JP3958926B2 - 流体を分配する装置および方法 - Google Patents

流体を分配する装置および方法 Download PDF

Info

Publication number
JP3958926B2
JP3958926B2 JP2000318343A JP2000318343A JP3958926B2 JP 3958926 B2 JP3958926 B2 JP 3958926B2 JP 2000318343 A JP2000318343 A JP 2000318343A JP 2000318343 A JP2000318343 A JP 2000318343A JP 3958926 B2 JP3958926 B2 JP 3958926B2
Authority
JP
Japan
Prior art keywords
piston
pressure
pump
pump chamber
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000318343A
Other languages
English (en)
Other versions
JP2001203196A (ja
Inventor
レイモンド・ティ・セイヴァード
ジョン・シー・ヴァインズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Integrated Designs LP
Original Assignee
Integrated Designs LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Integrated Designs LP filed Critical Integrated Designs LP
Publication of JP2001203196A publication Critical patent/JP2001203196A/ja
Application granted granted Critical
Publication of JP3958926B2 publication Critical patent/JP3958926B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/02Piston machines or pumps characterised by having positively-driven valving the valving being fluid-actuated
    • F04B7/0266Piston machines or pumps characterised by having positively-driven valving the valving being fluid-actuated the inlet and discharge means being separate members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B13/00Pumps specially modified to deliver fixed or variable measured quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/03Pressure in the compression chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/10Selectively engageable hub to shaft connection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/55Member ends joined by inserted section
    • Y10T403/551Externally bridged

