la surface de limitation (18,23), est durci.
27. Dispositif selon une des revendications 13 à 25,
caractérisé en ce que le mandrin (27), ou la surface de limitation (18, 23), est métallisé avec des substances dures (par exemple du nitrure de titane, de l'oxyde de titane, de l'oxyde d'aluminium).
28. Dispositif selon une des revendications 13 à 25,
caractérisé en ce que le mandrin (27), ou la surface de limitation (18, 23), est enrobé de céramique ou de métal dur.
29. Dispositif selon une des revendications 13 à 28,
caractérisé en ce que la tête (25) de la pièce de démarrage (8) est échangeable.
30. Dispositif selon une des revendications 13 à 29,
caractérisé en ce que le dispositif moteur pour le rappel de la pièce de démarrage (8) est réalisé sous forme d'entraînement à galets (20).
31. Dispositif selon la revendication 30,
caractérisé en ce que les axes de rotation des galets (20) sont pivotants.
EP85730135A 1984-12-21 1985-10-02 Procédé et appareil pour la fabrication d'un bloc métallique Expired EP0188994B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3447557A DE3447557A1 (de) 1984-12-21 1984-12-21 Verfahren und vorrichtung zur herstellung eines hohlzylinders durch zerstaeuben einer metallschmelze
DE3447557 1984-12-21
DE3517691 1985-05-14
DE19853517691 DE3517691A1 (de) 1985-05-14 1985-05-14 Verfahren und vorrichtung zum herstellen eines metallischen blockes

Publications (2)

Publication Number Publication Date
EP0188994A1 EP0188994A1 (fr) 1986-07-30
EP0188994B1 true EP0188994B1 (fr) 1989-07-12

Family

ID=25827824

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85730135A Expired EP0188994B1 (fr) 1984-12-21 1985-10-02 Procédé et appareil pour la fabrication d'un bloc métallique

Country Status (3)

Country Link
US (1) US4697631A (fr)
EP (1) EP0188994B1 (fr)
DE (1) DE3571466D1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0225732B1 (fr) * 1985-11-12 1992-01-22 Osprey Metals Limited Production de dépôts projetés de métaux liquides
DE3617833C1 (de) * 1986-05-27 1987-09-03 Mannesmann Ag Verfahren zum Herstellen von rotationssymmetrischen Hohlkoerpern
GB8629373D0 (en) * 1986-12-09 1987-01-21 Alcan Int Ltd Billet/tube
BE1000691A7 (fr) * 1987-07-14 1989-03-14 Centre Rech Metallurgique Procede de fabrication de cylindre multicouches et cylindre obtenu.
WO1989012115A1 (fr) * 1988-06-06 1989-12-14 Osprey Metals Limited Procede de depot par pulverisation
DE3905873C1 (fr) * 1989-02-03 1990-02-08 Mannesmann Ag, 4000 Duesseldorf, De
SG80596A1 (en) * 1998-08-04 2001-05-22 Nat Iniversity Of Singapore Metastable aluminium-titanium materials
US6496529B1 (en) 2000-11-15 2002-12-17 Ati Properties, Inc. Refining and casting apparatus and method
US8891583B2 (en) * 2000-11-15 2014-11-18 Ati Properties, Inc. Refining and casting apparatus and method
FI20021835A0 (fi) * 2002-10-16 2002-10-16 Valtion Teknillinen Kuumamuokkausteräkset muotin inserttien ruiskumuovaukseen
CN1304149C (zh) * 2002-10-16 2007-03-14 天津理工学院 复合材料喷射成形中心掺混式喷嘴
KR100644359B1 (ko) 2004-06-04 2006-11-10 한성석 금속적층체 제조장치
US7350558B2 (en) * 2004-10-22 2008-04-01 Grigoriy Grinberg Method of venting a spray metal mold
US7521652B2 (en) * 2004-12-07 2009-04-21 3D Systems, Inc. Controlled cooling methods and apparatus for laser sintering part-cake
US8748773B2 (en) * 2007-03-30 2014-06-10 Ati Properties, Inc. Ion plasma electron emitters for a melting furnace
JP5690586B2 (ja) 2007-03-30 2015-03-25 エイティーアイ・プロパティーズ・インコーポレーテッド ワイヤ放電イオンプラズマ電子エミッタを含む溶解炉
US7798199B2 (en) 2007-12-04 2010-09-21 Ati Properties, Inc. Casting apparatus and method
US20100155985A1 (en) 2008-12-18 2010-06-24 3D Systems, Incorporated Apparatus and Method for Cooling Part Cake in Laser Sintering
US20100242843A1 (en) 2009-03-24 2010-09-30 Peretti Michael W High temperature additive manufacturing systems for making near net shape airfoils leading edge protection, and tooling systems therewith
US8747956B2 (en) 2011-08-11 2014-06-10 Ati Properties, Inc. Processes, systems, and apparatus for forming products from atomized metals and alloys
US8652707B2 (en) 2011-09-01 2014-02-18 Watt Fuel Cell Corp. Process for producing tubular ceramic structures of non-circular cross section
CN102676974A (zh) * 2012-06-11 2012-09-19 山东理工大学 薄板的一种热喷涂镀锌方法
CN103243324B (zh) * 2013-05-23 2015-08-26 沈阳航空航天大学 一种多自由度数控冶金射流直接成形的制备方法和设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE810223C (de) * 1949-04-14 1951-08-06 Deutsche Edelstahlwerke Ag Verfahren zur Herstellung metallischer Formkoerper
US4066117A (en) * 1975-10-28 1978-01-03 The International Nickel Company, Inc. Spray casting of gas atomized molten metal to produce high density ingots
GB1599392A (en) * 1978-05-31 1981-09-30 Osprey Metals Ltd Method and apparatus for producing workable spray deposits
CA1188481A (fr) * 1982-12-15 1985-06-11 Atsumi Ohno Coulee continue de metal
JPS59229262A (ja) * 1983-06-13 1984-12-22 O C C:Kk 金属成形体の横向き式連続鋳造法および装置

