WO2003014576A1 - Steuereinrichtung für die kontinuierliche bewegung eines hydraulischen stellmotors - Google Patents

Steuereinrichtung für die kontinuierliche bewegung eines hydraulischen stellmotors Download PDF

Info

Publication number
WO2003014576A1
WO2003014576A1 PCT/EP2001/009264 EP0109264W WO03014576A1 WO 2003014576 A1 WO2003014576 A1 WO 2003014576A1 EP 0109264 W EP0109264 W EP 0109264W WO 03014576 A1 WO03014576 A1 WO 03014576A1
Authority
WO
WIPO (PCT)
Prior art keywords
throttle
piston
control device
bore
annular gap
Prior art date
Application number
PCT/EP2001/009264
Other languages
English (en)
French (fr)
Inventor
JÖrg Linser
Original Assignee
Zf Lenksysteme Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zf Lenksysteme Gmbh filed Critical Zf Lenksysteme Gmbh
Priority to AT01974163T priority Critical patent/ATE313016T1/de
Priority to US10/486,483 priority patent/US7028599B2/en
Priority to DE50108414T priority patent/DE50108414D1/de
Priority to PCT/EP2001/009264 priority patent/WO2003014576A1/de
Priority to EP01974163A priority patent/EP1415095B1/de
Publication of WO2003014576A1 publication Critical patent/WO2003014576A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/006Hydraulic "Wheatstone bridge" circuits, i.e. with four nodes, P-A-T-B, and on-off or proportional valves in each link
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0401Valve members; Fluid interconnections therefor
    • F15B13/0405Valve members; Fluid interconnections therefor for seat valves, i.e. poppet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • F15B13/043Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves
    • F15B13/0433Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves the pilot valves being pressure control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/30575Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve in a Wheatstone Bridge arrangement (also half bridges)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/35Directional control combined with flow control
    • F15B2211/351Flow control by regulating means in feed line, i.e. meter-in control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/35Directional control combined with flow control
    • F15B2211/353Flow control by regulating means in return line, i.e. meter-out control