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に粘度の高い流体、並びにプロセス流体廃物及び汚濁物が特別に重要である半導体装置製造プロセスなどの製造プロセスに用いられる流体を正確な量で分配する装置及び方法に関する。
【0002】
【従来の技術】
多くのプロセスが、ポンピング装置により流体が分配される量及び/又は速度を正確に制御することを必要とする。処理液を確実に均一に塗布すると共に廃物及び不要な消費を避けるために例えば集積回路の製造中に半導体ウェーハーに使用される流体を処理する速度及び量の両方が非常に正確に制御される。半導体産業で使われる化学物質の多くは有毒で且つ高価である。正確に分配すれば有毒廃物処理が回避され、且つ製造コストが下がる。気泡或いは粒子或いはその他の外部汚染の形のプロセス流体の汚濁も、多くのプロセスにおいて慎重に制御されなければならない。半導体装置製造プロセスにおける汚濁は、例えば、収量を低下させると共にプロセス流体が失われ、製造時間がかかるという結果をもたらす。
【0003】
例えば、マルチチップ・モジュール(MCM)、高密度相互接続(HDI)部品及びその他の半導体用具の製造は、内側層誘電体としてポリイミド材料の薄い層を付けることを必要とする。ポリイミド・フィルムの所要の厚みは100ミクロンという小ささであることもあり、またポリイミド・フィルムの最終の厚みは均一でなくてはならなくて、通常は該基板或いはウェーハーの全体にわたって2%以上変動してはならないので、ポリイミド材料は厳しい精度で付けられなければならない。ポリイミドを半導体製造に用いるのに理想的に適したものとする独特の機械的特性及び電気的特性に加えて、ポリイミドは、厳密な注意を必要とする量だけポリイミドをポンピング或いは供給することを困難にする物理的特性も持っている。具体的には、ポリイミドには粘りけがある。半導体の製造に用いられる多くのポリイミドは400ポアズを上回る粘度を有する。このように高い粘度を有する流体をポンピングするのは困難であり、また濾過しにくい。ポリイミド流体の値段がガロンあたり15,000ドルを上回ることは珍しくない。従って、ポリイミド流体を分配するために使用されるポンプ・システムが浪費無しに正確な量を分配することが重要である。
【0004】
従来技術の流体分配システムは、通常は流体を正確に計測するために容積式ポンプを使用する。従来技術で使用される容積式ポンプの一つの種類はベローズポンプであり、その一例が米国特許第4,483,665号に開示されている。典型的ベローズポンプでは、ポンピングされるべき流体は1方向逆止弁を通して中空管状ベローズに入る。普通は、該ベローズの排出端部は動かないように拘束されているけれども、他方の端部は、該ベローズを縦方向に膨張及び収縮させるように選択的に働かせる往復運動機械部材に結合されている。収縮させられると、流体は該ベローズから加圧下に排出或いはポンピングされる。ベローズ・ポンプに伴う1つの問題は、ポンピング圧力が高いときに相当の内部圧力がベローズに作用し、それが膨張及び収縮の際の曲がりと共に、ベローズの疲労及び破裂をもたらす結果となることがある。更に、ベローズは圧力下に曲がって精度の損失を生じさせる。この問題を克服するために、ベローズ内のプロセス流体の圧力と少なくとも部分的に釣り合うように流体がベローズを取り囲むチャンバに送り込まれる。ベローズに伴う他の問題は、ベローズのひだ或いは回旋(convolution)が空気或いは化学物質をベローズから完全に追い出すことを困難にすることである。ベローズ内に残っている空気は望ましくない気泡を生じさせる可能性がある。
【0005】
ダイヤフラム型容積式ポンプは、ベローズ型のポンプに伴う問題の幾つかを克服する。ダイヤフラム・ポンプは、ポンプ・チャンバを2つのセクションに分割するダイヤフラムを有する。作業流体がそのチャンバの一方のセクションに送り込まれたりそのセクションから送り出されたりしてダイヤフラムを前後に動かすことにより、そのチャンバの他方の半分にプロセス流体を引き込んだりプロセス流体をその半分から押し出したりする。該チャンバの中の作業流体の体積の変化が正確に分かるならば、該チャンバの中のプロセス流体の体積も正確に分かり、従って正確な計測に備えることができる。従って、ダイヤフラムの動きを非常に正確に制御するために、ダイヤフラム・ポンプはしばしば圧縮できない作動油で動かされる。ダイヤフラム・ポンプの例が米国特許第4,950,134号、第5,167,837号、第5,490、765号、第5,516,429号、第5,527,161号、第5,762,795号、及び第5,772,899号に開示されている。
【0006】
しかし、液圧で動かされるダイヤフラムが例えば穴が開いたりして故障すると、動作油がプロセス流体に押し込まれることがある。この汚濁は下流へ流れて、例えば他のシステムに入り込んだり、或いは例えばそのときに処理されている半導体基板に流れ着いたりして、生産ラインの下流側の他のシステムを汚染する。更に、これらのシステムを整備するときに、工具、手袋及びその他の器材の“クリーンルーム”環境を通して作動油が付いて該クリーンルームを汚染するかも知れない。動作油によって生じる可能性のある汚染を避けるために、ダイヤフラムを空気圧で動かすことができる。しかし、空気は圧縮性であるので、分配量を正確に制御することがいっそう難しくなる。
【0007】
別の種類の周知の容積式ポンプは、ローリングメンブレンポンプである。ローリングメンブレンポンプはポンプ・チャンバ内の流体を排出する往復運動ピストンを含んでいる。ピストンとポンプ・チャンバの壁との間に移動シールを有するピストン型ポンプとは異なって、流体が該壁とピストンとの間から逃げるのを防ぐために可撓性のメンブレン(薄膜)がピストンと該チャンバの側壁とに取り付けられる。ピストンが動くとき、該メンブレンは該ポンプの側を転がって上がったり下がったりする。しかし、該メンブレンは高圧下で曲がり伸びる。半導体製造プロセスで分配されなければならないプロセス流体の多くは非常に粘りけがあり、非常に高い圧力でポンピングされなければならない。おそらく、この理由から、それは、特に半導体装置の製造プロセスにおいて少量の流体を正確に分配するために従来技術のシステムで使用されているとは思われない。
【0008】
【発明が解決しようとする課題】
本発明は、従来技術に見られる問題の1つ以上を解決する改良された精密流体分配装置及び方法を提供する。特に、本発明は、プロセス流体をポンピングするための作動媒体として作動油を使わないことによりプロセス流体及び製造環境を汚染する危険を減少させるとともに、他の種類の容積式ポンプに伴う問題を克服して流体を正確に分配できるようにする。
【0009】
【課題を解決するための手段】
本発明の一実施の形態によると、ローリングメンブレンポンプを使用してプロセス流体を正確に計測する際の問題が克服される。伸びに起因するローリングメンブレンポンプのポンプ・チャンバの容積の変化が該ポンプ・チャンバ内の圧力の関数として容認できる程度に予測される。該チャンバ内のプロセス流体の圧力は排出行程の間監視され、プロセス流体の予め選択された量を送り届けるのに必要な排出行程の距離は、メンブレンの曲がり及び伸びを考慮して補正を行うために該行程の間に更新される。プロセス流体の汚染の危険は、プロセス流体をポンピングするためにダイヤフラムを働かせるのに動作油を用いないで、代わりにメンブレンの固体機械的アクチュエータによることによって、相当減少する。更に、従来のベローズポンプとは異なって、ローリングメンブレンポンプは回旋(convolutions)を有しないので容易に一掃され掃除されることができる。
【0010】
本発明の好ましい別の実施の形態によると、容易に切り離すことのできる電動モーターから動力を供給される機械的アクチュエータに結合されているローリングメンブレンポンプ・ヘッドの使用によって、高精度分配システムが補修し易くされる。従って、ポンプ・チャンバ、チャンバ・ボディー、ローリングメンブレン、ピストン等の排出機構、バルブ及び流体接続部から成る流体通路全体を、該機械的アクチュエータ及びコントローラを妨害することなく補修のためにクリーンルーム環境から容易に除去することができる。そこで、別の清潔なポンプヘッドを据え付けて、システムを非常に迅速に作動状態に戻すことができる。該ポンプヘッドは、容易に清潔にされて再び据え付けられることができる。ローリングメンブレンの内部形状は、それを迅速に洗浄できるようになっている。そこで、製造設備の損失の大きい停止時間を回避することができる。同様に、駆動機構からのポンプヘッドの分離は、該駆動機構を容易に補修したり、必要ならば交換したりすることを可能にする。プロセス流体通路は乱されないので、プロセス流体流路から空気を除去するために流体の損失やパージングは不要である。
【0011】
本発明の他の利点は、非常に低い粘度(1〜2センチポアズ程度)から非常に高い粘度(300ポアズ以上)までを有する広範なプロセス流体に使用され得ることである。そのようなプロセス流体の例は、溶剤、レジスト、スピン・オン・グラス(spin on glass (SOG))、ポリイミド、低誘電体、及び半導体装置製造プロセスに使用される他の多くの化学物質を包含するが、それらに限定はされない。半導体装置処理分野によく適してはいるけれども、本発明は他の分野にも使用され得るものである。
【0012】
好ましい実施の形態では、この方法は、特定の分配が一番目の分配でなければ予測されたメンブレン曲がりに少なくとも部分的に基づいて分配変更量を計算するステップを含んでおり、前記の予測されたメンブレン曲がりは該一番目の分配中の最大ポンプチャンバ圧力に少なくとも部分的に基づいており、該方法は、更に、特定の分配が一番目の分配であるならば少なくとも部分的に該メンブレンの形状に基づいて分配変更量を計算し、その計算された量に少なくとも部分的に基づいて該ポンピング・システムのピストンを動かし、該ポンピング・システムの出口バルブを開き、該ポンプチャンバ圧力を監視して前記ポンプチャンバ圧力の突然の変化を検出して該ポンピング・システムにおける機械的故障を信号で知らせ、該ピストンの運動中の該ポンプチャンバの最大圧力を測定する各ステップを含んでいる。
【0013】
以降は、添付図面と関連する本発明による実施の形態についての詳細な説明である。
【0014】
【発明の実施の形態】
図1を参照すると、分配システム100は、電動モーター104から動力を供給されるローリングメンブレン容積式ポンプ102を含んでいる。該ポンプには圧力センサー111(図2b参照)が組み込まれている。ポンプ102のチャンバへの入口は入口バルブ112に結合され、ポンプのチャンバからの出口は出口バルブ114に結合されている。このポンプと2つのバルブとはポンプヘッド組立体116と称される。入口バルブは管路を通してプロセス流体の源に結合されており、それは該略図においてはバルク供給容器118として示されている。出口バルブは、該流体を必要とするプロセス機構に結合されている。
【0015】
入口バルブ及び出口バルブは空気圧で動かされる。空気圧バルブ・コントローラ120は空気圧源122からの加圧空気を入口バルブ又は出口バルブに結合させることによって該バルブを動かし、該バルブは、常閉位置にバイアスされる。空気圧バルブ・コントローラ120は、コントローラ106からの信号に応答して、ソレノイド制御される空気圧バルブ124及び126を操作して、入口バルブ112及び出口バルブ114をそれぞれ開かせる。検出器128は、空気圧供給が入口バルブ及び出口バルブを適切に操作するのに不十分である状態を検知する。検出器130は、ポンプ102からのプロセス流体の漏れを検知する。
【0016】
モーター104,空気圧バルブ・コントローラ120,圧力センサー111,検出器128,検出器130はコントローラ106と通信する。このコントローラ及び通信手段は如何なる特定の形にも限定されない。例えば、コントローラは、マイクロプロセッサに基づくプログラミング可能なものであってよい。図示されている実施の形態では、コントローラは、プログラミング可能であってマイクロプロセッサに基づく主コントローラ108と、プログラミング可能なモーター・コントローラ110からなっている。主コントローラ108は,直接モーター制御を除いて、分配システムの全ての機能を制御する。それは、どれだけの量又は体積のプロセス流体を分配するべきか、そして分配を何時或いはどんな速度で行わなければならないかを示す情報でプロセス制御を提供するコンピュータ又はその他のコントローラに結合されている。主コントローラは、この情報をポンプ102についての対応する押しのけ量(移動量)及び速度値に変換して、この情報をモーター・コントローラ110に知らせる。モーター・コントローラは、後述するようにして、圧力センサー111の出力に基づいて、指定された距離及び速度で動くようにモーター104に指令し、ポンプ102内のピストン等の押しのけ(移動)機構に取り付けられているローリング・メンブレンの変形のための補正をする。
