EP0188730A2 - Membranpumpe mit hydraulisch angetriebener Rollmembran - Google Patents

Membranpumpe mit hydraulisch angetriebener Rollmembran Download PDF

Info

Publication number
EP0188730A2
EP0188730A2 EP85115807A EP85115807A EP0188730A2 EP 0188730 A2 EP0188730 A2 EP 0188730A2 EP 85115807 A EP85115807 A EP 85115807A EP 85115807 A EP85115807 A EP 85115807A EP 0188730 A2 EP0188730 A2 EP 0188730A2
Authority
EP
European Patent Office
Prior art keywords
rolling
membrane
support
pressure chamber
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85115807A
Other languages
English (en)
French (fr)
Other versions
EP0188730B1 (de
EP0188730A3 (en
Inventor
Horst Dipl.-Ing. Fritsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lewa GmbH
Lewa Herbert Ott GmbH and Co KG
Original Assignee
Lewa GmbH
Lewa Herbert Ott GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6253563&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0188730(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Lewa GmbH, Lewa Herbert Ott GmbH and Co KG filed Critical Lewa GmbH
Publication of EP0188730A2 publication Critical patent/EP0188730A2/de
Publication of EP0188730A3 publication Critical patent/EP0188730A3/de
Application granted granted Critical
Publication of EP0188730B1 publication Critical patent/EP0188730B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/06Pumps having fluid drive
    • F04B43/067Pumps having fluid drive the fluid being actuated directly by a piston