Definitions

  • Control device for the continuous movement of a hydraulic servomotor
  • Proportional valve arrangements such as those used as servo valve arrangements for actuating a hydraulic servomotor, e.g. used in the form of a working cylinder 27 ( Figure 1) can be composed of individual modules D1 to D4. These modules then form the four controllable throttle devices D1, D2, D3, D4 of a hydraulic bridge circuit shown in FIG. 1 in the form of pilot-controlled and pressure-proportional controlled closing valves.
  • FIG. 1 shows the switching principle of such a servo valve arrangement in the so-called open center version (version based on the principle of the open center) in the neutral position, in which all four throttle devices are open, so that a pump P from a tank T Pumped fluid can flow back to the tank T almost unhindered via the throttle devices.
  • Lines A and B lead from points A and B to work spaces a and b of the working cylinder 27, which are separated from one another by a working piston AK.
  • the pressure in both working spaces a, b is the same, so that the working piston AK remains at rest.
  • the invention relates to a controllable module (e.g. D1) or a pair of modules (e.g. D1 with D3).
  • a controllable module e.g. D1
  • a pair of modules e.g. D1 with D3
  • FIG. 2 such a module D1 basically consists of a housing bore 1 made in a valve block (housing G), in which a piston 3 can be moved axially back and forth.
  • a sealing element 4 on the piston circumference separates pressure chambers 2 and 5 from one another and at the same time acts as a low-friction guide for the piston 3 in the housing bore 1 a throttle needle 9 is moved into a throttle opening 8 by an actuating force.
  • This throttle opening 8 is located in a fixed disc 6, which is also in a housing G or can be integrated in a cover D and which together with the piston 3 and the housing bore 1 forms the pressure chamber 5.
  • the axial actuating force on the throttle needle 9 can be applied mechanically, electromotively, electromagnetically, hydraulically or pneumatically. Pushing the throttle needle 9 into the throttle opening 8 reduces the flow cross-section for the fluid flow flowing through a pre-throttle bore 12 via a channel 10 into a tank T. This throttling of the fluid flow builds up a higher pressure in the pressure chamber 5.
  • the piston 3 is moved in the direction of the annular gap 17. This reduces the width of the annular gap 17, which creates the connection from the inlet channel 14 to the outlet channel 13. As a result, the fluid pressure in the inlet channel 14 increases.
  • the fluid pressure in space 5 is proportional to the actuating force on throttle needle 9. This fluid pressure is in turn proportional to the fluid pressure in the inlet channel 14, which results in an overall proportionality between the actuating force acting on the throttle needle 9 and the fluid pressure generated in the inlet channel 14.
  • a hydraulic bridge circuit as is customary with servo valves, two such modules D1, D3 of a total of four modules are to perform the same closing function at the same time, cf. 3, they can be made almost identical and can be controlled together by the throttle unit of a module D1, consisting of throttle needle 9 and throttle opening 8.
  • a hydraulic connection is provided between, on the one hand, the pressure chamber 5 of a module D1 provided with a throttle unit and, on the other hand, the corresponding pressure chamber (53 in FIG. 4) of one or more other modules, which are then designed and controlled without a throttle unit and without a pre-throttle bore 12 become.
  • the hydraulic connection can preferably be in the form of an internal housing channel (1_3 in FIG. 4).
  • FIG. 4 shows the diagram of a servo valve arrangement designed in this way.
  • Figure 4 is based on the state shown in Figure 3, in which D1 and D3 are open, while D2 and D4 are closed, so that the pump pressure (pressure at the outlet of the pump P) via the open throttle device D1 in the direction of the arrow in the work area a of the working cylinder 27 acts on the working piston AK.
  • both throttle needles 9 and 92 hold the associated throttle openings 8, 82 in the neutral state closed.
  • the throttle needle 9 is moved to the left in order to open the throttle opening.
  • the throttle needles 9, 92 are pushed more or less into its throttle opening 8, 82 by an actuating force, while no actuating force acts on the other (passive) throttle needle, so that this throttle needle is outside their throttle opening remains.
  • the throttle needles swap their active or passive roles.
  • the throttle device D1 (and D3) is passive, the pressure conditions (taking into account the different sized pressurized areas on both sides of the piston 3) ensure that the annular gap 17 is wide open. Since D4 (and D2) (unlike in the neutral position according to FIG. 1) is almost closed, there is a pressure above the pressure in the tank T at point A, and pressure is exerted on the working piston AK in the working space a via the line LA in the direction of the arrow ,
  • D4 is almost closed? This is due to the fact that D2 is also almost closed and D4 is also controlled by D2, namely that the pressure chamber 52 of D2 is connected to the pressure chamber 54 of D4 via a channel 2_4, so that the same pressure prevails in both pressure chambers.
  • the throttle opening 82 of D2 was opened even more, so that fluid could flow relatively unhindered from the pump P via the inlet channel 142 through a pre-throttle bore 122 in the piston 32 and via the throttle opening 82 and the channel 2_T to the tank T. Then the throttle opening 82 was closed more tightly by moving the throttle needle 92 to the left. As a result, a higher pressure has built up in the pressure chamber 52, which has resulted in a displacement of the piston 32 to the left.
  • the spring elements 1 1 shown in Figure 2, which can also be replaced by a large (e.g. recessed) spring element 1 1a (shown in D4 in Figure 4) have the task in the neutral position, the piston 3 in this direction to press on the annular gap 17 that throttling the fluid flow in the annular gap 17 creates a predeterminable pressure difference which, when the throttling effect occurs at the throttle unit, consisting of throttle needle 9 and throttle opening 8, a compressive force on the end face 16 (FIG. 2) of the piston 3 enables that overcomes the friction of the sealing element 4. This friction is additionally overcome by the spring force of the spring element 1 1.
  • the throttle opening 8 is located in a disc 6 which forms the rear end of the pressure chamber 5.
  • the fluid flowing through the throttle opening 8 into the space 7 is returned through the line 10 in FIG. 2 (or 1_T in FIG. 4) into the tank T of the system.
  • FIG. 4 shows a switching position in which the module D2 and the module D4 are activated and are therefore brought into the “closed” position, as a result of which the fluid flow is led to the working space a of the working cylinder 27.
  • the modules D1 and D3 are not activated and are located therefore in the "open” position.
  • the pilot bores 12, 122 do not have to be arranged in the controllable throttle devices D1, D2, but instead can be located in the co-controlled throttle devices D3, D4: compare there the reference numerals 123 and 124. If in such a modified arrangement according to FIG. 4, the throttle device D2 is to be controlled from the open to the closed state, first a pilot fluid flow from the pump P via the inlet channel 14, the outlet channel 13, the pilot bore 124 in the piston of the throttle device D4, the connecting channel 2_4, the pressure chamber 52, Throttle opening 82, flow the connection channel 2_T to the tank T.
  • the throttle needle 92 is inserted into the throttle opening 82, the pressure in the pressure chamber 52 will rise and move the piston 32 in the closing direction. At the same time, the pressure in the pressure chamber 54 of D4 increases, so that the piston of D4 also moves in the closing direction.
  • the control device according to the invention is particularly suitable for hydraulic auxiliary or external power steering systems in the open center version because it solves the problem of undesired leakage when the annular gap 17 is fully open; however, it is also suitable for use in a closed center system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Servomotors (AREA)