【0017】
ここで図2a、2b及び2cを参照すると、ポンプ102及びモーター104の関連する詳細が略図示されており、ポンプは、その断面が示されている。ポンプのハウジングはベース202とカバー204とから成っている。該カバー内には固体のすなわち堅いピストン206が配置されている。可撓性のメンブレン208が該ピストンの面210に取り付けられている。このメンブレンは、その面から延在してポンプ・ハウジングの内壁に付着し、ポンプ・チャンバ212を規定している。好ましい実施の形態では、該メンブレン及びピストンはテフロン(商標)の単一の部材から形成されている。テフロンは、殆どの半導体装置製造プロセスに用いられる流体と反応しない。ピストンが図2aに示されている完全に引き込まれた位置にあるとき、メンブレンが形成されて、それ自身をハウジングの内壁に押しつけるように該ピストンに付着する。このことは、ピストンがポンプ・チャンバに出入りするときにメンブレンがピストンに転がり付いたりピストンから転がり離れる(roll onto or off)ことを保証する。図2bは、部分的に降下された位置にあるピストンを示しており、メンブレンはピストンの面210の周りの適切に形成されたロール214を有する。ポンプ・チャンバは入口開口部216を有し、これを通して、プロセス流体が入口バルブ112(図1)通過後に引かれ、該ポンプ・チャンバは更に出口開口部218を有し、これを通して、出口バルブ114(図1)が開いたときにプロセス流体が分配されるべく存在する。
【0018】
ピストン206は解放可能な継手220によってモーター104に結合されており、これは、図2cに示されているように、ポンプヘッド又はモーターの補修のためにモーターをポンプヘッドから容易に分離することを可能にする。モーターは、その据え付けが示されていないけれども、往復運動してピストンをポンピングするアウトプットを有する。解放可能な継手は、該モーターに付着するベース302と、取り外し可能な部材303とを含んでおり、その両方が図3に示されている。該継手はマンドレル222(図2a〜2c参照)の頭部の周りにカラーのようにはまる。取り外し可能な部材が取り外されているとき、マンドレルの頭を該継手のベースに滑り込ませることができる。その二つの部材はネジ(図示されていない)により互いに結合される。強くて信頼できる結合を行うために、マンドレルの頭部は、該継手の内面に形成された溝の中にはまり込む隆起が周囲にある。
【0019】
モーターは、好ましくは回転出力を有するステッパーモーターで構成される。モーターの運動の回転出力を線形往復運動に変換するために、線形アクチュエータ230が該ステッパーモーターの出力をポンプに結合させる。継手であるファスナー220はネジ山部材232により線形アクチュエータ230の出力マンドレルに結合されている。しかし、他の方法で取り付けることもできる。
【0020】
ここで図4a、4b、4c及び4dを参照し、更に図1及び2a、2b及び2cを参照すると、分配サイクルはステップ402から始まり、このステップにおいて主コントローラ108(図1)はコマンドをモーター・コントローラ110(図1)に送ると共に、ポンプ内のピストン206(図2a)が変位する初期距離或いはベースライン距離を示す値と、それが変位される初期速度とをモーター・コントローラに与える。ピストンが動かされるこの距離は、分配されるべきプロセス流体の量の関数である。それは、ピストンが押し出す既知体積に基づいて、メンブレン208(図2)の変形を生じさせることのあるチャンバ内の圧力無しで該距離の関数として計算される。該速度は、分配が行われなければならない速度、或いは時間と、分配されるべき量との関数である。該分配コマンドは、例えば主コントローラが製造プロセス・コントローラ又はユーザーから要求を受け取ったことに応答して送られる。その要求は、プロセス流体の一定量と、随意に、特定の分配速度又は時間とを指定することができる。或いは、その量及び速度は主コントローラでプログラミングされてもよい。分配を行うために利用できる十分な変位距離がある限りは、分配サイクルはピストンが特定の位置にあるときに始まらなくてもよい。しかし、分配システムが動力を供給されると、ピストンは図2aに示されているように完全に引き込まれた位置まで引き込まれる。
【0021】
分配コマンドを受け取ると、モーター・コントローラは、ステップ404で、モーターにより、要求された速度でピストンを前進させる。主コントローラは、モーターが動いていることを検出すると、ステップ406で出口バルブ114(図1)を開く。ステップ408で、モーター・コントローラは、ポンプ・チャンバ圧力センサー111(図1)を読むことによりエラー訂正ループを開始する。このループは、ポンプの押しのけ(移動)行程全体にわたって反復される。このループの間、ピストンの押しのけ距離は、メンブレン208(図2)の伸びを補正するためにしばしば更新される。好ましくは可撓性のテフロンから成るメンブレンは、特に高圧で、該チャンバの圧力が増大するときに膨張し或いは変形する傾向がある。その結果として、ポンプ運動の一定の変位の結果として該チャンバから出てゆくと期待される流体は、実際にはポンプ・チャンバ212から出てゆかない。その代わりに、該流体の小部分が、広げられたダイヤフラムにより生じたスペースの中に押し込まれる。分配エラーは、ピストン進み距離と関連する要求された総分配体積と該チャンバの圧力との関数として程良く近似され得る。与えられたどの分配の際にもチャンバ圧力は、ポンプ分配速度と、分配される流体の粘度との関数である。しかし、好ましい実施の形態では、ポンプ・チャンバ212内の実際の圧力を測定するためにセンサー111(図1)が使用される。従って、両方の変数が知られているので、分配エラーを計算することができる。しかし、チャンバ圧力を監視する最も効率的な方法を決定し分配エラーの補正値を計算するために、分配を開始する前にその分配についての総期待時間を見積もることができる。
【0022】
ステップ410において、分配エラーが計算される。好ましい実施の形態では、圧力センサー111により測定された該チャンバ内の圧力の関数として分配エラーがモデル化される。エラーを計算するために使用される式は、1つの好ましい実施の形態では、二次多項式AX2+BX+Cであり、ここでXは圧力であり、係数A、B及びCは、ポンプにより実際に分配される量と期待量とを比較する試験から集められた実験データに適合するように該式を調整し、それを分配中の最大チャンバ圧力に相関させることによって決定される。この近似は、良好な結果を与えることが分かっており、現在の殆どの半導体装置製造アプリケーションのために充分な精度を与える。期待分配エラーが計算されると、出発位置及び更新された変位距離の関数である最終モーター位置についての更新された新しい値がステップ412で計算され、それはエラーを補正する。ステップ414において、ピストンの増大した変位についての調整が行われた後、総分配時間が、元来要求された速度又は時間と同じとなるように、ピストンについての新しい或いは更新された進み速度が計算される。モーター・コントローラは、この進み速度を達成するのに必要なモーター速度を決定し、適切な命令をステップ416で発する。
【0023】
ポンプ・チャンバ内の圧力は、問題を示しているかも知れない突然の圧力低下があるか否か調べるためにステップ418で再びチェックされる。もしそのような低下があれば、警報が主コントローラに送られる。典型的な分配中、ポンプ・チャンバ内の圧力は、出口バルブ114(図1)が開くときの最初の低下を除いて、割合に滑らかに変化する。ポンプを駆動するモーター又は他のシステムの機械コンポーネントが働かなくなり始めたならば、分配中のチャンバ圧力もおそらく、通常よりは多い頻度で且つ通常よりは大きな振幅で変動する。従って、出口バルブが開かれるときの最初の低下の後のポンプ・チャンバ圧力の鋭いかも知れない低下を監視することによって、駆動システムの故障を、それがユーザーにとって重大な問題となる前に、検出することができる。
【0024】
判定ステップ420でモーターがその最終位置に達していないか又は分配のための時間が経過していなければ、このプロセスはループをなしてステップ408に戻る。分配されるべきプロセス流体の量により、分配中に該ループは数百回生じる。もしモーターがその最終位置に達しているか或いは分配時間が経過しているならば、ステップ422でモーターはモーター・コントローラにより停止させられる。
【0025】
ステップ424及び426で示されているように、主コントローラは、モーター・コントローラ分配シーケンスの終わりを検出すると、ユーザー又はプロセスにより“吸い戻し”が要求されているか否かにより、ステップ428でモーターに吸い戻しシーケンスを開始させ、或いはステップ434にジャンプして出口バルブ114(図1)を閉じる。吸い戻しシーケンスとは、ポンプ102(図2)内のピストン206の移動を引き込み或いは逆転させて分配機出口の先端又はノズルの中の流体を、該流体の滴下又は乾燥を減少させるのに充分なだけ該先端又はノズルの中に後退させることを指している。ステップ430で、モーター・コントローラ110は、主コントローラ108から通知された速度及び距離の値に基づいてモーター104(図1)によりポンプのピストンを逆方向に移動させる。ユーザーは、それらの値をプロセス流体に応じて設定する。
【0026】
主コントローラ108(図1)は、ステップ432で吸い戻しシーケンスの終わりを検出すると、434で出口バルブ114を閉じて最充填プロセスを始める。その再充填プロセス中に、プロセス流体が流体源容器(バルク供給容器)118からポンプ・チャンバ212(図2)の中に引き込まれる。プロセスの必要条件によっては、再充填プロセスは全ての分配の後に行われなくてもよい。ステップ436において、主コントローラは、入口バルブ111を開くと共に、ステップ438において再充填シーケンスを開始させる命令をモーター・コントローラに送る。再充填シーケンスは、ステップ440において、モーターを図2aに示されている再充填位置或いは完全に引っ込められた位置の方へ動かし始める。それは、主コントローラ108から受け取られた初期速度でそうする。ステップ442で、監視ループが始まる。メンブレン208(図2)は可撓性であるので、大気圧とチャンバ内の圧力との差である高すぎる負のゲージ圧は該メンブレンをポンプ・チャンバの中心の方へ内方にしぼませる。その結果として、ポンプの修理を必要とするメンブレンの変形が生じる。従って、ステップ444で、負であるゲージ圧がチェックされる。ゲージ圧の大きさが低ければ、許容できる動作範囲についての所定最小値に基づいて、ステップ446においてポンプ102内でのピストン206(図2)の速度を高めることによって再充填速度を高めることができる。ステップ448で、負のゲージ圧の大きさが高すぎれば、許容できる動作範囲についての所定最大値に基づいて、ステップ450でメンブレンの潰れを避けるためにピストンの速度を低下させることにより再充填の速度を下げる必要がある。
【0027】