Definitions

  • the invention relates to a diaphragm pump with a membrane designed as a rolling diaphragm, which separates a delivery chamber from a liquid-filled pressure chamber and is firmly clamped with its peripheral edge between a housing body and a pump cover, and with an oscillating hydraulic piston, which is located in a bore of the housing body between the pressure chamber and a hydraulic reservoir for membrane actuation is displaceable, the rolling membrane alternately rolling or rolling on an outer rolling cylinder formed by the wall of the pressure chamber, which is formed by the peripheral surface of an axially displaceable support piston for the rolling membrane, the end face with the associated surface section the rolling membrane is connected.
  • Flat or pre-formed plate-shaped flat membranes are used for high-pressure diaphragm pumps, the diaphragms of which are actuated exclusively hydraulically. These can either be made of plastic with an operating limit of up to approx. 350 bar delivery pressure or of metal with an application limit of up to 3000 bar delivery pressure.
  • the flat membrane made of plastic is the advantage a high elasticity and thus a large deflection, so that such plastic flat membranes have relatively small diameters. However, they still result in much larger pump head diameters than a piston pump with the same power. The price difference between piston pump and diaphragm pump is correspondingly large.
  • diaphragm shapes in diaphragm pumps, particularly those for high delivery pressures, which allow larger deflections and thus smaller diameters than flat diaphragms.
  • a diaphragm pump of the aforementioned type with a diaphragm designed as a rolling diaphragm is now known, the rolling diaphragm alternately rolling on and off an outer rolling cylinder formed by the wall of the pressure chamber and an inner rolling cylinder which is axially defined by the circumferential surface of an Pressure chamber displaceable support piston for the rolling membrane is formed, the end face of which is connected to the associated surface section of the rolling membrane.
  • a so-called liquid support for the roll membrane is provided at the transition point between the outer and inner roll cylinder.
  • a liquid support disadvantageously disregards the fact that a rolling membrane is relatively sensitive to pressure differences that occur and therefore always requires adequate support. This applies in particular to the rear limit position of the rolling diaphragm at the end of the piston suction stroke, since it is in this rear limit position, the leakage supplementation, which is brought about via the snifting valve of the pump, and possibly also ventilation or degassing, is carried out.
  • the rolling diaphragm In this state of sniffing the pump, however, the rolling diaphragm must be supported in a flawless manner or be able to put it on at a suitable point, since the sniffer valve only responds when there is a sufficient pressure difference between the hydraulic pressure chamber and the delivery chamber. However, this means that the rolling diaphragm is relatively heavily stressed at this moment if it is not properly supported. In an extreme case, a pressure difference can act on the diaphragm in its rear limiting position, which corresponds to the full delivery pressure of the pump, for example 350 bar. This can occur if, for example, when the pump is at a standstill due to slight leakage, the pressure valve in the pump work space sets the system pressure equal to the delivery pressure of the pump. For safety reasons, the roll membrane must be able to withstand this stress.
  • the invention is therefore based on the object of eliminating the diaphragm pump of the generic type to design the disadvantages described in such a way that the rolling diaphragm withstands the high stresses that may occur there, caused in particular by large pressure differences, even in its rear limiting position.
  • the diaphragm pump according to the invention with a hydraulically driven rolling diaphragm is also advantageously suitable for high delivery pressures, with the rolling diaphragm being properly supported in the rear limiting position; this reliably prevents damage to the roller membrane when pressure is applied to the conveyor side.
  • a completely gap-free contact surface is thus provided for the rolling membrane, which is formed by the corresponding surfaces of the pressure chamber and the support mushroom for the rolling membrane when the rolling membrane is in its rear limiting position.
  • Such a surface naturally has no bores. This is from be of particular importance in order to prevent the roller diaphragm from contacting such bores with a prevailing pressure difference when the pump is in the sniffing state.
  • the invention also makes it possible to use much smaller membrane diameters. This has the advantage of an extremely inexpensive construction, since a significantly smaller space is required. This is not least due to the fact that due to the much larger deflection of a rolling membrane compared to a flat membrane, the hydraulic cylinder used for the membrane drive can also have a significantly smaller diameter, so that the area under pressure is thereby smaller. In addition, the screw forces required for the pump are significantly reduced. This also makes a significant contribution to reducing the cost of a diaphragm pump with a rolling diaphragm.
  • a rolling membrane is basically a stocking-shaped rubber membrane that has an extremely long service life, since it can roll up and down with great frequency without breaking.
  • the rolling membrane which is made of a rubber-like material, accordingly rolls alternately on the outer rolling cylinder formed by the wall of the pressure chamber and on the inner rolling cylinder which is formed by the outer peripheral surface of the axially displaceable support mushroom. This rolling up and down of the rolling membrane takes place like the movement of a stocking or a sock when putting on and taking off.
  • the invention makes it possible for the first time to use rolling diaphragms in diaphragm pumps in which, in particular, higher delivery pressures have to be mastered and thus a hydraulic diaphragm drive is advantageous in order to ensure that a balanced pressure prevails on both sides of the diaphragm.
  • the configuration is such that the end faces of the support mushroom are firmly connected to the assigned surface section of the rolling diaphragm.
  • the inner unrolling cylinder is designed in such a way that in the rear limiting position of the rolling membrane, together with the outer unrolling cylinder, it forms a completely gap-free support surface which is adapted to the natural deformation and rolling geometry of the rolling membrane.
  • the support mushroom in the rear limiting position is at least partially immersed in a pressure chamber section of smaller diameter, which adjoins the pressure chamber section of the larger diameter forming the outer rolling cylinder to form a support shoulder for the rolling membrane.
  • the stop for limiting the rear position of the support mushroom is expediently formed by an annular shoulder in the housing body, which is provided at the end of the ' pressure chamber section of smaller diameter.
  • the support mushroom has a guide rod which ensures an exactly central axial movement of the support mushroom.