Abstract

Bei einer Steuereinrichtung für einen hydraulischen Stellmotor (27) sind zwischen Pumpe (P) und Tank (T) in Serie zwei Drosseleinrichtungen (D1, D4) vorgesehen, zwischen denen eine Leitung (LA) abzweigt, die zum Stellmotor führt; eine der Drosseleinrichtungen besteht aus einer steuerbaren Drossel (D1) mit Kolben (3), der auf einer Seite einen Ventilteller trägt, der einen Ringspalt (17) zwischen einem Zuflusskanal (14) und einem Abflusskanal (13) begrenzt; der Druckabfall am Ringspalt (17) ist mittels Drosselnadel (9) kontinuierlich steuerbar, welche auf der anderen Seite des Kolbens (12) in einem hydraulischen Steuerrad angeordnet ist, dieser erstreckt sich vom Zuflusskanal (14) über die Drosselöffnung (8) zum Tank (T), wobei er durch eine Vorsteuerbohrung (12) im Kolben (3) geführt ist. Wenn die Steuereinrichtung nach dem Prinzip der offenen Mitte arbeitet, ergibt sich bei vollständig geöffnetem Ringspalt (17) ein unerwünschter Leck-Fluidstrom über die Vorsteuerbohrung (12) zum Tank (T). Um dies zu vermeiden, ist ein Ende der Vorsteuerbohrung (12) am Ringspalt (17) im Bereich des Zuflusskanals (14) so angeordnet, dass es selbst bei geschlossenem Ringspalt (17) geöffnet bleibt, und das andere Ende der Vorsteuerbohrung (12) auf der anderen Seite des Kolbens (3) ist dort angeordnet, wo der Kolben (3) bei vollständigem Öffnen der steuerbaren Drossel (D1) gegen eine Anschlagfläche (60) stößt und dabei dieses andere Ende selbsttätig schließt.