ステップ452で、モーター・コントローラは圧力センサー111により測定されたポンプ・チャンバ内の圧力の変化を監視する。典型的な再充填の間は、チャンバ圧力は負のゲージ圧に割合に一定にとどまる。供給源のボトルが空になって空気が管路に引き込まれたならば、再充填中にチャンバ圧力が顕著に変化すると期待される唯一の時間がある。更に、連続する再充填中に、チャンバ内の負のゲージ圧は、より多くの空気が供給源で管路に引き込まれるときに、低下する傾向がある。従って、再充填又は連続する再充填の間、プロセス流体供給源容器が空になっているか否か判定するために、負のゲージ圧の低下、即ち絶対圧力の増大、を検出するためにチャンバ圧力が監視される。与えられた再充填シーケンスにおいてピストンが動く距離が単一の再充填内でゲージ圧低下を検出するのに充分な時間を与えないならば、連続する再充填を監視しなければならない。ステップ452でモーター・コントローラによって供給源が空である状態が検出されたならば、ステップ458でモーターを停止させることによって再充填が停止され、ステップ456で警報が主コントローラに送られるが、それはユーザーに注意を促す。この供給源空検出方法は、供給源の近くにおかれる在来の機械的泡センサーと比べて、そのようなセンサーとは異なって該方法が機械的調整をしばしばは行わないという利点を有する。第2に、泡センサーは、動く部分を有するので、より頻繁に故障しがちである。その他の場合には、再充填プロセスは、モーターが図2aに示されているように完全に引き込まれた“ホーム”位置であってよい所定最終位置又はその他の所定位置に達するか、或いは時間経過が生じるまで、継続する。例えば、再充填が既知の分配プロセス間に行われるならば、再充填時間は分配サイクル間の時間に設定されてよい。或いは、分配要求が受け取られたときに再充填シーケンスを停止させることができる。主コントローラは、ステップ460で再充填シーケンスの終了を検出すると、ステップ462で入口バルブ111(図1)を閉じる。
【0028】
図5a、5b、及び5cは、図1の流体分配システムについての別の実施の形態の分配プロセスを示している。図5を参照し、更に図1及び2a、2b及び2cを参照すると、分配サイクルはステップ502で主コントローラ108(図1)がコマンドをモーター・コントローラ110に送ることから始まる。該コマンドが一番目の分配のためのものか否かがステップ504で判定される。そのコマンドが一番目の分配についてのものでなければ、ステップ503で、分配エラーが計算される。好ましい実施の形態では、一番目の分配中、圧力センサー111により測定されたチャンバ内の最大圧力の関数として分配エラーがモデル化される。エラーを計算するために使われる式は、1つの好ましい実施の形態では、二次多項式AX2+BX+Cであり、ここでXは圧力であり、係数A、B及びCは、ポンプにより実際に分配される量を期待される量と比較する試験から収集された実験データに該式を適合させて、それを分配中の最大チャンバ圧力と相関させることにより決定される。この近似が良好な結果を与えるということが分かっており、現在の殆どの半導体装置製造アプリケーションについて充分な精度を与える。メンブレンは、主としてポンプ・チャンバ圧力の関数である予測可能な態様で曲がったり広がったりし、分配エラーは、予測されたメンブレン曲がりに基づいて分配を変更するべき量を与える。
【0029】
ステップ506で、モーター・コントローラは、好ましくはダイヤフラムの形状と分配量との関数である初期分配補正量を計算する。初期分配補正量は経験的に、好ましくはメンブレンの機械的挙動についての知識に基づいて測定されることができる。エラーを計算するために使われる式は、1つの好ましい実施の形態では、二次多項式AX2+BX+Cであり、ここでxは分配距離であり、係数A、B及びCは、ポンプにより実際に分配される量を期待される量と比較する試験から収集された実験データに該式を適合させて、それを分配距離と相関させることにより決定される。
【0030】
ステップ507で、モーター・コントローラは次の要素、即ち速度、距離、分配補正量など、のうちの1つ以上に基づいてモーターによりピストンを前進させる。速度は、好ましくは、分配が行われる速度又は時間と、分配されるべき量との関数である。分配コマンドは、主コントローラに応答して、例えば製造プロセスコントローラ又はユーザーからの要求を受け取ったことに応答して、送られることがある。その要求は、プロセス流体の一定量と、随意に特定の分配速度又は時間とを指定することができる。或いは、この量と速度とは主コントローラでプログラミングされてもよい。ピストンが動かされる距離は、好ましくは、分配されるべきプロセス流体の量の関数である。それは、メンブレン208(図2)の変形を生じさせることのある圧力がチャンバ内に存在しないときの該距離の関数としてピストンが変位する既知の体積に基づいて計算される。分配を行うために充分な変位距離がある限りは、分配サイクルはピストンが特定の場所にあるときに始まる必要はない。しかし、分配システムに動力が供給されると、ピストンは図2aに示されているように、完全に引き込まれた位置まで引き込まれる。
【0031】
モーターが動いていることを主コントローラが検出すると、それはステップ508で出口バルブ114を開く。ステップ510で、モーター・コントローラは、ポンプ・チャンバ圧力センサー111(図1)を読むことによってポンプ・チャンバ圧力を測定する。好ましい実施の形態では、分配中に測定される最大圧力が記憶される。図4のフローチャートに関して説明した方法とは異なって、ピストンの変位距離はメンブレン208(図2)の伸びを補正するために頻繁には更新されない。ステップ512で、ポンプ・チャンバ圧力の割合に急速な低下を測定するためにポンプ・チャンバ圧力が監視される。ポンプ・チャンバ圧力の急速な低下が検出された場合には、機械的故障の検出を示す信号が主コントローラに送られる。従って、ポンプ・チャンバ圧力の急速な低下を監視することによってポンプの機械的故障を検出することができる。従って、上で説明した方法では、実際の故障或いは将来起こり得る故障があることがオペレータに知らされ、オペレータは修理のための計画を立てることができる。
【0032】
ステップ514で、ポンプ・チャンバ圧力が所定の限界より高いか否か判定される。もしポンプ・チャンバ圧力が所定限界より高ければ、ステップ516で、高圧状態を意味する信号が生成され、モーターは停止される。もしポンプ・チャンバ圧力がその所定限界より高くなければ、ステップ518においてモーターが最終位置に達しているか否か判定される。もしモーターが最終位置に達していなければ、ステップ510から始まるステップが反復される。もしモーターがその最終位置に達していれば、ステップ520でモーターはモーター・コントローラにより停止させられる。
【0033】
ステップ522及び524で示されているように、主コントローラは、モーター・コントローラ分配シーケンスの終わりを検出すると、ユーザー又はプロセスにより“吸い戻し”が要求されているか否かにより、ステップ526でモーターに吸い戻しシーケンスを開始させ、或いはステップ544に跳んで出口バルブ114(図1)を閉じる。吸い戻しシーケンスとは、ポンプ102(図2)内のピストン206の移動を引き込むか或いは逆転させて分配機出口の先端又はノズルの中の流体を、該流体の滴下又は乾燥を減少させるのに充分なだけ該先端又はノズルの中に後退させることを指している。ステップ530で、モーター・コントローラ110は、主コントローラ108から通知された速度及び距離の値に基づいて、モーター104(図1)によりポンプのピストンを逆方向に動かす。好ましい実施の形態では、ユーザーはこれらの値をプロセス流体に応じて設定する。
【0034】
ステップ532で、モーター・コントローラはポンプ・チャンバ圧力センサー111(図2)を読むことによりポンプ・チャンバ圧力を測定する。ステップ534で、ポンプ・チャンバ圧力が所定限界より低いか否か判定する。もしポンプ・チャンバ圧力が所定限界より低ければ、ステップ536で低圧状態を意味する信号が生成されてモーターが停止させられる。もしポンプ・チャンバ圧力が所定限界より低くはなければ、ステップ538でピストンが最終吸い戻し位置に達しているか否か判定される。好ましい実施の形態では、圧力検出はピストンの運動中連続的に行われる。もしピストンが最終吸い戻し位置に達していなければ、ステップ532から始まるプロセスが反復される。もしピストンがその最終位置に達しているならば、ステップ540で好ましくはモーター・コントローラによりモーターが止められる。
【0035】
主コントローラ108(図1)は、ステップ542で吸い戻しシーケンスの終わりを検出すると、544で出口バルブ114を閉じて再充填プロセスを開始する。再充填プロセス中、プロセス流体が流体源容器118からポンプ・チャンバ212(図2)の中に引き込まれる。再充填プロセスは、プロセスの必要条件に応じて、必ずしも全ての分配の後に行われなくてもよい。ステップ546で、主コントローラは、入口バルブ111を開き、ステップ548で再充填シーケンスを開始させる命令をモーター・コントローラに送る。
【0036】
図5cはモーター制御再充填シーケンスについてのフローチャートである。ステップ550で、現在の充填は処方パラメータ(recipe parameters)が変更されて以来1回目の再充填であるか否か判定される。好ましい実施の形態では、処方パラメータは、分配動作についての、分配されるべき量、分配速度、時間セッティング等の種々のパラメータを定義する。例えば、処方パラメータは、2秒間で3mLの分配量と、4秒間の再充填時間とを指定することができる。
【0037】
ステップ552で、再充填について自動速度機能が要求されているか否かが判定される。その再充填について自動速度機能が要求されているならば、ステップ600で、自動速度再充填が実行される。ここで、図6のフローチャートを参照して自動速度再充填プロセスについて説明をする。もし自動速度再充填機能が要求されていなければ、処方パラメータ変更(ステップ560)後の1回目の再充填について一定速度再充填プロセスが実行される。
【0038】
好ましい実施の形態では、現在の再充填が処方パラメータが変更された後の1回目の再充填でなければ、ステップ554で、その再充填について自動速度機能が要求されているか否かが判定される。その再充填について自動速度機能が要求されていれば、ステップ556で、現在の再充填が処方パラメータが変更された後の2回目の再充填であるか否かが判定される。もし現在の再充填が処方パラメータ変更後の2回目の再充填であるならば、ステップ558で、モーターの速度が前の自動速度再充填で測定された最大速度の関数として設定される。その後、処方パラメータ変更後の1回目の再充填について一定速度再充填(ステップ560)が実行される。
【0039】
ステップ562で、モーター・コントローラはモーターを再充填位置の方へ動かす。ステップ564で、モーター・コントローラは、ポンプ・チャンバ圧力センサー111(図1)を読むことによりポンプ・チャンバ圧力を測定する。好ましい実施の形態では、ステップ566で、現在読まれているポンプ・チャンバ圧力が再充填中に現れた前の記録されている圧力より高いか否かが判定される。もしそうならば、好ましい実施の形態では、現在の圧力の値が、後述するように後の分配において使用されるべきソフトウェア供給源空決定(Software Source Empty Detection(SSED))のためのベンチマーク値として記録される。ステップ568で、ポンプ・チャンバ圧力が所定限界値より低いか否かが判定される。もしポンプ・チャンバ圧力が所定限界値より低ければ、ステップ570で、低圧力状態を意味する信号が生成され、モーターが止められる。もしポンプ・チャンバ圧力がその所定限界値より低くなければ、ステップ572で、ピストンが最終再充填位置に達しているか否かが判定される。もしピストンが最終再充填位置に達していなければ、ステップ564から始まるプロセスが反復される。もしピストンが最終再充填位置に達していれば、ステップ574でモーターが好ましくはモーター・コントローラにより止められる。モーターが止められると、好ましい実施の形態では、本明細書で図7を参照して説明するポンプ・チャンバ前充填プロセス700が実行される。
【0040】
もし現在の再充填が処方パラメータ変更後の1回目の再充填ではなくて該再充填について自動速度機能が要求されていなければ、或いはもし現在の再充填が処方パラメータ変更後の2回目の再充填でないならば、処方パラメータ変更後の1回目の再充填以外の再充填のために一定速度再充填(ステップ576)が実行される。ステップ578で、モーター・コントローラはモーターを再充填位置の方へ動かす。ステップ580で、モーター・コントローラは、ポンプ・チャンバ圧力センサー111(図1)を読むことによりポンプ・チャンバ圧力を測定する。好ましい実施の形態では、ステップ582で、現在読まれているポンプ・チャンバ圧力がSSEDベンチマーク値と、誤警報を防ぐためのオフセットとの和より大きいか否かが判定される。SSEDベンチマークは、一定速度再充填において再充填速度が一定であるので再充填圧力が一定であることによる。もし供給源のボトルが再充填中に空になると、圧力は空気/ガスが該チャンバに引き込まれるのに連れて高まる。もし現在読まれているポンプ・チャンバ圧力がSSEDベンチマーク値と該オフセットとの和より大きければ、好ましい実施の形態では、ステップ584で、供給源空警報信号が生成され、モーターが止められる。ポンプ・チャンバ圧力をSSEDベンチマーク値と比較することにより、供給源を監視して該流体源が空になっているか否か、そして何時空になったかを判定することができる。従って、本発明の好ましい実施の形態では、供給源が空になった時点を判定するために校正に頼る必要はなくなる。