  • the support mushroom or its guide rod has no mechanical connection with the hydraulic piston. This means that the support mushroom is only moved back and forth by the rolling membrane.
  • the support mushroom which is therefore independent of the kinematics of the hydraulic piston, fulfills two functions. On the one hand, it allows the rolling membrane to roll, which, when rolling, requires an outer roll cylinder formed by the wall of the pressure chamber and an inner roll cylinder formed by the outer circumferential surface of the support mushroom. On the other hand, the support mushroom fulfills the function of supporting the roll membrane.
  • the design according to the invention is made such that in the rear limiting position of the rolling membrane such an overall contour of the supporting mushroom including the pressure chamber is formed such that a gap-free area has been created and the rolling membrane is therefore only pressed against completely smooth surfaces when a pressure difference occurs and accordingly not is at risk of damage.
  • the diameter of the rolling membrane can be of the order of magnitude Diameter of the hydraulic piston, so that the screw forces required for the diaphragm pump are much smaller. For example, reducing the diaphragm diameter to half the previous diameter results in a reduction of the screw forces to a quarter of the previous effort.
  • the diaphragm pump shown has a pump housing in the form of a housing body 2 which is closed at the end by a pump cover 1 and in which an oscillating hydraulic piston 3 operates as a hydraulic diaphragm drive. This can be pushed back and forth in a bore 4 of the housing body and separates a pressure chamber 5 from a hydraulic reservoir 6.
  • a rolling membrane 7 is firmly clamped with its peripheral edge, which separates the pressure chamber 5 from a delivery chamber 8 in the manner shown in the drawing.
  • the pressure chamber 5 is completely hydraulic liquid filled, so that when the hydraulic piston 3 is pushed back and forth the rolling diaphragm 7 is actuated in a corresponding manner and acts on the delivery chamber 8 in the sense of a suction stroke or pressure stroke.
  • the pump cover 1 has a spring-loaded suction valve 9 and a spring-loaded pressure valve 10. These valves 9, 10 are connected via an inlet channel 11 or an outlet channel 12 to the delivery chamber 8 in such a way that the conveying medium during the suction stroke of the rolling membrane 7 to the right as shown in the drawing in the direction of arrow A via the suction valve 9 and the inlet channel 11 is sucked into the delivery chamber 8. In contrast, when the pressure stroke of the rolling membrane 7 to the left as shown in the drawing, the pumped medium is pressed out of the pump chamber 8 in a metered manner in the direction of arrow B via the outlet channel 12 and the pressure valve 10.
  • a support mushroom 13 is arranged axially displaceably within the pressure chamber 5 and has a guide rod 14 projecting axially backwards in the direction of the hydraulic piston 3. This is guided in an eye 15 arranged centrally in the pressure chamber 5 in such a way that an exactly central axial movement of the supporting mushroom 13 is ensured.
  • the support mushroom 13 is connected on its end face to the assigned surface section of the rolling membrane 7, so that the support mushroom 13 thereby follows the axial displacement movement of the rolling membrane 7.
  • the rolling surface required for the rolling membrane 7 is by an outer rolling cylinder and a inner roll cylinder formed.
  • the peripheral wall 16 of the pressure chamber 5 represents the outer rolling cylinder
  • the inner rolling cylinder is formed by the outer peripheral surface 17 of the support mushroom 13.
  • a pressure chamber section 5 'of smaller diameter adjoins the actual pressure chamber 5 axially rearwards in the direction of the hydraulic piston 3, a support shoulder 18 for the rolling membrane 7 being formed between the two pressure sections 5, 5'.
  • this support shoulder 18 is concave and has a radius of curvature which corresponds to the radius of curvature of the rolling membrane 7 in its rolling region.
  • the diameter and the depth of the smaller pressure chamber section 5 ' are held in such a way that the support mushroom 13 in the rear boundary position according to FIG. 3 is for the most part immersed in this smaller pressure chamber section 5'.
  • the front part of the support mushroom 13 protrudes only so far out of the smaller pressure chamber section 5 'that only the rounded surface section 19 of the support mushroom 13, which forms the transition between the end face and the outer peripheral surface 17 of the support mushroom 13, is located in the larger pressure chamber section 5.
  • this gap-free support surface is composed of the outer roll cylinder, formed by the peripheral wall 16 of the pressure chamber 5, the support shoulder 18 and the rounded surface section 19 or the inner roll cylinder 17 of the support mushroom 13 including the support mushroom end face.
  • An annular shoulder 20 is provided as a stop to limit the rear position of the support mushroom 13, which is formed in the housing body 2 at the axially rear end of the pressure chamber section 5 'of smaller diameter.
  • a combined gas discharge and pressure limiting valve 21 is connected to the hydraulic reservoir 6, which in turn opens via a channel 22 into the pressure chamber section 5 'of smaller diameter.
  • 13 radial flow channels 26 are provided in the peripheral wall 25 of the support mushroom. These are arranged such that they are completely immersed in the pressure chamber section 5 'of smaller diameter in the rear limiting position of the rolling membrane 7 or the support mushroom 13 according to FIG. 3. This also ensures that a completely gap-free support surface is formed in the rear boundary position of the rolling membrane 7.
  • a sniffer valve 23 is also provided, which connects the hydraulic reservoir 6 via a channel 24 to the pressure chamber section 5 'of smaller diameter.
  • This channel 24 is arranged so that the connection to the hydraulic reservoir 6 via an annular groove 27 and a bore 28 in the mushroom guide rod 14 is only made when the mushroom 13 has reached the rear limit position, as shown in Fig. 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Bei einer Membranpumpe mit einer als Rollmembran ausgebildeten Membran, die einen Förderraum von einem flüssigkeitsgefüllten Druckraum trennt und mit ihrem Umfangsrand fest zwischen einem Gehäusekörper sowie einem Pumpendeckel eingespannt ist, und mit einem oszillierenden Hydraulikkolben, der in einer Bohrung des Gehäusekörpers zwischen dem Druckraum und einem Hydraulikvorratsraum zur Membranbetätigung verschiebbar ist, rollt sich die Rollmembran abwechselnd auf einem durch die Wand des Druckraums gebildeten äußeren Abrollzylinder und einem inneren Abrollzylinder ab bzw. auf, der durch die Umfangsfläche eines axial im Druckraum verschiebbaren Stützkolbens für die Rollmembran gebildet ist, dessen Stirnfläche mit dem zugeordneten Flächenabschnitt der Rollmembran verbunden ist. Hierbei geht der innere Abrollzylinder des als Stützpilz ausgebildeten Stützkolbens in der hinteren Begrenzungslage der Rollmembran über eine Abstützschulter in den äußeren Abrollzylinder über, die zusammen mit den beiden Abrollzylindern zur vollständig mechanischen Abstützung der Rollmembran eine völlig spaltfreie, an die natürliche Verformungs- und Abrollgeometrie der Rollmembran angepaßte Abstützfläche bildet.