Description

Steuereinrichtung für die kontinuierliche Bewegung eines hydraulischen Stellmotors
Proportionalventil-Anordnungen, wie sie beispielsweise als Servoventil-Anordnungen zur Betätigung eines hydraulischen Stellmotors z.B. in Form eines Arbeitszylinders 27 (Figur 1) eingesetzt werden, können aus einzelnen Modulen D1 bis D4 zusammengesetzt sein. Diese Module bilden dann in Form von vorgesteuerten und druckproportional gesteuerten Schließventilen die vier steuerbaren Drosseleinrichtungen D1 , D2, D3, D4 einer in Figur 1 dargestellten hydraulischen Brückenschaltung.
Figur 1 zeigt das Schaltprinzip einer solchen Servoventil-Anordnung in der so genannten Open-Center-Ausführung (Ausführung nach dem Prinzip der offenen Mitte) in Neutralstellung, bei der alle vier Drosseleinrichtungen offen sind, so dass ein von einer Pumpe P aus einem Tank T gefördertes Fluid nahezu ungehindert über die Drosseleinrichtungen zu dem Tank T zurück fließen kann. Von den Punkten A und B führen Leitungen LA bzw. LB zu Arbeitsräumen a bzw. b des Arbeitszylinders 27, die durch einen Arbeitskolben AK voneinander getrennt sind. In der gezeigten Neutralstellung ist der Druck in beiden Arbeitsräumen a, b gleich groß, so dass der Arbeitskolben AK in Ruhe bleibt.
Nicht alle Module D1 bis D4 müssen steuerbar sein. Um die Bewegung des Arbeitskolbens steuern zu können, genügt im Grunde genommen eine Reihenschaltung von zwei Drosseleinrichtungen D1 und D4, von denen eine steuerbar sein muss; dabei kann für den Arbeitskolben eine Feder vorgesehen sein, die ihn in eine Richtng drängt, oder der Arbeitsraum b kann auf einem anderweitig gesteuerten oder konstanten Druck gehalten sein, dessen Betrag zwischen dem Pumpendruck und dem Druck des Tanks (das ist meist der Atmosphärendruck) liegt.
Die Erfindung bezieht sich auf einen steuerbaren Modul (z. B. D1) oder ein Paar von Modulen (z. B. D1 mit D3). Gemäß Figur 2 besteht ein solcher Modul D1 grundsätzlich aus einer in einen Ventilblock (Gehäuse G) eingebrachten Gehäusebohrung 1, in der ein Kolben 3 axial hin- und herbewegt werden kann. Ein Dichtelement 4 auf dem Kolbenumfang trennt Druckräume 2 und 5 voneinander und wirkt gleichzeitig als reibungsarme Führung des Kolbens 3 in der Gehäusebohrung 1. Soll der durch Pfeile angedeutete Fluidstrom von einem Zulauf kanal 14 über einen Ringspalt 17 zu einem Ablauf kanal 13 vermindert oder ganz unterbrochen werden, wird eine Drosselnadel 9 durch eine Stellkraft in eine Drosselöffnung 8 bewegt. Diese Drosselöffnung 8 befindet sich in einer festgehaltenen Scheibe 6, die auch in ein Gehäuse G oder in einen Deckel D integriert sein kann und die zusammen mit dem Kolben 3 und der Gehäusebohrung 1 den Druckraum 5 bildet. Die axiale Stellkraft an der Drosselnadel 9 kann mechanisch, elektromotorisch, elektromagnetisch, hydraulisch oder pneumatisch aufgebracht werden. Das Einschieben der Drosselnadel 9 in die Drosselöffnung 8 verringert den Durchlaufquerschnitt für den durch eine Vordrosselbohrung 12 über einen Kanal 10 in einen Tank T strömenden Fluidstrom. Durch diese Drosselung des Fluidstroms baut sich im Druckraum 5 ein höherer Druck auf. Infolge des damit entstandenen Ungleichgewichts zwischen einerseits den Kräften, die auf die linke Seite des Kolbens 3 wirken, und andererseits den Kräften, die auf die rechte Seite des Kolbens 3 wirken, wird der Kolben 3 in Richtung auf den Ringspalt 17 bewegt. Dadurch verringert sich die Weite des Ringspalts 17, der die Verbindung vom Zulauf kanal 14 zum Ablauf kanal 13 herstellt. Infolgedessen nimmt der Fluiddruck im Zulaufkanal 14 zu. Der Fluiddruck im Raum 5 ist der Stellkraft an der Drosselnadel 9 proportional. Dieser Fluiddruck ist wiederum dem Fluiddruck im Zulauf kanal 14 proportional, wodurch sich insgesamt eine Proportionalität zwischen der an der Drosselnadel 9 wirkenden Stellkraft und dem im Zulauf kanal 14 erzeugten Fluiddruck einstellt.