【0041】
ステップ586で、ポンプ・チャンバ圧力が所定限界値より低いか否かが判定される。もしポンプ・チャンバ圧力が所定限界値より低ければ、低圧力状態を意味する信号が生成され、モーターが止められる。もしポンプ・チャンバ圧力がその所定限界値より低くなければ、ステップ590で、ピストンが最終再充填位置に達しているか否かが判定される。もしピストンが最終再充填位置に達していなければ、ステップ580から始まるプロセスが反復される。もしピストンが該最終再充填位置に達していれば、ステップ592でモーターが好ましくはモーター・コントローラにより止められる。好ましい実施の形態では、モーターが停止すると、図7を参照して本明細書で説明するポンプ・チャンバ前充填プロセス700が実行される。
【0042】
図6は、図1の流体分配システムのための好ましい実施の形態である自動速度再充填プロセスを表すフローチャート600である。もし現在の再充填が処方パラメータ変更後の1回目の再充填であって自動速度機能が該再充填について要求されているならば、図6の自動速度再充填プロセスが実行される。自動速度再充填シーケンスは、ステップ602で、モーターを図2aに示されている再充填された或いは完全に引き込まれた位置へ動かし始める。それは、好ましくは主コントローラ108から受け取られた非常に低い初期速度で行われる。ステップ604で、ポンプ・チャンバ圧力が測定される。該圧力がステップ606で決定される最小所定スレショルド値に達するまで、再充填速度が高められる(ステップ608)。例えばピストン206の速度を高めることによって、再充填速度を高めることができる。該圧力が最小所定スレショルド値に達すると、許容できる動作範囲についての最小値に基づいて該圧力が低すぎるか否かがステップ610で判定される。もし該圧力が低すぎれば、メンブレンの潰れを避けるために好ましくはピストンの速度を低下させることによって再充填速度がステップ612で下げられる。ステップ614で、達成された最大速度が記録される。その記録された最大速度は、後の分配で使用されることができる。
【0043】
ステップ616で、モーターが最終位置に達しているか否かが判定される。もしモーターが最終位置に達していなければ、ステップ604から始まるプロセスが反復される。もしモーターがその最終位置に達していれば、ステップ618でモーターはモーター・コントローラによって停止させられる。ステップ620で、主コントローラは再充填シーケンスの終わりを検出し、ステップ622で主コントローラは入口バルブ111を閉じる。
【0044】
図7は図1の流体分配システムのための好ましい実施の形態であるポンプ・チャンバ前充填プロセスを表すフローチャート700である。ステップ702で、好ましくは主コントローラによって全てのバルブが閉じられるのでポンプは封印(密閉)される。ステップ704で、モーター・コントローラは、ポンプ・チャンバ圧力センサー111(図1)を読むことによってポンプ・チャンバ圧力を測定する。ステップ706で、ポンプ・チャンバ圧力が所定前充填圧力より大きいか否かが判定される。好ましい実施の形態では、その所定前充填圧力は5psigである。もし該圧力がその所定前充填圧力より大きければ、ステップ708で、該ポンプ・チャンバ圧力が所望の前充填圧力より所定量だけ低くなるまでポンプ・ピストンが後退させられる。好ましい実施の形態では、その所定量は3psigであり、所望の前充填圧力は5psigである。ステップ712で、ポンプ・チャンバ圧力が所望の前充填圧力になるまで前進させられる。
【0045】
好ましい実施の形態では、図7のプロセスは、ポンプ・ピストンを動かす全ての動作の終了時に実行される。図1の流体分配システムで使用されるメンブレンの性質の故に、分配前にポンプ・チャンバの圧力を制御することは困難である。それは、メンブレンがその実用寿命の間にうねったり、曲がったり、縮んだり永久的に伸びたりしがちだからである。図7の好ましい実施の形態のポンプ・チャンバ前充填プロセスは、メンブレンのこれらの特性の1つ以上を補償する。
【0046】
また、各分配の前に、メンブレンを適切にうねらせて次の分配に備えることが望ましい。図7のポンプ・チャンバ前充填プロセスの利点は、各分配が所望の前充填圧力から始まることである。その結果として、該プロセスの一貫性及び反復可能性をメンブレンの実用寿命の間維持することができる。
【0047】
図8は、図1の分配システムにおいて流体をチャンバに引き込むための好ましい実施の形態の自動速度機能を表すフローチャート800である。ステップ802で、モーター・コントローラはポンプ・チャンバ容積を増大させるためにモーターによりピストンを動かす。ポンプ・チャンバ容積の増加の結果として、ポンプ・チャンバ圧力が低下して流体が引き込まれる。好ましい実施の形態では、ステップ803で、ポンプの入口バルブが好ましくは主コントローラによって開かれる。ステップ804で、モーター・コントローラは、ポンプ・チャンバ圧力センサー111(図1)を読むことによってポンプ・チャンバ圧力を測定する。該圧力がステップ806で決定される所定最小限界値に達するまで、モーター速度が高められる(ステップ808)。好ましい実施の形態では、所定最小限界値は−8psigである。該圧力が所定最小限界値に達すると、該圧力が許容できる動作範囲についての最小値より低いか否かがステップ810で判定される。好ましい実施の形態では、許容できる動作範囲についての最小値は−10psigである。もし現在の圧力が許容できる動作範囲についての最小値より低ければ、モーター速度が減少させられる。ステップ814で、ピストンが要求された距離だけ移動したか否かが判定される。もしピストンが要求された距離だけ移動していなければ、ステップ804から始まるプロセスが反復される。もしピストンが要求された距離だけ移動していれば、ステップ815でモーター・コントローラはモーターを停止させる。ステップ816で、主コントローラは入口バルブを閉じる。
【0048】
図9は、図1の分配システムにおいてチャンバから流体を押し出すための好ましい実施の形態の自動速度機能を表すフローチャート900である。ステップ902で、モーター・コントローラは、ポンプ・チャンバの容積を減少させるためにモーターによりピストンを動かす。ポンプ・チャンバ容積の減少は、ポンプ・チャンバ圧力が増大して流体が押し出されるという結果をもたらす。好ましい実施の形態では、ステップ903で、ポンプの出口バルブが好ましくは主コントローラによって開かれる。ステップ904で、モーター・コントローラは、ポンプ・チャンバ圧力センサー111(図1)を読むことによってポンプ・チャンバ圧力を測定する。該圧力がステップ906で判定されるように所定最大限界値に達するまで、モーター速度が高められる(ステップ908)。好ましい実施の形態では、その所定最大限界値は85psigである。該圧力がその所定最大限界値に達すると、ステップ910で、該圧力が許容できる動作範囲についての最大値より高いか否かが判定される。好ましい実施の形態では、許容できる動作範囲についての最大値は100psigである。もし該圧力が許容できる動作範囲についての最大値より高ければ、モーター速度が低められる。ステップ914で、ピストンが要求された距離だけ移動したか否かが判定される。もしピストンが要求された距離だけ移動していなければ、ステップ904から始まるプロセスが反復される。もしピストンが要求された距離だけ移動していれば、ステップ915でモーター・コントローラはモーターを停止させる。ステップ916で、主コントローラは出口バルブを閉じる。
【0049】
図8のフローチャートは、ポンプ・ピストンが後退させられて流体を該チャンバの中に引き込むときに好ましく使用される。図9のフローチャートは、ポンプ・ピストンが前進して流体を該チャンバから押し出すときに好ましく使用される。該チャンバ内の圧力は、例えばピストンの速度、流体の粘度、ポンプへの配管取り付けなどの、いろいろな要素による。図8及び9の自動速度プロセスの1つの利点は、流体が該チャンバから押し出されているのか、それとも該チャンバの中に引き込まれているのかにより、ポンプ・チャンバ圧力が最大許容値又は最小許容値に近くなるようにピストンの速度が自動的に調整され得ることである。ポンプ・チャンバ内の圧力が自動的に調整されるので、図8及び9のプロセスのもう一つの利点は、ポンプのプライミングの際にポンプのオペレータが該流体の粘度に基づいて或いはポンプがどのように配管されているかに基づいて圧力を監視する必要が無いということである。更に、プライミング操作は在来の手によるセットアップ操作より遙かに高速であり、在来の手によるセットアップ操作は、一般に、ポンプをセットアップする試行錯誤方法をオペレータが採用することを必要とし、それは流体の粘度とポンプの配管とに基づく実験を必要とする。
【0050】
本明細書で説明したポンプ・チャンバからの閉ループ圧力フィードバックは数個の利点を与える。例えば、分配補正、圧力限界値検出、流体をポンプの中へ、ポンプから外へ、或いはポンプを通して流体を移動させるための自動速度機能、供給源空検出、機械的故障検出などである。
【0051】
以上、本発明のいろいろな実施の形態を主コントローラ及びモーター・コントローラとの関連で説明したけれども、本発明はそのようには限定されなくて、別の実施の形態ではいろいろな機能を実行するために単一のコントローラを使用することができる。
【0052】
更に、上で説明した本発明のいろいろな実施の形態では、圧力センサーはポンプに組み込まれているけれども、本発明はそのようには限定されない。別の実施の形態では、圧力センサーは、例えば、ポンプ・チャンバで発生した圧力信号の伝送を可能にする形状及びサイズを有するオリフィスを通してポンプ・チャンバに油圧的に連結されてよい。更に他の実施の形態では、圧力センサーがポンプ・チャンバ内の圧力を感知できるように圧力センサーはポンプの近傍に配置されてもよい。
【0053】
以上の説明は本発明の1つの模範的実施の形態に関してなされている。しかし、本発明の範囲から逸脱せずにその実施の形態を修正し或いは変更することができる。
【図面の簡単な説明】
【図1】 流体分配システムの略図である。
【図2a】 図1の分配システムで使用される一部断面で示されている略図示されているモーター及びポンプである。
【図2b】 図1の分配システムで使用される、一部断面で示されている、略図示されているモーター及びポンプである。
【図2c】 図1の分配システムで使用される、一部断面で示されている、略図示されているモーター及びポンプである。
【図3】 図2a、2b及び2cに示されているモーター及びポンプを結合させるための継手の斜視図である。
【図4a】 図1の流体分配システムのための好ましい実施の形態の分配プロセスを表すフローチャートである。
【図4b】 図1の流体分配システムのための好ましい実施の形態の分配プロセスを表すフローチャートである。
【図4c】 図1の流体分配システムのための好ましい実施の形態の分配プロセスを表すフローチャートである。
【図4d】 図1の流体分配システムのための好ましい実施の形態の分配プロセスを表すフローチャートである。
【図5a】 図1の流体分配システムのための別の実施の形態の分配プロセスを表すフローチャートである。
【図5b】 図1の流体分配システムのための別の実施の形態の分配プロセスを表すフローチャートである。
【図5c】 図1の流体分配システムのための別の実施の形態の分配プロセスを表すフローチャートである。
【図6】 図1の流体分配システムのための好ましい実施の形態自動速度再装填プロセスを表すフローチャートである。
【図7】 図1の流体分配システムのための好ましい実施の形態のポンプ・チャンバ前装填プロセスを表すフローチャートである。
【図8】 図1の分配システムのチャンバに流体を引き込むための好ましい実施の形態の自動速度機能を表すフローチャートである。
【図9】 図1の分配システムのチャンバから流体を押し出すための好ましい実施の形態の自動速度機能を表すフローチャートである。