Also Published As

Publication number Publication date
EP0188994A1 (fr) 1986-07-30
US4697631A (en) 1987-10-06
DE3571466D1 (en) 1989-08-17

Similar Documents

Publication Publication Date Title
EP0188994B1 (fr) Procédé et appareil pour la fabrication d'un bloc métallique
DE2252139C3 (de) Verfahren zum herstellen von praezisionsformkoerpern aus metall oder einer legierung durch aufspruehen
DE4106964C2 (de) Vorrichtung und Verfahren zum Herstellen von Formhäuten und -körpern aus Kunststoff
DE2537103A1 (de) Verfahren und vorrichtung zur herstellung von gespruehten metallkoerpern
DE3127348C2 (de) Verfahren zum Kühlen eines Gußstrangs in einer Bogenstranggießanlage
CH348241A (de) Stranggiessverfahren und Maschine zu dessen Durchführung
DE3306142C2 (de) Verfahren zur Herstellung eines zweiphasigen oder mehrphasigen metallischen Materials
EP0156760B1 (fr) Procédé et installation pour la fabrication d'un outil de travail à chaud
DE3617833C1 (de) Verfahren zum Herstellen von rotationssymmetrischen Hohlkoerpern
DE3927854C2 (de) Verfahren zur Herstellung einer Innenauskleidung eines Hohlraumes sowie Legierung zur Herstellung dieser Innenauskleidung
DE2719710A1 (de) Verfahren zum giessen kontinuierlicher faeden mit abschreckwalze und vorrichtung zur durchfuehrung des verfahrens
DE2606600C3 (de) Metallurgische Form, Verfahren zu ihrer Herstellung und Vorrichtung zur Durchführung des Verfahrens
EP2024654B1 (fr) Procédé de fabrication d'un composant de palier à roulement
EP0767760B2 (fr) Procede de fabrication de pieces moulees en verre par moulage par compression et dispositif particulierement approprie pour la mise en oeuvre de ce procede
DE2811116A1 (de) Verfahren und vorrichtung zum schleudergiessen
DE2823330C2 (fr)
DE817636C (de) Schleudergiessverfahren
DE3447557A1 (de) Verfahren und vorrichtung zur herstellung eines hohlzylinders durch zerstaeuben einer metallschmelze
EP0594633B1 (fr) Procede et dispositif pour la fabrication de rubans et de pieces composees en metal
DE2434850C3 (de) Verfahren zum Herstellen von Rohrluppen
DE960126C (de) Verfahren zum Stranggiessen von beliebig langen Hohlkoerpern, insbesondere Rohren
DE2263268B2 (de) Verfahren zur herstellung von aluminium-blei-legierungen
DE1924418A1 (de) Verfahren und Vorrichtung zum Herstellen von Erzeugnissen aus Metall
DE3517691A1 (de) Verfahren und vorrichtung zum herstellen eines metallischen blockes
DE2024500C3 (de) Verfahren und Vorrichtung zur Herstellung von Gegenstanden aus geschmolzener Keramikmasse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19860710

17Q First examination report despatched

Effective date: 19870728

ITF It: translation for a ep patent filed

Owner name: GUZZI E RAVIZZA S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3571466

Country of ref document: DE

Date of ref document: 19890817

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930913

Year of fee payment: 9

ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 85730135.2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950914

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950922

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951114

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961003

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970701

EUG Se: european patent has lapsed

Ref document number: 85730135.2