Wenn für die Funkion beispielsweise einer hydraulischen Brückenschaltung, wie sie bei Servoventilen üblich ist, zwei solcher Module D1 , D3 von insgesamt vier Modulen zeitgleich dieselbe Schließfunktion ausführen sollen, vgl. hierzu Figur 3, so können diese nahezu baugleich ausgeführt und gemeinsam von der Drosseleinheit eines Moduls D1 , bestehend aus Drosselnadel 9 und Drosselöffnung 8, gesteuert werden. Für diese gemeinsame Steuerung wird eine hydraulische Verbindung vorgesehen zwischen einerseits dem Druckraum 5 eines mit einer Drosseleinheit versehenen Moduls D1 und andererseits dem entsprechenden Druckraum (53 in Figur 4) eines oder mehrerer anderer Module, die dann ohne Drosseleinheit und ohne Vordrosselbohrung 12 ausgeführt sind und mitgesteuert werden. Die hydraulische Verbindung kann vorzugsweise in Form eines internen Gehäusekanals (1_3 in Figur 4) ausgeführt sein.
Figur 4 zeigt das Schema einer derart ausgeführten Servoventil-Anordnung. Figur 4 geht von dem in Figur 3 wiedergegebenen Zustand aus, bei dem D1 und D3 offen sind, während D2 und D4 geschlossen sind, so dass der Pumpendruck (Druck am Ausgang der Pumpe P) über die geöffnete Drosseleinrichtung D1 in Richtung des Pfeiles im Arbeitsraum a des Arbeitszylinders 27 auf den Arbeitskolben AK wirkt.
Bei Verwendung in einem Closed-C enter-System (System mit geschlossener Mitte) halten beide Drosselnadeln 9 und 92 im Neutralzustand die zugehörigen Drosselöffnungen 8, 82 geschlossen. Soll der Arbeitskolben AK beispielsweise nach rechts bewegt werden, dann wird die Drosselnadel 9 nach links bewegt, um die Drosselöffnung zu öffnen. Bei einem Open-Center-System wird immer nur eine (aktive) der Drosselnadeln 9, 92 durch eine Stellkraft mehr oder weniger in ihre Drosselöffnung 8, 82 geschoben, während auf die andere (passive) Drosselnadel keine Stellkraft wirkt, so dass diese Drosselnadel außerhalb ihrer Drosselöffnung bleibt. Je nachdem in welche Richtung der Arbeitskolben AK verschoben werden soll, vertauschen die Drosselnadeln ihre aktive bzw. passive Rolle.
In Figur 4 ist die Drosseleinrichtung D1 (und D3) passiv, wobei die Druckverhältnisse (unter Berücksichtugung der unterschiedlich großen druckbeaufschlagten Flächen auf beiden Seiten des Kolbens 3) dafür sorgen, dass der Ringspalt 17 weit geöffnet ist. Da D4 (und D2) (anders als in der Neutralstellung nach Figur 1) nahezu geschlossen ist, herrscht am Punkt A ein Druck oberhalb des Druckes im Tank T, und über die Leitung LA wird im Arbeitsraum a Druck in Pfeilrichtung auf den Arbeitskolben AK ausgeübt.
Wie ist es nun dazu gekommen, dass D4 nahezu geschlossen ist? Das beruht darauf, dass auch D2 nahezu geschlossen ist und D4 von D2 mitgesteuert ist, indem nämlich der Druckraum 52 von D2 über einen Kanal 2_4 mit dem Druckraum 54 von D4 verbunden ist, so dass in beiden Druckräumen der gleiche Druck herrscht.
D2 ist auf folgende Weise nahezu geschlossen worden:
Zunächst war die Drosselöffnung 82 von D2 noch stärker geöffnet, so dass Fluid relativ unbehindert von der Pumpe P über den Zulauf kanal 142 durch eine Vordrosselbohrung 122 im Kolben 32 und über die Drosselöffnung 82 und den Kanal 2_T zum Tank T fließen konnte. Dann wurde die Drosselöffnung 82 durch Verschieben der Drosselnadel 92 nach links stärker verschlossen. Dadurch hat sich im Druckraum 52 ein höherer Druck aufgebaut, was eine Verschiebung des Kolbens 32 nach links zur Folge hatte. Dadurch ist für das von der Pumpe kommende Fluid der Weg vom Zulauf kanal 142 zum Ablauf kanal 132 (und damit zum Punkt B und zur Drosseleinrichtung D3 und zum Tank T) nahezu verschlossen worden, und der Druck am Punkt B nahezu auf den Druck im Tank T verringert worden.
Der Vorteil der nach der Beschreibung ausgeführten Module besteht in ihrem einfachen und kostenverringernden Aufbau. Da im Gegensatz zu den üblichen am Umfang dichtenden Längsschieber- und Drehschieber-Hülse-Einheiten hier stirnseitig abgedichtet wird, entfällt die mit engen Toleranzen behaftete und damit fertigungsaufwendige Passung zwischen Schieber und Bohrung. Damit verbunden ist auch ein Verzicht auf besondere Werkstoffe und deren teure Bearbeitung hinsichtlich Oberflächen- und Wärmebehandlung. Beim beschriebenen Modul haben sich Kolben und Gehäuse aus einer Leichtmetalllegierung auch für hohe Fluiddrücke als ausreichend erwiesen.