Claims (17)

  1. 半導体製造プロセスに用いられる化学物質を分配する流体を分配する装置であって、
    半導体製造で使用される化学物質を蓄える供給容器と、
    上記供給容器と流体が流れるように結合し、所望量の化学物質をポンピングするピストンと可撓性を有するメンブレンを有するポンプであって、上記ピストンがポンプ・チャンバ内で往復運動し、上記メンブレンが上記ピストンにより一部が支持され上記ピストンから延在して上記ポンプの内壁に固定されてポンプ・チャンバを形成し、上記ピストンの動きにより移動して、移動した距離に基づく量の化学物質を移動させ、上記メンブレンがポンピングサイクルの少なくとも一部の間でポンプ・チャンバ内の圧力によって変形しこの変形により変形がない場合に比べてより少ない量の化学物質がポンプ・チャンバから移動するものと、さらに、
    上記ピストンを動かして上記ポンプの出口側から化学物質を分配するコントローラ機構であって、所望量の化学物質をポンピングするために分配中のメンブレンの予測される変形を計算するものと、
    を備えた装置。
  2. ポンプ・チャンバに結合されてポンプ・チャンバ内の化学物質の圧力を検出する圧力センサーをさらに備え、メンブレンの変形はピストンの移動中にメンブレンに働くポンプ・チャンバ内の化学物質の圧力に少なくとも起因するもので、コントローラ機構はピストンを動かして検出された圧力に一部、基づいてメンブレンの予測される変形を計算する、請求項1に記載の装置。
  3. 化学物質の圧力は一番目の化学物質の分配の間で得られ、その後の分配時のメンブレンの予測される変形は、一番目の分配時の圧力に少なくとも基づくものである請求項2に記載の装置。
  4. 一番目の分配時に得られた圧力は、一番目の分配の間に検出された最大圧力を含んでいる請求項3に記載の装置。
  5. メンブレンの変形は送り出される化学物質の所望量に少なくとも基づく請求項1に記載の装置。
  6. ポンプ・チャンバ内の圧力を検出する圧力センサーをさらに備え、コントローラ機構が故障を示す急速な圧力低下の検出のためにピストンの移動中の圧力を監視する請求項1に記載の装置。
  7. ピストンに取り外し可能に結合された線形往復運動をする機械的なアクチュエータをさらに備えた請求項1に記載の装置。
  8. 取り外し可能な継手によってピストンに取り外し可能に結合された線形往復運動をする機械的アクチュエータをさらに備えた請求項1に記載の装置。
  9. コントローラ機構が継手によって取り外し可能にピストンに結合された線形往復運動をする機械的アクチュエータを含み、継手は取り外し可能な部分を有し、取り外し可能な部分は使用時には上記ピストンと機械的アクチュエータを結合させ、取り外された時には、ピストンから機械的アクチュエータを切り離すためにピストンと機械的アクチュエータが相互に動くようにする請求項1に記載の装置。
  10. ピストンと可撓性を有するメンブレンを有し、上記ピストンが上記メンブレンの一部を支持しメンブレンが上記ピストンから延在してポンプの内壁に固定されてポンプ・チャンバを形成する上記ポンプを使用した精密な量の粘りけのある流体を分配するための流体を分配する方法であって、
    分配中のメンブレンの変形によるポンプ・チャンバ内での増加体積を考慮してピストンを動かす距離の調整を決定するステップであって、調整量が分配中のメンブレンの予測される変形に少なくとも基づくものであるものと、
    粘りけのある流体が分配されるようにポンプの出口バルブを開放するステップと、
    所望量の粘りけのある流体をポンプ・チャンバから移動させるためにピストンを調整された距離動かすステップと、
    を含むことを特徴とする方法。
  11. 分配中にポンプ・チャンバ内の流体の圧力を監視するステップをさらに含む請求項10に記載の方法。
  12. 圧力の監視がポンプ・チャンバ圧力の急速な低下の監視と分配の停止を含む請求項11に記載の方法。
  13. 分配中にポンプ・チャンバ内の流体の圧力に応じてピストンの動作速度を自動的に調整するステップをさらに含む請求項11に記載の方法。
  14. ピストンの動作速度を自動的に調整するステップが、
    ポンプ・チャンバ内の流体の圧力が予め定められた最大圧力に達するまでピストンの動作速度を増加させるステップと、
    上記圧力がポンプの動作にふさわしい予め定められた高圧力より高くなったらピストンの動作速度を減少させるステップと、
    を含む請求項13に記載の方法。
  15. 予測されるメンブレンの変形が、ピストンの動作中の分配される粘りけのある流体の所望量に少なくとも基づく請求項10に記載の方法。
  16. 予測されるメンブレンの変形が、前の分配中に測定されたポンプ・チャンバ内の流体の圧力に少なくとも基づく請求項10に記載の方法。
  17. ポンプ・チャンバ内の流体の圧力が前の分配中の流体の最大圧力である請求項16に記載の方法。
JP2000318343A 1999-10-18 2000-10-18 流体を分配する装置および方法 Expired - Lifetime JP3958926B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16021999P 1999-10-18 1999-10-18
US60/160219 1999-10-18