Description

  • Die Erfindung betrifft eine Membranpumpe mit einer als Rollmembran ausgebildeten Membran, die einen Förderraum von einem flüssigkeitsgefüllten Druckraum trennt und mit ihrem Umfangsrand fest zwischen einem Gehäusekörper sowie einem Pumpendeckel eingespannt ist, und mit einem oszillierenden Hydraulikkolben, der in einer Bohrung des Gehäusekörpers zwischen dem Druckraum und einem Hydraulikvorratsraum zur Membranbetätigung verschiebbar ist, wobei die Rollmembran sich abwechselnd auf einem durch die Wand des Druckraums gebildeten äußeren Abrollzylinder ab- bzw. aufrollt, der durch die Umfangsfläche eines axial im Druckraum verschiebbaren Stützkolbens für die Rollmembran gebildet ist, dessen Stirnfläche mit dem zugeordneten Flächenabschnitt der Rollmembran verbunden ist.
  • Bei den bekannten Membranpumpen werden unterschiedlich geformte und abgestützte Membranen eingesetzt, wobei in Abhängigkeit von der Membranform und der Art der Abstützung ein maximal zulässiger Förderdruck festgelegt werden kann.
  • Für Hochdruckmembranpumpen, deren Membrane ausschließlich hydraulisch betätigt werden, gelangen ebene oder vorverformte plattenförmige Flachmembranen zur Anwendung. Diese können entweder aus Kunststoff mit einer Einsatzgrenze bis ca. 350 bar Förderdruck oder aus Metall mit einer Einsatzgrenze bis über 3000 bar Förderdruck bestehen.
  • Bei den verwendeten Flachmembranen aus Kunststoff ist zwar - im Gegensatz zur Metallmembran - der Vorteil einer hohen Elastizität und damit einer großen Auslenkung gegeben, so daß derartige Kunststoff-Flachmembranen relativ kleine Durchmesser aufweisen. Jedoch ergeben sie immer noch wesentlich größere Pumpenkopfdurchmesser als eine leistungsgleiche Kolbenpumpe. Entsprechend groß ist auch der Preisunterschied zwischen Kolbenpumpe und Membranpumpe.
  • Es ist daher wünschenswert, in Membranpumpen, insbesondere in solchen für hohe Förderdrücke, Membranformen einzusetzen, die größere Auslenkungen und damit kleinere Durchmesser gestatten als Flachmembranen.
  • Es ist nun schon eine Membranpumpe der vorstehend genannten Art mit einer als Rollmembran ausgebildeten Membran bekannt, wobei sich die Rollmembran abwechselnd auf einem durch die Wand des Druckraums gebildeten äußeren Abrollzylinder und einem inneren Abrollzylinder ab- bzw. aufrollt, der durch die Umfangsfläche eines axial im Druckraum verschiebbaren Stützkolbens für die Rollmembran gebildet ist, dessen Stirnfläche mit dem zugeordneten Flächenabschnitt der Rollmembran verbunden ist.
  • Bei einer derartigen bekannten Rollmembran ist an der Übergangsstelle zwischen äußerem und innerem Abrollzylinder eine sog. Flüssigkeitsabstützung für die Rollmembran vorgesehen. Eine solche Flüssigkeitsabstützung läßt jedoch in nachteiliger Weise unberücksichtigt, daß eine Rollmembran gegen auftretende Druckunterschiede relativ empfindlich ist und daher stets eine ausreichende Abstützung benötigt. Dies gilt besonders für die hintere Begrenzungslage der Rollmembran am Ende des Kolbensaughubes, da in dieser hinteren Begrenzungslage üblicherweise die über das Schnüffelventil der Pumpe bewirkte Leckergänzung und gegebenenfalls auch Entlüftung bzw. Entgasung erfolgt. In diesem Zustand des Nachschnüffelns der Pumpe muß sich aber die Rollmembran in einwandfreier Weise abstützen bzw. an einer geeigneten Stelle anlegen können, da ja das Schnüffelventil erst dann anspricht, wenn eine ausreichende Druckdifferenz zwischen Hydraulikdruckraum und Förderraum vorliegt. Dies bedeutet aber, daß die Rollmembran in diesem Augenblick relativ stark beansprucht wird, wenn sie nicht einwandfrei abgestützt ist. Im Extremfall kann auf die Membran in ihrer hinteren Begrenzungslage eine Druckdifferenz einwirken, die dem vollen Förderdruck der Pumpe, beispielsweise 350 bar, entspricht. Dieser Fall kann dann eintreten, wenn z.B. bei stillstehender Pumpe durch geringfügige Leckage das Druckventil sich im Pumpenarbeitsraum der Systemdruck gleich Förderdruck der Pumpe einstellt. Aus Sicherheitsgründen muß die Rollmembran diese Beanspruchung aber aushalten können.
  • Wie die Praxis gezeigt hat, ist jedoch die bekannte Flüssigkeitsabstützung nicht in der Lage, die vorgenannten Anforderungen in ausreichender Weise zu erfüllen. Dies hatte zur Folge, daß es bisher nicht gelungen ist, eine Rollmembran in solchen Membranpumpen anzuwenden, bei denen insbesondere höhere Förderdrücke zu bewältigen sind und bei denen somit ein hydraulischer Membranantrieb von Vorteil ist, um einen beidseits der Membran herrschenden ausgeglichenen Druck zu gewährleisten.
  • Der Erfindung liegt somit die Aufgabe zugrunde, die Membranpumpe der gattungsgemäßen Art zur Beseitigung der geschilderten Nachteile derart auszugestalten, daß die Rollmembran auch in ihrer hinteren Begrenzungslage den dort möglicherweise auftretenden hohen Beanspruchungen, verursacht insbesondere durch große Druckdifferenzen, standhält.
  • Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen hiervon sind in den weiteren Ansprüchen beschrieben.
  • Die erfindungsgemäß geschaffene Membranpumpe mit hydraulisch angetriebener Rollmembran eignet sich in vorteilhafter Weise auch für hohe Förderdrücke, wobei in der hinteren Begrenzungslage eine einwandfreie Abstützung der Rollmembran erfolgt; dadurch ist bei Druckbeaufschlagung auf der Förderseite eine Beschädigung der Rollmembran mit Sicherheit vermieden.
  • Aufgrund der erfindungsgemäß vorgesehenen vollständig mechanischen Abstützung der Rollmembran in deren hinterer Begrenzungslage ist es möglich, durch das übliche Schnüffelventil die im Druckraum auftretenden geringen Leckagen zu ergänzen, ohne daß die Gefahr besteht, daß die Rollmembran in dieser Lage aufgrund des dann gerade herrschenden Druckunterschiedes beschädigt wird.