Die in Figur 2 dargestellten Federelemente 1 1 , die auch durch ein großes (z. B. versenkt eingebautes) Federlement 1 1a (bei D4 in Figur 4 gezeigt) ersetzt werden können, haben in der Neutralstellung die Aufgabe, den Kolben 3 so in Richtung auf den Ringspalt 17 zu drücken, daß durch Drosselung des Fluidstroms im Ringspalt 17 eine vorbestimmbare Druckdifferenz entsteht, die bei Eintreten des Drosseleffekts an der Drosseleinheit, bestehend aus Drosselnadel 9 und Drosselöffnung 8, eine Druckkraft auf der Stirnfläche 16 (Figur 2) des Kolbens 3 ermöglicht, die die Reibung des Dichtelements 4 überwindet. Diese Reibung wird zusätzlich noch durch die Federkraft des Federelements 1 1 überwunden.
Die Drosselöffnung 8 befindet sich in einer Scheibe 6. die den hinteren Abschluß des Druckraumes 5 bildet. Das durch die Drosselöffnung 8 in den Raum 7 strömende Fluid wird durch die Leitung 10 in Figur 2 (bzw. 1_T in Figur 4) in den Tank T des Systems zurückgeführt.
Aufgabe
In Figur 4 ist eine Schaltstellung dargestellt, bei der das Modul D2 und das Modul D4 aktiviert und deshalb in Stellung „geschlossen" gebracht sind, wodurch der Fluidstrom zum Arbeitsraum a des Arbeitszylinders 27 geführt wird. Die Module D1 und D3 sind nicht angesteuert und befinden sich deshalb in Stellung „offen". Bei Verwendung des in Figur 4 dargestellten Systems (oder auch nur des in Figur 2 dargestellten Moduls, das mit einer Drossel in Serie geschaltet ist) in Open-Center-Technik würde nun der hohe Fluiddruck im Zulauf räum 23 einen sehr hohen Leckfluidstrom durch die Vordrosselbohrung 12 in Richtung Tank bewirken, was einer starken Verminderung der Bewegungsleistung des Arbeitskolbens AK des Arbeitszylinders 27 entspräche. Es ist Aufgabe der Erfindung, dies zu vermeiden.
Lösung
Dieser Nachteil kann entsprechend der Erfindung vermieden werden, wenn der Kolben 3 so ausgeführt ist, dass in seiner Stirnseite 16 (Figur 2) die Vorsteuerbohrung 12 mündet und deren dortige Bohrungsöffnung durch die Anlage der Stirnseite 16 an die Anschlagfläche 60 der Scheibe 6 (oder an einer sonstigen entsprechenden Anschlagfläche für den Kolben 3) verschlossen wird, wenn der Kolben 3 durch Druckbeaufschlagung seiner Stirnfläche 15 gegen die Anschlagfläche 60 der Scheibe 6 (bzw. gegen eine sonstige entsprechende Anschlagfläche für den Kolben 3) gedrückt wird. Diese Situation ist in Figur 4 bei Modul D1 dargestellt.
Die Vorsteuerbohrungen 12, 122 müssen nicht in den steuerbaren Drosseleinrichtungen D1 , D2 angeordnet sein, sondern können sich statt dessen in den mitgesteuerten Drosseleinrichtungen D3, D4 befinden: vergleiche dort die Bezugszeichen 123 und 124. Wenn in einer derart modifizierten Anordnung nach Figur 4 die Drosseleinrichtung D2 vom geöffneten in den geschlossenen Zustand gesteuert werden soll, wird zunächst ein Vorsteuer-Fluidstrom von der Pumpe P über den Zulauf kanal 14, den Ablauf kanal 13, die Vorsteuerbohrung 124 im Kolben der Drosseleinrichtung D4, den Verbindungskanal 2_4, den Druckraum 52, die Drosselöffnung 82, den Verbindungskanal 2_T zum Tank T fließen. Beim Einschieben der Drosselnadel 92 in die Drosselöffnung 82 wird der Druck im Druckraum 52 ansteigen und den Kolben 32 in Schließrichtung bewegen. Gleichzeitig erhöht sich der Druck im Druckraum 54 von D4, so dass sich auch der Kolben von D4 in Schließrichtung bewegt.
Die erfindungsgemäße Steuereinrichtung eignet sich besonders für hydraulische Hilfs- oder Fremdkraftlenkungen in Open-Center-Ausführung, weil sie dort das Problem der unerwünschten Leckage bei vollständig geöffnetem Ringspalt 17 löst; sie ist aber auch für den Einsatz in einem Closed-Center-System geeignet.