Publications (2)

Publication Number Publication Date
JP2001203196A JP2001203196A (ja) 2001-07-27
JP3958926B2 true JP3958926B2 (ja) 2007-08-15

Family

ID=22576009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000318343A Expired - Lifetime JP3958926B2 (ja) 1999-10-18 2000-10-18 流体を分配する装置および方法

Country Status (4)

Country Link
US (2) US6478547B1 (ja)
JP (1) JP3958926B2 (ja)
KR (1) KR100754342B1 (ja)
TW (1) TW466301B (ja)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8172546B2 (en) * 1998-11-23 2012-05-08 Entegris, Inc. System and method for correcting for pressure variations using a motor
US7029238B1 (en) * 1998-11-23 2006-04-18 Mykrolis Corporation Pump controller for precision pumping apparatus
US6325932B1 (en) * 1999-11-30 2001-12-04 Mykrolis Corporation Apparatus and method for pumping high viscosity fluid
JP4717312B2 (ja) * 2000-02-29 2011-07-06 ジェン−プローブ・インコーポレイテッド 流体搬送プローブ
EP1432639A1 (en) 2001-10-01 2004-06-30 Fsi International, Inc. Fluid dispensing apparatus
US6857543B2 (en) * 2001-12-01 2005-02-22 Shipley Company, L.L.C. Low volume dispense unit and method of using
DE10161132A1 (de) 2001-12-12 2003-06-26 Siemens Ag Membranpumpe mit integriertem Drucksensor
US7350423B2 (en) * 2004-01-14 2008-04-01 International Business Machines Corporation Real time usage monitor and method for detecting entrapped air
US7335003B2 (en) * 2004-07-09 2008-02-26 Saint-Gobain Performance Plastics Corporation Precision dispense pump
JP4704710B2 (ja) * 2004-08-26 2011-06-22 武蔵エンジニアリング株式会社 液体定量吐出装置
US7955797B2 (en) 2004-10-25 2011-06-07 Advanced Technology Materials, Inc. Fluid storage and dispensing system including dynamic fluid monitoring of fluid storage and dispensing vessel
US7172096B2 (en) * 2004-11-15 2007-02-06 Advanced Technology Materials, Inc. Liquid dispensing system
WO2006057957A2 (en) * 2004-11-23 2006-06-01 Entegris, Inc. System and method for a variable home position dispense system
US7572113B2 (en) * 2005-03-21 2009-08-11 Lancer Partnership, Ltd. Methods and apparatus for pumping and dispensing
US20060272576A1 (en) * 2005-06-02 2006-12-07 Chain-Chi Huang Piping system structure of semiconductor equipment
US7792647B1 (en) * 2005-07-12 2010-09-07 Ortho-Clinical Diagnostics, Inc. Quantitatively measuring error causing parameters in fluid handling
US7634367B1 (en) * 2005-07-12 2009-12-15 Ortho-Clinical Diagnostics, Inc. Estimating fluidic properties and using them to improve the precision/accuracy of metered fluids and to improve the sensitivity/specificity in detecting failure modes
US8753097B2 (en) 2005-11-21 2014-06-17 Entegris, Inc. Method and system for high viscosity pump
JP5339914B2 (ja) 2005-11-21 2013-11-13 インテグリス・インコーポレーテッド 低減された形状要因を有するポンプのためのシステムと方法
US7850431B2 (en) 2005-12-02 2010-12-14 Entegris, Inc. System and method for control of fluid pressure
US20070128061A1 (en) * 2005-12-02 2007-06-07 Iraj Gashgaee Fixed volume valve system
WO2007067343A2 (en) 2005-12-02 2007-06-14 Entegris, Inc. O-ring-less low profile fittings and fitting assemblies
US7878765B2 (en) 2005-12-02 2011-02-01 Entegris, Inc. System and method for monitoring operation of a pump
CN102705209B (zh) * 2005-12-02 2015-09-30 恩特格里公司 用于泵中压力补偿的系统和方法
US8083498B2 (en) 2005-12-02 2011-12-27 Entegris, Inc. System and method for position control of a mechanical piston in a pump
CN101356488B (zh) 2005-12-02 2012-05-16 恩特格里公司 与泵控制器对接的i/o系统、方法和设备
US8025486B2 (en) 2005-12-02 2011-09-27 Entegris, Inc. System and method for valve sequencing in a pump
CN101495756B (zh) * 2005-12-02 2012-07-04 恩特格里公司 使用电机校正压力变化的系统和方法
US7897196B2 (en) * 2005-12-05 2011-03-01 Entegris, Inc. Error volume system and method for a pump
US9441757B2 (en) 2005-12-21 2016-09-13 Fisher Controls International Llc Load relieving stem connectors
US8696231B2 (en) * 2005-12-21 2014-04-15 Fisher Controls International Llc Load relieving stem connectors
JP4861016B2 (ja) * 2006-01-23 2012-01-25 株式会社東芝 処理装置
TWI402423B (zh) 2006-02-28 2013-07-21 Entegris Inc 用於一幫浦操作之系統及方法
US7684446B2 (en) 2006-03-01 2010-03-23 Entegris, Inc. System and method for multiplexing setpoints
US7494265B2 (en) * 2006-03-01 2009-02-24 Entegris, Inc. System and method for controlled mixing of fluids via temperature
US20080086076A1 (en) * 2007-05-17 2008-04-10 Allen Gerber Anti-aspiration device with content monitoring functionality
US20080146994A1 (en) * 2006-10-10 2008-06-19 Allen Gerber Retrofittable aspiration prevention mechanism for patients
US7833188B2 (en) * 2006-10-10 2010-11-16 Allen Gerber Aspiration prevention mechanism
WO2008097838A1 (en) * 2007-02-02 2008-08-14 Entegris, Inc. System and method of chemical dilution and dispense
US9333293B2 (en) * 2007-05-09 2016-05-10 Acist Medical Systems, Inc. Injector device, method, and computer program product for detecting a vacuum within a syringe
US8317493B2 (en) * 2007-07-13 2012-11-27 Integrated Designs L.P. Precision pump having multiple heads and using an actuation fluid to pump one or more different process fluids
US8047815B2 (en) * 2007-07-13 2011-11-01 Integrated Designs L.P. Precision pump with multiple heads
US7804599B2 (en) * 2008-07-24 2010-09-28 MGM Instruments, Inc. Fluid volume verification system
US8063785B2 (en) * 2008-09-10 2011-11-22 Alcor Scientific, Inc. a Rhode Island corporation Head gatch alarm system
US8561627B1 (en) * 2008-09-26 2013-10-22 Intermolecular, Inc. Calibration of a chemical dispense system
CA2741195C (en) 2008-10-22 2017-05-23 Debiotech S.A. Mems fluid pump with integrated pressure sensor for dysfunction detection
US8646655B2 (en) * 2009-11-12 2014-02-11 Gojo Industries, Inc. Methods for resetting stalled pumps in electronically controlled dispensing systems
DK2386024T3 (en) 2010-02-23 2016-01-25 Artemis Intelligent Power Ltd Fluidarbejdsmaskine and method to operate an fluidarbejdsmaskine
GB2477997B (en) * 2010-02-23 2015-01-14 Artemis Intelligent Power Ltd Fluid working machine and method for operating fluid working machine
US8671733B2 (en) 2011-12-13 2014-03-18 Intermolecular, Inc. Calibration procedure considering gas solubility
US9719504B2 (en) 2013-03-15 2017-08-01 Integrated Designs, L.P. Pump having an automated gas removal and fluid recovery system and method
US9987655B2 (en) * 2015-06-26 2018-06-05 Tokyo Electron Limited Inline dispense capacitor system
US10508648B2 (en) * 2015-07-09 2019-12-17 Trebor International Automated cross-phase pump and controller
CN107728431A (zh) 2016-08-11 2018-02-23 东京毅力科创株式会社 具有弯液面控制的高精度分配系统
KR102394995B1 (ko) 2016-08-11 2022-05-04 도쿄엘렉트론가부시키가이샤 고순도 분배 유닛
US10403501B2 (en) 2016-08-11 2019-09-03 Tokyo Electron Limited High-purity dispense system
EP3327434B1 (en) * 2016-11-29 2021-11-24 Spark Holland B.V. High or ultra high performance liquid chromatography pump
KR102525478B1 (ko) * 2017-08-29 2023-04-26 헨켈 아게 운트 코. 카게아아 0의 변위의 밀봉 장치를 갖춘 유체 분배기
CN110552856A (zh) * 2019-09-16 2019-12-10 无锡迅元精密科技有限公司 一种高压泵
DE102020209593B4 (de) * 2020-07-30 2022-02-17 Festo Se & Co. Kg Fluidgerät
WO2022245712A1 (en) * 2021-05-21 2022-11-24 Applied Materials, Inc. Consistent known volume liquid metal or metal alloy transfer from atmospheric to vacuum chamber