  • Es ist somit eine völlig spaltfreie Anlagefläche für die Rollmembran vorgesehen, die dann, wenn sich die Rollmembran in ihrer hinteren Begrenzungslage befindet, durch die entsprechenden Flächen des Druckraumes und des Stützpilzes für die Rollmembran gebildet ist. Eine derartige Fläche weist selbstverständlich keinerlei Bohrungen auf. Dies ist von besonderer Bedeutung, um im Schnüffelzuständ der Pumpe ein Anliegen der Rollmembran an solchen Bohrungen bei einem herrschenden Druckunterschied zu verhindern.
  • Durch die Erfindung wird es außerdem ermöglicht, wesentlich kleinere Membrandurchmesser einzusetzen. Dies hat den Vorteil einer außerordentlich preisgünstigen Konstruktion, da ein erheblich geringerer Platzbedarf erforderlich ist. Das beruht nicht zuletzt darauf, daß aufgrund der im Vergleich zu einer Flachmembran wesentlich größeren Auslenkung einer Rollmembran der zum Membranantrieb dienende Hydraulikzylinder ebenfalls einen wesentlich kleineren Durchmesser aufweisen kann, so daß hierdurch die druckbeaufschlagte Fläche kleiner wird. Darüber hinaus werden die bei der Pumpe erforderlichen Schraubenkräfte entscheidend verringert. Auch dies trägt wesentlich zur Verbilligung einer Membranpumpe mit Rollmembran bei.
  • Wie bekannt, stellt eine Rollmembran grundsätzlich eine strumpfförmige Gummimembran dar, die eine außerordentlich große Lebensdauer aufweist, da sie mit großer Häufigkeit auf- und abrollen kann, ohne zu brechen. Die Rollmembran, die aus einem gummiartigen Material hergestellt ist, rollt demgemäß abwechselnd auf dem durch die Wand des Druckraums gebildeten äußeren Abrollzylinder und auf dem inneren Abrollzylinder ab, der durch die Außenumfangsfläche des axial verschiebbaren Stützpilzes gebildet ist. Dieses Auf- und Abrollen der Rollmembran vollzieht sich etwa wie die Bewegung eines Strumpfes oder einer Socke beim An- und Ausziehen.
  • Durch die Erfindung wird es erstmals möglich, Rollmembranen in solchen Membranpumpen anzuwenden, bei denen insbesondere höhere Förderdrücke zu bewältigen sind und somit ein hydraulischer Membranantrieb von Vorteil ist, um zu gewährleisten, daß beidseits der Membran ein ausgeglichener Druck herrscht.
  • Bei der erfindungsgemäßen Membranpumpe ist die Ausgestaltung derart getroffen, daß die Stirnflächen des Stützpilzes mit dem zugeordneten Flächenabschnitt der Rollmembran fest verbunden ist. Der innere-Abrollzylinder ist so ausgebildet, daß er in der hinteren Begrenzungslage der Rollmembran zusammen mit dem äußeren Abrollzylinder eine völlig spaltfreie Abstützfläche bildet, die an die natürliche Verformungs-und Abrollgeometrie der Rollmembran angepaßt ist.
  • Damit ist in der hinteren Totpunktlage der Rollmembran eine eindeutige Lagebegrenzung bzw. Abstützung geschaffen, so daß es in dieser hinteren Begrenzungslage der Membran möglich ist, durch das übliche Schnüffelventil die im Druckraum auftretenden geringen Leckagen zu ergänzen, ohne daß die Gefahr besteht, daß die Rollmembran in dieser Lage aufgrund des dann gerade herrschenden Druckunterschiedes beschädigt wird.
  • Erfindungsgemäß ist weiterhin vorgesehen, daß der Stützpilz in der hinteren Begrenzungslage wenigstens teilweise in einen Druckraumabschnitt kleineren Durchmessers eingetaucht ist, der sich an den den äußeren Abrollzylinder bildenden Druckraumabschnitt größeren Durchmessers unter Bildung einer Abstützschulter für die Rollmembran anschließt.
  • Hierdurch ist es in weiterer Ausgestaltung der Erfindung ermöglicht, radial verlaufende Strömungskanäle, die in der Umfangswand des Stützpilzes vorgesehen sind und zur Verbindung zwischen Druckraum und Schnüffelventil dienen, derart anzuordnen, daß sie in der hinteren Begrenzungslage vollständig in den Druckraumabschnitt kleineren Durchmessers eingetaucht sind.
  • Zweckmäßigerweise ist der Anschlag zur Begrenzung der hinteren Lage des Stützpilzes durch eine Ringschulter im Gehäusekörper gebildet, die am Ende des'Druckraumabschnittes kleineren Durchmessers vorgesehen ist. Bei einer praktischen Ausführungsform der Erfindung weist der Stützpilz eine Führungsstange auf, die eine exakt zentrische Axialbewegung des Stützpilzes sicherstellt.
  • Aufgrund der vorgesehenen hydraulischen Betätigung der Rollmembran weist der Stützpilz bzw. dessen Führungsstange keinerlei mechanische Verbindung mit dem Hydraulikkolben auf. Dies bedeutet, daß der Stützpilz lediglich durch die Rollmembran hin- und herbewegt wird. Der Stützpilz, der demgemäß von der Kinematik des Hydraulikkolbens unabhängig ist, erfüllt zwei Funktionen. Zum einen erlaubt er das Abrollen der Rollmembran, die beim Abrollen einen äußeren Abrollzylinder, gebildet durch die Wand des Druckraums, sowie einen inneren Abrollzylinder benötigt, der durch die Außenumfangsfläche des Stützpilzes gebildet ist. Zum anderen erfüllt der Stützpilz die Funktion der Abstützung der Rollmembran.
  • Insgesamt ist daher die erfindungsgemäße Ausgestaltung derart getroffen, daß in der hinteren Begrenzungslage der Rollmembran eine solche Gesamtkontur von Stützpilz einschließlich Druckraum gebildet ist, daß eine spaltfreie Fläche entstanden ist und damit die Rollmembran bei einer auftretenden Druckdifferenz nur an völlig glatte Flächen gedrückt wird und demgemäß nicht der Gefahr einer Beschädigung unterliegt.
  • Damit ist es durch die Erfindung möglich geworden, bei Membranpumpen, die insbesondere für hohe Förderdrücke vorgesehen sind, hydraulisch angetriebene Rollmembranen einzusetzen, was eine erhebliche Durchmesserverringerung der Membranpumpe erlaubt. Der Durchmesser der Rollmembran kann hierbei in der Größenordnung des Durchmessers des Hydraulikkolbens liegen, so daß auch die erforderlichen Schraubenkräfte für die Membranpumpe sehr viel kleiner werden. So hat z.B. die Verringerung des Membrandurchmessers auf die Hälfte des vorherigen Durchmessers eine Reduzierung der Schraubenkräfte auf ein Viertel des vorherigen Kraftaufwandes zur Folge.
  • Die Erfindung wird im folgenden anhand der Zeichnung näher erläutert. Es zeigen:
    • Fig. 1 im Schnitt eine erfindungsgemäß ausgestaltete Membranpumpe mit der Rollmembran in der vorderen Begrenzungslage;
    • Fig. 2 mit der Rollmembran in einer mittleren Lage und