Claims

Patentansprüche
I.Steuereinrichtung für die kontinuierliche Bewegung eines hydraulischen Stellmotors (27) mit folgenden Merkmalen:
a) in einem hydraulischen Strömungspfad zwischen einer Pumpe (P) und einem Tank (T) sind in Serie zwei Drosseleinrichtungen (D1, D4) vorgesehen, zwischen denen eine hydraulische Leitung (LA) abzweigt, die zu dem Arbeitsraum (a) des Stellmotors führt,
b) eine der Drosseleinrichtungen besteht aus einer steuerbaren Drossel (D1) mit einem Kolben (3) in einer Gehäusebohrung (1), der auf einer Seite einen Ventilteller trägt, der einen Ringspalt (17) zwischen einem Zuflusskanal (14) und einem Abflusskanal (13) begrenzt,
c) der Druckabfall am Ringspalt (17) ist mittels einer axial in eine Drosselöffnung (8) bewegbaren Drosselnadel (9) kontinuierlich steuerbar, welche auf der anderen Seite des Kolbens (12) in einem hydraulischen Steuerpfad angeordnet ist,
d) der Steuerpfad erstreckt sich vom Zuflusskanal (14) über die Drosselöffnung (8) zum Tank (T), wobei er durch eine Vorsteuerbohrung (12) im Kolben (3) und durch einen Druckraum (5) geführt ist, der zwischen Kolben (3) und Drosselöffnung (8) angeordnet ist,
dadurch gekennzeichnet,
dass die Steuereinrichtung nach dem Prinzip der offenen Mitte arbeitet,
dass ein Ende der Vorsteuerbohrung (12) an der an den Ringspalt (17) grenzenden Seite des Kolbens (3) im Bereich des Zuflusskanals (14) so angeordnet ist, dass es selbst bei geschlossenem Ringspalt (17) geöffnet bleibt, und
dass das andere Ende der Vorsteuerbohrung (12) auf der anderen Seite des Kolbens (3) dort angeordnet ist, wo der Kolben (3) bei vollständigem Öffnen der steuerbaren Drossel (D1) gegen eine Anschlagfläche (60) stößt und dabei dieses andere Ende der Vorsteuerbohrung (12) selbsttätig schließt.
2. Steuereinrichtung für einen hydraulischen Stellmotor (27) mit zwei baugleichen Paaren von Drosseleinrichtungen, jedes Paar bestehend aus zwei Drosseleinrichtungen, insgesamt also vier Drosseleinrichtungen (D1 , D2, D3, D4), die jeweils axial bewegliche Kolben (3) aufweisen, wobei jeweils eine Drosseleinrichtung (D1 bzw. D2) eines Paares (D1 , D3 bzw. D2, D4) mittels einer Drosselnadel (9, 92) in einer Drosselöffnung (8, 82) steuerbar ist und ihr Kolben (3, 32) mit einer Anschlagfläche (60) in einer Gehäusebohrung (1) einen Druckraum (5) bildet und wobei der Kolben (33) einer zweiten zu dem Paar von Drosseleinrichtungen gehörenden Drosseleinrichtung (D3) mit ihrem Gehäuse (G) einen weiteren Druckraum (53) bildet, der mit dem Druckraum (5) der ersten Drosseleinrichtung (D1) dieses Paares über eine Leitung (1_3) in hydraulischer Verbindung steht, dadurch gekennzeichnet, dass jeweils eine Drosseleinrichtung (D1 oder D3 bzw D2 oder D4) jedes Paares (D1 , D3 bzw. D2, D4) eine von Stirnfläche zu Stirnfläche des Kolbens (3, 33) führende Vordrosselbohrung (12, 122) aufweist, die so angeordnet ist, daß ihre einem Zuflusskanal (14) zuwandte Bohrungsöffnung in jeder Kolbenstellung geöffnet ist, während ihre andere Bohrungsöffnung bei gegen eine Anschlagfläche (60) bewegtem Kolben (3 oder 33) geschlossen ist.
3. Steuereinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Anschlagfläche (60) Teil eines Deckels (D) für die Gehäusebohrung (1) ist.
4. Steuereinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Anschlagfläche (60) Teil einer Scheibe (6) ist, in welcher sich die Drosselöffnung (8) befindet.
5. Steuereinrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Druckraum (5, 52, 53, ...), der zwischen Kolben (3, 32, 33, ...) und Anschlagfläche (60) angeordnet ist, eine Feder (1 1) enthält, durch welche der Kolben (3, 32, 33, ..) in die Schließstellung der steuerbaren Drossel (D1 , D2, D3, .. ) gedrängt wird.
6. Steuereinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Kolben (3) an seinem Umfang mit größtem Durchmesser ein Dichtelement (4) trägt, das gleichzeitig als Lagerung des Kolbens in der Gehäusebohrung (1) wirksam ist.
7. Steuereinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Drosselnadel (9) durch eine von außen aufbringbare Stellkraft in die Drosselöffnung (8) bewegbar ist.
PCT/EP2001/009264 2001-08-10 2001-08-10 Steuereinrichtung für die kontinuierliche bewegung eines hydraulischen stellmotors WO2003014576A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT01974163T ATE313016T1 (de) 2001-08-10 2001-08-10 Steuereinrichtung für die kontinuierliche bewegung eines hydraulischen stellmotors
US10/486,483 US7028599B2 (en) 2001-08-10 2001-08-10 Control device for the continuous drive of a hydraulic control motor
DE50108414T DE50108414D1 (de) 2001-08-10 2001-08-10 Steuereinrichtung für die kontinuierliche bewegung eines hydraulischen stellmotors
PCT/EP2001/009264 WO2003014576A1 (de) 2001-08-10 2001-08-10 Steuereinrichtung für die kontinuierliche bewegung eines hydraulischen stellmotors
EP01974163A EP1415095B1 (de) 2001-08-10 2001-08-10 Steuereinrichtung für die kontinuierliche bewegung eines hydraulischen stellmotors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2001/009264 WO2003014576A1 (de) 2001-08-10 2001-08-10 Steuereinrichtung für die kontinuierliche bewegung eines hydraulischen stellmotors

Publications (1)

Publication Number Publication Date
WO2003014576A1 true WO2003014576A1 (de) 2003-02-20

Family

ID=8164540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/009264 WO2003014576A1 (de) 2001-08-10 2001-08-10 Steuereinrichtung für die kontinuierliche bewegung eines hydraulischen stellmotors

Country Status (5)