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US73100A (en) * 1868-01-07 Improvement in shaft-coupling
US292978A (en) * 1884-02-05 John bbaim
US111152A (en) * 1871-01-24 Improvement in couplings for shafting
US1448506A (en) * 1922-06-13 1923-03-13 Ingersoll Rand Co Shaft coupling
DE2431745A1 (de) 1974-07-02 1976-01-22 Motoren Werke Mannheim Ag Rollmembrandichtung
US4483665A (en) 1982-01-19 1984-11-20 Tritec Industries, Inc. Bellows-type pump and metering system
CA1186166A (en) 1982-02-27 1985-04-30 Katsuhiko Saito Liquid chromatograph
US4493435A (en) 1982-11-10 1985-01-15 Product Research And Development Liquid dispensing system and automatic selector therefor
US4569378A (en) 1982-12-13 1986-02-11 National Instrument Company Inc. Filling machine with tandem-operated diaphragm filling units
US4593720A (en) 1983-12-20 1986-06-10 National Instrument Company, Inc. Filling nozzle valve structure
US4601409A (en) 1984-11-19 1986-07-22 Tritec Industries, Inc. Liquid chemical dispensing system
DE3446914A1 (de) 1984-12-21 1986-07-03 Ott Kg Lewa Membranpumpe mit hydaulisch angetriebener rollmembran
US4863066A (en) 1986-06-02 1989-09-05 Technicon Instruments Corporation System for dispensing precisely metered quantities of a fluid and method of utilizing the system
FR2600723B3 (fr) 1986-06-26 1988-08-26 Berthoud Sa Pompe a piston a membrane a deroulement.
DE3837625C1 (ja) * 1988-11-05 1989-11-02 Man Roland Druckmaschinen Ag, 6050 Offenbach, De
US4950134A (en) 1988-12-27 1990-08-21 Cybor Corporation Precision liquid dispenser
US5167837A (en) * 1989-03-28 1992-12-01 Fas-Technologies, Inc. Filtering and dispensing system with independently activated pumps in series
US5316181A (en) 1990-01-29 1994-05-31 Integrated Designs, Inc. Liquid dispensing system
US5148945B1 (en) * 1990-09-17 1996-07-02 Applied Chemical Solutions Apparatus and method for the transfer and delivery of high purity chemicals
US5062734A (en) * 1990-11-08 1991-11-05 Vanzee David G Shaft coupling device
US5262068A (en) 1991-05-17 1993-11-16 Millipore Corporation Integrated system for filtering and dispensing fluid having fill, dispense and bubble purge strokes
US5320250A (en) * 1991-12-02 1994-06-14 Asymptotic Technologies, Inc. Method for rapid dispensing of minute quantities of viscous material
US5527161A (en) 1992-02-13 1996-06-18 Cybor Corporation Filtering and dispensing system
JPH05312172A (ja) * 1992-05-12 1993-11-22 Daikin Ind Ltd ローリングピストン型圧縮機
US6190565B1 (en) 1993-05-17 2001-02-20 David C. Bailey Dual stage pump system with pre-stressed diaphragms and reservoir
US5490765A (en) 1993-05-17 1996-02-13 Cybor Corporation Dual stage pump system with pre-stressed diaphragms and reservoir
JPH0886289A (ja) * 1994-09-19 1996-04-02 Toshiba Corp ローリングピストン式回転機械
US5531536A (en) * 1995-01-24 1996-07-02 Carolina Knife Company, Inc. Split slitter
US5586832A (en) * 1995-05-22 1996-12-24 Zylka; Karl-Heinz Two piece interlocking shaft attachment
US5848605A (en) 1997-11-12 1998-12-15 Cybor Corporation Check valve
US6109881A (en) * 1998-01-09 2000-08-29 Snodgrass; Ocie T. Gas driven pump for the dispensing and filtering of process fluid
US6135670A (en) * 1998-07-16 2000-10-24 Bahnman; Reuben G. Polished rod clamp
JP2000055226A (ja) * 1998-08-03 2000-02-22 Zexel Corp 流体噴射弁

Also Published As

Publication number Publication date
US6478547B1 (en) 2002-11-12
KR20010051105A (ko) 2001-06-25
US20030062382A1 (en) 2003-04-03
KR100754342B1 (ko) 2007-09-03
JP2001203196A (ja) 2001-07-27
US6742993B2 (en) 2004-06-01
TW466301B (en) 2001-12-01

Similar Documents

Publication Publication Date Title
JP3958926B2 (ja) 流体を分配する装置および方法
US8382444B2 (en) System and method for monitoring operation of a pump
US9631611B2 (en) System and method for operation of a pump
TWI506202B (zh) 用於一幫浦中之壓力補償的系統與方法
US6554579B2 (en) Liquid dispensing system with enhanced filter
KR101243524B1 (ko) 모터를 이용한 압력 변동 보정 시스템 및 보정 방법
KR20170013322A (ko) 공급 및 분배 센서를 갖는 펌프의 작동, 여과 및 분배 확인, 및 필터의 감압 프라이밍을 위한 시스템 및 방법
JP2008128059A (ja) 薬液供給装置
EP2745310B1 (en) System and method for detecting air in a fluid
US6205853B1 (en) Method for testing functions of painting apparatus and apparatus for the same
JP4771275B2 (ja) 塗布装置及び塗布エラー検出方法
JP2006184989A (ja) 液体供給装置、基板処理装置および液体供給方法
KR101763121B1 (ko) 개선된 약액 가압 장치, 및 이를 구비한 약액 공급 장치
US11559823B2 (en) Volumetric measurement and regulation device incorporated in a time-pressure dispenser

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20041124

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20041129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050928

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20051017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3958926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250