    • Fig. 3 mit der Rollmembran in der hinteren Begrenzungslage.
  • Wie aus der Zeichnung ersichtlich, weist die dargestellte Membranpumpe ein Pumpengehäuse in Form eines durch einen Pumpendeckel 1 stirnseitig verschlossenen Gehäusekörpers2 auf, in dem als hydraulischer Membranantrieb ein oszillierender Hydraulikkolben 3 arbeitet. Dieser ist in einer Bohrung 4 des Gehäusekörpers hin- und herverschiebbar und trennt einen Druckraum 5 von einem Hydraulikvorratsraum 6.
  • Zwischen dem Gehäusekörper 2 und dem Pumpendeckel 1 ist mit ihrem Umfangsrand fest eine Rollmembran 7 eingespannt, die in der aus der Zeichnung ersichtlichen Weise den Druckraum 5 von einem Förderraum 8 trennt. Der Druckraum 5 ist vollständig mit Hydraulikflüssigkeit gefüllt, so daß beim Hin- und Herverschieben des Hydraulikkolbens 3 auch die Rollmembran 7 in entsprechender Weise betätigt wird und im Sinne eines Saughubes bzw. Druckhubes auf den Förderraum 8 einwirkt.
  • Der Pumpendeckel 1 weist ein federbelastetes Saugventil 9 sowie ein federbelastetes Druckventil 10 auf. Diese Ventile 9, 10 sind derart über einen Einlaßkanal 11 bzw. einen Auslaßkanal 12 mit dem Förderraum 8 verbunden, daß das Fördermedium bei dem nach rechts gemäß der Zeichnung erfolgenden Saughub der Rollmembran 7 in Richtung des Pfeiles A über das Saugventil 9 und den Einlaßkanal 11 in den Förderraum 8 angesaugt wird. Demgegenüber wird dann bei dem nach links gemäß der Zeichnung erfolgenden Druckhub der Rollmembran 7 das Fördermedium über den Auslaßkanal 12 und das Druckventil 10 in Richtung des Pfeils B dosiert aus dem Förderraum 8 herausgedrückt.
  • Innerhalb des Druckraumes 5 ist axial verschiebbar ein Stützpilz 13 angeordnet, der eine axial nach hinten in Richtung des Hydraulikkolbens 3 ragende Führungsstange 14 aufweist. Diese ist derart in einem mittig im Druckraum 5 angeordneten Auge 15 geführt, daß eine exakt zentrische Axialbewegung des Stützpilzes 13 gewährleistet ist.
  • Der Stützpilz 13 ist an seiner Stirnfläche mit dem zugeordneten Flächenabschnitt der Rollmembran 7 verbunden, so daß dadurch der Stützpilz 13 der Axialverschiebebewegung der Rollmembran 7 folgt.
  • Die für die Rollmembran 7 erforderliche Abrollfäche ist durch einen äußeren Abrollzylinder sowie einen inneren Abrollzylinder gebildet. Hierbei stellt die Umfangswand 16 des Druckraumes 5 den äußeren Abrollzylinder dar, während der innere Abrollzylinder durch die Außenumfangsfläche 17 des Stützpilzes 13 gebildet wird.
  • Wie ersichtlich, schließt an den eigentlichen Druckraum 5 axial nach hinten in Richtung des Hydraulikkolbens 3 ein Druckraumabschnitt 5' kleineren Durchmessers an, wobei zwischen den beiden Druckabschnitten 5, 5' eine Abstützschulter 18 für die Rollmembran 7 gebildet ist. Diese Abstützschulter 18 ist beim dargestellten Ausführungsbeispiel konkav ausgebildet und weist einen Krümmungsradius auf, der dem Krümmungsradius der Rollmembran 7 in deren Abrollbereich entspricht.
  • Der Durchmesser und die Tiefe des kleineren Druckraumabschnittes 5' sind derart gehalten, daß der Stützpilz 13 in der hinteren Begrenzungslage gemäß Fig. 3 zum überwiegenden Teil in diesen kleineren Druckraumabschnitt 5' eingetaucht ist. Hierbei ragt das vordere Teil des Stützpilzes 13 lediglich derart weit aus dem kleineren Druckraumabschnitt 5' heraus, daß sich nur derjenige abgerundet ausgebildete Flächenabschnitt 19 des Stützpilzes 13, der den Übergang zwischen Stirnfläche und Außenumfangsfläche 17 des Stützpilzes 13 bildet, im größeren Druckraumabschnitt 5 befindet.
  • Hierdurch ist in der aus Fig. 3 ersichtlichen hinteren Begrenzungslage der Rollmembran 7 eine völlig spaltfreie Abstützfläche 16, 18, 19 (und gegebenenfalls 17) gebildet, die an die natürliche Verformungsgeometrie bzw. Abrollcharakteristik der Rollmembran 7 angepaßt ist. Diese spaltfreie Abstützfläche setzt sich beim dargestellten Ausführungsbeispiel aus dem äußeren Abrollzylinder, gebildet durch die Umfangswand 16 des Druckraumes 5, aus der Abstützschulter 18 und aus dem abgerundeten Flächenabschnitt 19 bzw. dem inneren Abrollzylinder 17 des Stützpilzes 13 einschließlich der Stützpilzstirnfläche zusammen.
  • Als Anschlag zur Begrenzung der hinteren Lage des Stützpilzes 13 isteine Ringschulter 20 vorgesehen, die im Gehäusekörper 2 am axial hinteren Ende des Druckraumabschnittes 5' kleineren Durchmessers gebildet ist.
  • Wie ersichtlich, steht mit dem Hydraulikvorratsraum 6 ein kombiniertes Gasausschleus- und Druckbegrenzungsventil 21 in Verbindung, das seinerseits über einen Kanal 22 in den Druckraumabschnitt 5' kleinerenl Durchmessers mündet. Zu diesem Zweck sind in der Umfangswand 25 des Stützpilzes 13 radiale Strömungskanäle 26 vorgesehen. Diese sind derart angeordnet, daß sie in der hinteren Begrenzungslage der Rollmembran 7 bzw. des Stützpilzes 13 gemäß Fig. 3 vollständig in den Druckraumabschnitt 5' kleineren Durchmessers eingetaucht sind. Dadurch ist ebenfalls gewährleistet, daß in der hinteren Begrenzungslage der Rollmembran 7 eine vollständig spaltfreie Abstützfläche gebildet ist.
  • Weiterhin ist auch ein Schnüffelventil 23 vorgesehen, das den Hydraulikvorratsraum 6 über einen Kanal 24 mit dem Druckraumabschnitt 5' kleineren Durchmessers verbindet. Dadurch kann in der hinteren Begrenzungslage der Rollmembran 7, d.h. am Ende des Saughubes des Hydraulikkolbens 3, die erforderliche Leckergänzung aus dem Hydraulikvorratsraum über das Schnüffelventil 23 und den Kanal 24 erfolgen. Dieser Kanal 24 ist hierbei so angeordnet, daß die Verbindung zum Hydraulikvorratsraum 6 über eine Ringnut 27 und eine Bohrung 28 in der Stützpilzführungsstange 14 erst dann hergestellt wird, wenn der Stützpilz 13 die hintere Begrenzungslage erreicht hat, wie aus Fig. 3 ersichtlich. Dadurch ist in der erwünschten Weise eine Leckergänzung des Druckraumes 5 nur in dieser Lage des Stützpilzes 13 möglich, was mit anderen Worten bedeutet, daß eine vorzeitige Leckergänzung nicht stattfinden kann.