Country Link
US (1) US7028599B2 (de)
EP (1) EP1415095B1 (de)
AT (1) ATE313016T1 (de)
DE (1) DE50108414D1 (de)
WO (1) WO2003014576A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8096227B2 (en) * 2008-07-29 2012-01-17 Caterpillar Inc. Hydraulic system having regeneration modulation
US9328747B2 (en) * 2013-03-15 2016-05-03 Mts Systems Corporation Servo actuator load vector generating system
US10281055B2 (en) * 2016-02-09 2019-05-07 Parker-Hannifin Corporation Hydraulic servo valve
US10798866B2 (en) 2018-08-10 2020-10-13 Cnh Industrial America Llc Depth control system for raising and lowering a work unit of an implement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63188574A (ja) * 1987-01-30 1988-08-04 Nissan Motor Co Ltd パワ−ステアリングの油圧制御装置
DE19601662A1 (de) * 1996-01-18 1997-07-24 Joerg J Prof Dipl Ing Linser Servoventil in Kartuschenausführung, vorzugsweise für Hilfskraftlenkungen
US5979498A (en) * 1995-01-12 1999-11-09 Danfoss A/S Three-way or multi-way valve

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2672731A (en) * 1951-08-01 1954-03-23 Electrol Inc Self-contained power actuator
US3433131A (en) * 1967-08-22 1969-03-18 Ingebret Soyland Control systems for hydraulic power units
ES480732A2 (es) * 1978-05-20 1980-07-01 Girling Ltd Servo-amplificador de fuerza para sistema de frenos de vehi-culo.
US4201052A (en) * 1979-03-26 1980-05-06 Sperry Rand Corporation Power transmission
US4437385A (en) * 1982-04-01 1984-03-20 Deere & Company Electrohydraulic valve system
FR2715903B1 (fr) * 1994-02-04 1996-05-03 Alliedsignal Europ Services Servomoteur d'assistance de freinage, à sécurité accrue.
FR2727922A1 (fr) * 1994-12-09 1996-06-14 Alliedsignal Europ Services Servomoteur a enveloppe deformable
US6691604B1 (en) * 1999-09-28 2004-02-17 Caterpillar Inc Hydraulic system with an actuator having independent meter-in meter-out control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63188574A (ja) * 1987-01-30 1988-08-04 Nissan Motor Co Ltd パワ−ステアリングの油圧制御装置
US5979498A (en) * 1995-01-12 1999-11-09 Danfoss A/S Three-way or multi-way valve
DE19601662A1 (de) * 1996-01-18 1997-07-24 Joerg J Prof Dipl Ing Linser Servoventil in Kartuschenausführung, vorzugsweise für Hilfskraftlenkungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 012, no. 464 (M - 771) 6 December 1988 (1988-12-06) *

Also Published As

Publication number Publication date
US20040187675A1 (en) 2004-09-30
DE50108414D1 (de) 2006-01-19
EP1415095B1 (de) 2005-12-14
ATE313016T1 (de) 2005-12-15
US7028599B2 (en) 2006-04-18
EP1415095A1 (de) 2004-05-06

Similar Documents

Publication Publication Date Title
DE3323363C2 (de)
EP0126291A2 (de) Druckmediumbetätigtes Ventil
LU88558A1 (de) Vorgesteuertes Servoventil
EP0589006B1 (de) Hydraulische antriebsvorrichtung mit einem zylinder
DE2649775A1 (de) Ventil mit einem laengsschieber
DE19543237C2 (de) Hydraulische Stellvorrichtung, insbesondere Schwenkantrieb
WO2003014576A1 (de) Steuereinrichtung für die kontinuierliche bewegung eines hydraulischen stellmotors
EP0483585B1 (de) Einstellbares Proportional-Drosselventil mit Rückführung
DE3011196C2 (de)
DE102014007475B4 (de) Ventilanordnung zur gesteuerten Druckentlastung fluidgefüllter Leitungen unter erhöhten Sicherheitsanforderungen
CH638021A5 (en) Servo valve
DE3637345C2 (de)
EP1369596B1 (de) Hydraulische Ventilanordnung
EP2241764B1 (de) Sitzventil mit Umlaufventil- und Druckwaagefunktion
DE2915505C2 (de)
DE2104362A1 (de) Druckventil fuer hydraulische anlagen
DE3606237A1 (de) Doppelfahrbremsventil
DE102013206975A1 (de) Hydraulische Steuervorrichtung mit einseitiger Schieberansteuerung
DE3640994C2 (de) Servovorrichtung für ein Gasturbinentriebwerk
DE3640640C2 (de) Hydrostatisches Antriebssystem mit einem Verbraucher mit zwei Anschlüssen
DE1775203A1 (de) Vorrichtung zur Steuerung eines in beide Richtungen arbeitenden hydraulischen Antriebes
EP1481167B1 (de) Ventilanordnung
DE3402110C2 (de)
DE2101727A1 (de) Vorrichtung zur Regelung des Hubs hubveranderhcher Hydraulikpumpen
DE102022002037A1 (de) Hydraulisches System

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB IE IT LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001974163

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10486483

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001974163

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 2001974163

Country of ref document: EP