Claims (6)

1. Membranpumpe mit einer als Rollmembran ausgebildeten Membran, die einen Förderraum von einem flüssigkeitsgefüllten Druckraum trennt und mit ihrem Umfangsrand fest zwischen einem Gehäusekörper sowie einem Pumpendeckel eingespannt ist, und mit einem oszillierenden Hydraulikkolben, der in einer Bohrung des Gehäusekörpers zwischen dem Druckraum und einem Hydraulikvorratsraum zur Membranbetätigung verschiebbar ist, wobei die Rollmembran sich abwechselnd auf einem durch die Wand des Druckraums gebildeten äußeren Abrollzylinder ab- bzw. aufrollt, der durch die Umfangsfläche eines axial im Druckraum verschiebbaren Stützkolbens für die Rollmembran gebildet ist, dessen Stirnfläche mit dem zugeordneten Flächenabschnitt der Rollmembran verbunden ist,
dadurch gekennzeichnet,
daß der innere Abrollzylinder (17) des als Stützpilz (13) ausgebildeten Stützkolbens in der hinteren Begrenzungslage der Rollmembran (7) über eine Abstützschulter (18) in den äußeren Abrollzylinder (16) übergeht, die zusammen mit den beiden Abrollzylindern (17, 16) zur vollständig mechanischen Abstützung der Rollmembran (7) eine völlig spaltfreie, an die natürliche Verformungs- und Abrollgeometrie der Rollmembran (7) angepaßte Abstützfläche (16,18,17,19) bildet.
2. Membranpumpe nach Anspruch 1,
dadurch gekennzeichnet,
daß der Stützpilz (13) in der hinteren Begrenzungslage der Rollmembran (7) wenigstens teilweise in einen Druckraumabschnitt (5') kleineren Durchmessers eingetaucht ist, der sich an den den äußeren Abrollzylinder (16) bildenden Druckraumabschnitt (5) größeren Durchmessers unter Bildung der Abstützschulter (18) für die Rollmembran (7) anschließt.
3. Membranpumpe nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß die im Druckraum (5) vorgesehene Abstützschulter (18) konkav ausgebildet ist und einen Krümmungsradius aufweist, der dem Krümmungsradius der Rollmembran (7) in deren Abrollbereich entspricht.
4. Membranpumpe nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß radial verlaufende Strömungskanäle (26) in der Umfangswand (25) des Stützpilzes (13) so angeordnet sind, daß sie in der hinteren Begrenzungslage der Rollmembran (7) vollständig in den Druckraumabschnitt (5') kleineren Durchmessers eingetaucht sind.
5. Membranpumpe nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
daß der Anschlag zur Begrenzung der hinteren Lage des Stü.tzpilzes (13) durch eine Ringschulter (20) im Gehäusekörper (2) gebildet ist.
6. Membranpumpe nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet ,
daß der Stützpilz (13) eine Führungsstange (14) aufweist, die eine exakt zentrische Axialbewegung des Stützpilzes (13) sicherstellt.
EP85115807A 1984-12-21 1985-12-11 Membranpumpe mit hydraulisch angetriebener Rollmembran Expired EP0188730B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843446914 DE3446914A1 (de) 1984-12-21 1984-12-21 Membranpumpe mit hydaulisch angetriebener rollmembran
DE3446914 1984-12-21

Publications (3)

Publication Number Publication Date
EP0188730A2 true EP0188730A2 (de) 1986-07-30
EP0188730A3 EP0188730A3 (en) 1987-03-25
EP0188730B1 EP0188730B1 (de) 1989-03-15

Family

ID=6253563

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85115807A Expired EP0188730B1 (de) 1984-12-21 1985-12-11 Membranpumpe mit hydraulisch angetriebener Rollmembran

Country Status (4)

Country Link
US (1) US4749342A (de)
EP (1) EP0188730B1 (de)
JP (1) JPS61197779A (de)
DE (1) DE3446914A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0547404A1 (de) * 1991-12-17 1993-06-23 LEWA Herbert Ott GmbH + Co. Hydraulisch angetriebene Membranpumpe mit Membranhubbegrenzung
WO2001012990A1 (en) * 1999-08-12 2001-02-22 Wagner Spray Tech Corporation Diaphragm pump
EP1959140A1 (de) 2007-02-14 2008-08-20 Gardner Denver Thomas GmbH Membranförderungspumpe und Pumpmembran für eine Membranförderungspumpe
WO2016079127A1 (en) * 2014-11-18 2016-05-26 Tetra Laval Holdings & Finance S.A. A pump, a homogenizer comprising said pump and a method for pumping a liquid product

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419191A (en) * 1987-07-14 1989-01-23 Nagano Keiki Seisakusho Kk Vacuum pump
US4930555A (en) * 1987-11-03 1990-06-05 The Coca-Cola Company Microgravity dispenser with agitator, metering device and cup filler
JPH0213184U (de) * 1988-06-30 1990-01-26
US5262068A (en) * 1991-05-17 1993-11-16 Millipore Corporation Integrated system for filtering and dispensing fluid having fill, dispense and bubble purge strokes
DE4327969C2 (de) * 1993-08-19 1997-07-03 Ott Kg Lewa Hydraulisch angetriebene Membranpumpe
ES2238968T3 (es) * 1996-06-07 2005-09-16 Hydro Leduc Bomba de alta presion para cualquier liquido.
US6071089A (en) * 1998-02-20 2000-06-06 General Motors Corporation Hydraulic diaphragm pump
JP3958926B2 (ja) 1999-10-18 2007-08-15 インテグレイテッド・デザインズ・リミテッド・パートナーシップ 流体を分配する装置および方法
US6899530B2 (en) * 2002-10-31 2005-05-31 Wanner Engineering, Inc. Diaphragm pump with a transfer chamber vent with a longitudinal notch on the piston cylinder
US6871577B2 (en) * 2003-01-31 2005-03-29 Tetra Laval Holdings & Finance, Sa Fill pump piston centering support
US20050254972A1 (en) * 2004-05-14 2005-11-17 Baker Rodney W Bench top pump
US7335003B2 (en) * 2004-07-09 2008-02-26 Saint-Gobain Performance Plastics Corporation Precision dispense pump
US20070134112A1 (en) * 2005-12-14 2007-06-14 Hupp Evan L Button diaphragm piston pump
JP4547350B2 (ja) 2006-04-13 2010-09-22 東レエンジニアリング株式会社 ピストンとそのピストンの製造方法及びそのピストンを備えたポンプ
JP5502470B2 (ja) * 2006-07-11 2014-05-28 ベルンハルト・フライ 流体ポンプ或いは流体エンジン用のシリンダピストン装置
US20080260551A1 (en) * 2007-01-26 2008-10-23 Walter Neal Simmons Rolling diaphragm pump
US7665974B2 (en) * 2007-05-02 2010-02-23 Wanner Engineering, Inc. Diaphragm pump position control with offset valve axis
CN103097730B (zh) 2011-04-27 2014-11-26 Ckd株式会社 液体馈送泵及流量控制装置
DE102014200150A1 (de) * 2014-01-08 2015-07-09 Binder Gmbh Ventileinrichtung zum Steuern eines Fluids, insbesondere eines abrasiven Dickstoffs
US9931449B2 (en) 2015-05-29 2018-04-03 Ameda, Inc. Electrical breast pump and system
JPWO2019077843A1 (ja) 2017-10-17 2020-11-05 日本ピラー工業株式会社 樹脂部材
US10716882B2 (en) 2018-03-07 2020-07-21 Ameda, Inc. Apparatus and methods for universal breast pump kit
US11668292B2 (en) * 2019-04-23 2023-06-06 Nippon Pillar Packing Co., Ltd. Rolling diaphragm pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3295458A (en) * 1964-08-13 1967-01-03 Adam P G Steffes Pump
US3769879A (en) * 1971-12-09 1973-11-06 A Lofquist Self-compensating diaphragm pump
US3775030A (en) * 1971-12-01 1973-11-27 Wanner Engineering Diaphragm pump

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2820434A (en) * 1955-07-18 1958-01-21 Johnson Service Co Single-acting motor with pneumatic return spring
US3203186A (en) * 1960-08-25 1965-08-31 Edwin J Lukas Force transmitting system
GB961750A (en) * 1962-06-12 1964-06-24 David Horace Young Improvements relating to pumps
GB1005555A (en) * 1963-04-06 1965-09-22 Daimler Benz Ag Improvements relating to brake devices operated by pressure fluid
NL139803B (nl) * 1963-10-25 1973-09-17 Philips Nv Inrichting voor het comprimeren respectievelijk expanderen van een medium voorzien van een regelinrichting voor het regelen van de grootte van het schadelijke volume.
US3884598A (en) * 1973-10-05 1975-05-20 Wanner Engineering Piston assembly for diaphragm pump
JPS6114924Y2 (de) * 1977-11-08 1986-05-09
ZA796067B (en) * 1978-11-21 1980-10-29 Lucas Industries Ltd Servo boosters for vehicle braking systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3295458A (en) * 1964-08-13 1967-01-03 Adam P G Steffes Pump
US3775030A (en) * 1971-12-01 1973-11-27 Wanner Engineering Diaphragm pump
US3769879A (en) * 1971-12-09 1973-11-06 A Lofquist Self-compensating diaphragm pump

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0547404A1 (de) * 1991-12-17 1993-06-23 LEWA Herbert Ott GmbH + Co. Hydraulisch angetriebene Membranpumpe mit Membranhubbegrenzung
WO2001012990A1 (en) * 1999-08-12 2001-02-22 Wagner Spray Tech Corporation Diaphragm pump
US6276907B1 (en) 1999-08-12 2001-08-21 Wagner Spray Tech Corporation Hydraulically driven diaphragm pump
EP1959140A1 (de) 2007-02-14 2008-08-20 Gardner Denver Thomas GmbH Membranförderungspumpe und Pumpmembran für eine Membranförderungspumpe
WO2016079127A1 (en) * 2014-11-18 2016-05-26 Tetra Laval Holdings & Finance S.A. A pump, a homogenizer comprising said pump and a method for pumping a liquid product
US10100830B2 (en) 2014-11-18 2018-10-16 Tetra Laval Holdings & Finance S.A. Pump, a homogenizer comprising said pump and a method for pumping a liquid product

Also Published As

Publication number Publication date
US4749342A (en) 1988-06-07
JPH0321757B2 (de) 1991-03-25
DE3446914C2 (de) 1989-01-26
EP0188730B1 (de) 1989-03-15
DE3446914A1 (de) 1986-07-03
JPS61197779A (ja) 1986-09-02
EP0188730A3 (en) 1987-03-25

Similar Documents

Publication Publication Date Title
EP0188730B1 (de) Membranpumpe mit hydraulisch angetriebener Rollmembran
EP1760312B1 (de) Hochdruckpumpe
EP0057288B1 (de) Zweizylinder-Dickstoffpumpe, vorzugsweise Betonpumpe mit einem von einer zylinderseitigen Brillenplatte abwechselnd schwenkenden Schaltorgan
DE2447741C2 (de)
EP0547404A1 (de) Hydraulisch angetriebene Membranpumpe mit Membranhubbegrenzung
EP0417402A2 (de) Membranpumpe
DE2211178A1 (de) Dichtungssatz und diesen enthaltende Dichtungsgruppe für Hochdruckpumpen od. dgl
DE2204162B2 (de) Spaltdichtung für die Abdichtung hin- und hergehender Maschinenteile
EP1110017B1 (de) REIBUNGSARME DICHTUNG und hydraulikzylinder
EP0464165B1 (de) Höchstdruckplungerpumpe
DE967721C (de) Zylinder mit Kolben, insbesondere fuer einen Druckspeicher, in hydraulischen Anlagen
WO2019081239A1 (de) Kolbenverdichter
DE2460344A1 (de) Hydraulischer druckerzeuger
DE19916376A1 (de) Pumpengehäuse
WO1989011035A1 (en) Plunger pump arrangement
DE2203000C3 (de) Hydraulischer Antrieb für eine Zweizylinderkolbenpumpe
WO2003014576A1 (de) Steuereinrichtung für die kontinuierliche bewegung eines hydraulischen stellmotors
EP0342346A2 (de) Zahnradpumpe
DE4200576A1 (de) Hochdruck-anordnungen
DE10029305A1 (de) Dichtungsvorrichtung für einen mit Druckmittel beaufschlagten Kolben in einem Arbeitszylinder
DE3632717A1 (de) Aggregat mit einer membrane
DE102020212372A1 (de) Hydrostatische Axialkolbenmaschine
DE2851354A1 (de) Pumpe fuer breiige massen, vorzugsweise beton
CH467939A (de) Hochdruckkompressor
DE3700931A1 (de) Von fluid durchstroemtes aggregat fuer drucke bis zu mehreren tausend bar

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): FR GB IT

17P Request for examination filed

Effective date: 19870310

17Q First examination report despatched

Effective date: 19880614

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT

ITF It: translation for a ep patent filed

Owner name: DR. ING. AUSSERER ANTON

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: J. WAGNER GMBH

Effective date: 19891017

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19901203

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19901213

Year of fee payment: 6

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911211

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920831

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19920601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST