EP0180667B1 - Preassembled modules and their use in a building construction - Google Patents

Preassembled modules and their use in a building construction Download PDF

Info

Publication number
EP0180667B1
EP0180667B1 EP84201602A EP84201602A EP0180667B1 EP 0180667 B1 EP0180667 B1 EP 0180667B1 EP 84201602 A EP84201602 A EP 84201602A EP 84201602 A EP84201602 A EP 84201602A EP 0180667 B1 EP0180667 B1 EP 0180667B1
Authority
EP
European Patent Office
Prior art keywords
wires
row
flat elements
panel
modules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP84201602A
Other languages
German (de)
French (fr)
Other versions
EP0180667A1 (en
Inventor
Silvano Casalatina
André de Schutter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SISMO INTERNATIONAL PVBA
Original Assignee
SISMO INTERNATIONAL PVBA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SISMO INTERNATIONAL PVBA filed Critical SISMO INTERNATIONAL PVBA
Priority to AT84201602T priority Critical patent/ATE72858T1/en
Priority to DE8484201602T priority patent/DE3485525D1/en
Priority to EP84201602A priority patent/EP0180667B1/en
Priority to OA58717A priority patent/OA08317A/en
Priority to IN867/MAS/85A priority patent/IN166811B/en
Priority to AU49226/85A priority patent/AU585542B2/en
Priority to NZ228852A priority patent/NZ228852A/en
Priority to HU854208A priority patent/HU213764B/en
Priority to IL76915A priority patent/IL76915A/en
Priority to EG70785A priority patent/EG18030A/xx
Priority to MA20789A priority patent/MA20564A1/en
Priority to FI854363A priority patent/FI82520C/en
Priority to SU3973324A priority patent/SU1561829A3/en
Priority to PH33016A priority patent/PH26627A/en
Priority to DZ850244A priority patent/DZ858A1/en
Priority to UA3973324A priority patent/UA7199A1/en
Priority to BG72297A priority patent/BG49725A3/en
Priority to BR8505723A priority patent/BR8505723A/en
Priority to YU174185A priority patent/YU47132B/en
Priority to SI8511741A priority patent/SI8511741B/en
Priority to TR45565/85A priority patent/TR23187A/en
Priority to IE277185A priority patent/IE58437B1/en
Priority to CN85108069A priority patent/CN1006727B/en
Priority to ES548732A priority patent/ES8708154A1/en
Priority to JP60250581A priority patent/JPS61155529A/en
Priority to ZA858612A priority patent/ZA858612B/en
Priority to KR1019850008369A priority patent/KR900008987B1/en
Priority to MX553A priority patent/MX162285A/en
Publication of EP0180667A1 publication Critical patent/EP0180667A1/en
Priority to US07/047,555 priority patent/US4864792A/en
Priority to MYPI87001593A priority patent/MY101364A/en
Priority to US07/700,093 priority patent/US5163263A/en
Application granted granted Critical
Publication of EP0180667B1 publication Critical patent/EP0180667B1/en
Priority to HRP920603AA priority patent/HRP920603A2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/44Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen containing nitrogen and phosphorus
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/84Walls made by casting, pouring, or tamping in situ
    • E04B2/842Walls made by casting, pouring, or tamping in situ by projecting or otherwise applying hardenable masses to the exterior of a form leaf
    • E04B2/845Walls made by casting, pouring, or tamping in situ by projecting or otherwise applying hardenable masses to the exterior of a form leaf the form leaf comprising a wire netting, lattice or the like
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/84Walls made by casting, pouring, or tamping in situ
    • E04B2/86Walls made by casting, pouring, or tamping in situ made in permanent forms
    • E04B2/8658Walls made by casting, pouring, or tamping in situ made in permanent forms using wire netting, a lattice or the like as form leaves
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/06Reinforcing elements of metal, e.g. with non-structural coatings of high bending resistance, i.e. of essentially three-dimensional extent, e.g. lattice girders
    • E04C5/0636Three-dimensional reinforcing mats composed of reinforcing elements laying in two or more parallel planes and connected by separate reinforcing parts
    • E04C5/064Three-dimensional reinforcing mats composed of reinforcing elements laying in two or more parallel planes and connected by separate reinforcing parts the reinforcing elements in each plane being formed by, or forming a, mat of longitunal and transverse bars

Definitions

  • the present invention relates to prefabricated modules for use in erecting constructions, comprising flat elements of light material and a three-dimensional structure formed by a plurality of welded steel wire trellises which extend along a longitudinal direction and are welded to a series of transverse wires, the trellis being arranged one opposite the other and each comprising parallel longitudinal wires and distance wires which are welded to the longitudinal wires and form, together with the connection wires distance, empty support locations for the flat elements, said support locations comprising a first row and a second row of support locations, an intermediate empty space being defined between the two rows of support locations, a first group of flat elements being provided to be inserted in the first row in order to form a first panel on one side of the three-dimensional structure, a second group of flat elements being provided to be inserted in the second row on the other side of the three-dimensional structure to form a second panel and the intermediate empty space being used as formwork space between the first panel and the second panel for a concrete pour containing reinforcing iron bars
  • Prefabricated modules of this type are described in EP-A-0 061 100, in which the intermediate space between the two panels is used as a lost formwork space which can be filled directly with a concrete pour for a structure of 'vertical support. Resistance to tensile and shear forces is ensured by a reinforcement structure of iron bars embedded in the concrete pour. However, there is no provision for a well-defined position of the iron bars inside the structure. This can result in the risk that iron bars may touch the panels and be improperly embedded in the concrete pour.
  • the module used for a horizontal structure is widely different from the module used for the vertical support structure and it requires the positioning of special reinforcements or iron bars of special preassembled structures in a three-dimensional wire structure different from the structure used for the vertical support module.
  • the technical problem of the present invention is to obtain light and relatively inexpensive prefabricated modules which can be used equally for support structures, either of a vertical structure or of a horizontal structure, and which allow the quick and easy formation of a reinforcement, in particular in the horizontal structure.
  • the prefabricated modules of the invention which are characterized in that the longitudinal wires and the distance wires provide another row of support locations in the intermediate space, a third group of elements. dishes that can be inserted in the other row of support locations, instead of pouring concrete, in that the longitudinal wires form closely spaced pairs of wires, welded to the spacing wires and spaced apart from one another.
  • each of said pairs determining a separation zone such that a row of support locations for the flat elements is alternated with a separation zone inside the three-dimensional structure , and in that the three-dimensional structure can be used for vertical structures as well as for horizontal structures, the desired use of a prefabricated module being de completed by the arrangement of the flat elements in the locations support of the three-dimensional structure.
  • the first group of flat elements entirely occupies the first row of support locations to define a continuous ceiling panel in the lower part of the module while the second group of flat elements and the third group of flat elements partially occupy the second row of support locations and the other row of support locations respectively, to form a row of superimposed flat elements, separated by empty connection spaces which are used as spaces horizontal formwork for concrete pouring ribs together with the ceiling panel.
  • the aforementioned connection spaces are provided for housing horizontal reinforcing iron bars transversely to the longitudinal wires and the longitudinal wires of some of the pairs of wires brought together in the aforementioned connection spaces form stop wires for supporting the iron bars. which are close to the ceiling panel but which are spaced apart from the ceiling panel by the separation distance in order to allow the concrete pour to completely drown said reinforcing iron bar.
  • the modules according to the invention are of a universal type.
  • a module intended for the vertical structure can be used in the horizontal structure and, in the latter case, the flat elements can form the formwork space for horizontal concrete casting, while the separation zones avoid contact between the reinforcing iron bars of the concrete pour and the ceiling panel.
  • the prefabricated module represented by the reference (10) (Fig. 1 - 2 and 3), comprises a three-dimensional reinforcement (11), formed of welded metal wires, and flat elements (12) made of light and / or heat-insulating material, maintained on each side of the frame (11) so as to produce at least one continuous panel (13).
  • the same module (10) can be used, either for load-bearing structures with vertical development (14), or for load-bearing structures with horizontal development (15).
  • the frame (11) comprises a series of lattices (16), equal to each other, substantially planar and of rectangular shape elongated in the longitudinal axis (17).
  • the trellises (16) are arranged, one opposite the other, perpendicular to the panel (13) and are held firmly in their respective positions by means of a double series of transverse wires (18).
  • the length of the wires (18) is equal to the length L of the modules themselves.
  • the axes (17) of the trellises (16) are vertical in the structures (14) and horizontal in structures (15).
  • the transverse wires (18) are, on the other hand, horizontal and parallel to the surface (13), which is vertical in the structure (14) and horizontal in the structure (15).
  • Each trellis (16) is obtained by welding several pairs of longitudinal wires (4, in Figure 1) (21-1, 22-1, 23-1, 24-1, 23-2, 24-2, 22-2 , 21-2) close to each other and parallel to the axis (17), with spacing wires (25) perpendicular to each other and arranged in a constant pitch.
  • the two wires (21-1, 21-2) are the outermost wires of the trellis (16) and the distance between them determines the thickness TM of the module (10); the two wires (24-1 and 24-2) are the innermost wires and the wires (22-1, 22-2, 23-1, 23-2) are interior with respect to the wires (21-1, 24 -1, 21-2, 24-2).
  • the complete reinforcement (11) of the modules (10) and (26) is obtained by welding the transverse wires (18) to the longitudinal wires (21-1, 22-1) so that the corresponding distance wires (25 ) different trellises (16 and 27) can be in the same plane and perpendicular to the planes of the longitudinal wires (21 - 24) and the transverse wires (18).
  • a particularly effective method for producing three-dimensional reinforcements comprising longitudinal wires, distance wires and transverse wires is described in European patent application No. 84870056 filed on 4/4/1984 by SISMO INTERNATIONAL pvba, holder of this request.
  • the prefabricated modules (10, 26) - ( Figures 1, 11a and 11h) normally use expanded polystyrene elements, of the same thickness Tb and width Wb (Fig. 2), independently of the particular use of the module itself.
  • the length Lb of the elements (12) is generally equal to the width L of the module (10 -26).
  • the longitudinal wires (21, 24 and 29) define, with the distance wires (25) simple support locations (70) for a flat element (12) and for two flat elements (12), while the double support locations (71) define separation zones (72), inside the module, and two end zones (73) in the outermost parts.
  • the distance between the locations (70 - 71) and the zones (72 and 73) is equal in each module regardless of the thickness and the use of the module itself.
  • the interaxis Pl of the longitudinal wires (22-1 and 23-1) and the wires (22-2 and 23-2) (fig. 2) of the simple support locations (70) is substantially equal to the thickness Tb elements (12), plus the diameter of the wires, while the interaxis between the wires (24-1 and 24-2) of the double support locations (70) and between the wires (24-1 and 28-1 ) as well as between the wires (24-2 and 28-2) of the trellis (27) is substantially equal to twice the interaxis Pl.
  • interaxis Ps, between the wires (21-1 and 22-1, 23-1 and 24-1) of two end zones (73) and between the wires (21-2 and 22-2, 23- 2 and 24-2, 28-1 and 28-2) of the separation zones (72) is equal to 1/4 Pl.
  • each module will have a determined thickness equal to the sum of the interaxes of the N single locations, of the M double locations (71) and each module will have a thickness determined by the sum of the interaxes of the N single locations, M double locations, N + (M-1) distances between the wires of the separation zones (72) and distances between the wires of the two terminal zones (73).
  • a PS interaxis of 1 cm. We obtain standardized modules of 15, 20, 25, 30 and 35 cm., Including the modules of 20, 30 and 35 cm. are visible in Figures 2, 11b and 11g. The other modules can be easily obtained by a suitable combination of locations N and M and a section of the distance wires (25) of the modules of 35 cm.
  • modules 25 and 30 cm. can be obtained by cutting the distance wires (25) adjacent to the respective separation zones (72-3 and 72-4).
  • the parts of the lattice that remain after the 15, 20 and 25 cm modules have been cut. can usefully be used to make partitions of various thicknesses in the building. In this way, this simple type of trellis can give rise in substance to all the modules necessary in the building by losing only small pieces of wire (25).
  • the interaxis Pd between the spacing wires (25) of the trellises (16 and 27) is substantially equal to four times the interaxis Pl minus two wire diameters and equal to the width Wb of the elements (12).
  • Figures 11a and 11h show that it is possible to arrange the elements (12) in different places of the trellis.
  • the space delimited between the elements (12) can be freely used as a reinforcement for one or more concrete flows of different thicknesses, or as an empty chamber.
  • the separation zone (72), between two contiguous insulating layers, can be used as an anti-condensation zone.
  • each element (12) is inserted, according to the destination of the module (16, 26), between the distance wires (25), and this in the locations (70) between the longitudinal wires (22 and 23) and, in pairs, in the locations (71) between the wires (24-1 and 24-2) of the trellis (16), or even between the wires (24-1 and 28-1) and between the wires (24-2 and 28-2) trellises (27).
  • the insertion of the elements (12) between the wires of the frame is facilitated by the flexibility of the steel wires and of the light material from which the elements (12) are formed.
  • the elements (12) occupy only the space delimited by the two pairs of longitudinal wires (22-1, 23-1 and 22-2, 23-2) of each succession of trellis (16 and 26).
  • the spaces I 1 and I 2 can be used as lost formwork for a reinforced concrete pour (32).
  • the pairs of wires (24-1, 24-2 and 28-1, 28-2) are embedded in the casting and favor the positioning of the horizontal concrete reinforcing bars (31) of a reinforcement for a concrete casting (32) , while at the same time preventing the concrete bars (31) from approaching the concrete bars (12) and thus being deprived of the concrete covering.
  • the modules (10, 26) are assembled together by means of small horizontal scales (35) also made of welded steel wires.
  • the small scales (35) are provided with transverse wires (36), with distance spacing (I 1) and with distance spacing wires (37) having a pitch equal to half the pitch of the trellis (16, 27).
  • the small scales (35) are inserted under a slight constraint, in the spaces (I 1) of the trellis (16) between the wires (24-1 and 24-2) or, in pairs, between the spaces of the trellis (27) , between the longitudinal wires (24-1, 28-1 and 24-2, 28-2).
  • the aim of the small scales (35) is to align exactly several modules (10, 26) and to constitute precise positioning elements for vertical concrete irons (33) of the reinforcement of the reinforced concrete (32).
  • small ladders (35) can be made with transverse wires (36) dimensioned so as to withstand the forces perpendicular to the panel (13), thus relieving the function of concrete irons (31).
  • the longitudinal wires (30) of the small ladders (35), abutting against the wires (24-1 and 24-2) of the trellises (16 and 27) ensure that the concrete irons (33) are at a distance like panels (13 and 30) to allow the concrete irons (33) to be well surrounded by the concrete pouring, thus guaranteeing the best grip of the concrete with its reinforcement.
  • the distance wires (37) also ensure the correct vertical positioning of the concrete irons (33).
  • the elements (12) (Fig. 5 and 6) continuously occupy only the space between the wires (22-1 and 23-1) of the lower part of the trellis according to the Figure 3, so as to form the only panel (13).
  • the space between the other wires is partially occupied by a group (48) of elements (12) superimposed according to their side of greater dimension Wb.
  • the groups (48) are separated by longitudinal interconnection spaces (41) which are used as formwork for the pouring of concrete (32).
  • the formwork for concrete pouring can be delimited by thin insulating elements (63) resting on the distance wires (25) next to the spaces d 'interconnection (41) in the support spaces (71), thereby saving a remarkable amount of insulation.
  • the concrete pour (32) spreads over the tallest elements (12) and covers the longitudinal wires (21-2) and the transverse wires (18). This part forms an upper ceiling (42) of thickness Tp + Ps and is provided with lower ribs (43) of width equal to Wb or multiples of Wb and which occupy the interconnection spaces (41).
  • ribs (43) of the concrete casting are embedded steel sections, for example of high grip bars (44), which are held by stop wires (24-1).
  • the number and the section of the bars (44) are calculated so as to withstand the tensile forces in the lower part of the structure (15). If necessary, other parts of the bars (44) will bear on the wires (21-1) to consolidate the ceiling, in order to resist the tensile stresses of the upper parts of the construction.
  • the elements (12) In ceilings which require a transverse reinforcement, in addition to the longtudinal reinforcement, the elements (12) (Fig. 8) have a length Lr less than the length Lg of the ceiling and are arranged in superposition so as to define isolated parts. (47) protruding from the lower panel (13) and which delimit, in addition to the longitudinal spaces (41), also the transverse spaces (45) also intended to receive steel bars (46) and a concrete pour which will constitute the transverse ribs of the ceiling (42).
  • the number of sections (49) is calculated so that these sections resist all stresses on the entire ceiling.
  • a standard UNI 725-726 profile has been advantageously used, the section of which has a height of 80 mm. and a width of 42 mm.
  • the profile is introduced into the location (71) in the direction of its smallest dimension to avoid all obstacles due to possible alignment errors of the different trellises.
  • the profile is then turned 90 degrees, until it is in the position according to fig. 14.
  • the flexibility of the wires (24-1 and 23-2) makes it possible to obtain the space necessary for such a rotation. Even in this case, the necessary span is obtained by the cotouage of the modules and an adequate length of the profile (75).
  • the reinforcing profiles and in particular the double-T profiles, allow the pre-assembly of the ceiling or of a wall at work, that is to say before their placement and the possible pouring of concrete.
  • the various modules (10, 26) (Fig. 15), intended to form ceilings, are supported on a reference plane.
  • the profiles (75) are inserted into the spaces (71) of the adjoining modules and their length is chosen so as to allow the ends of the profiles to protrude from the modules by a length substantially equal to the thickness of the vertical structure with which the ceiling must be assembled.
  • the concrete layer (76) is further vibrated to ensure good penetration of the concrete into the area between the base of the profile (75) and the panel (13).
  • the pre-assembly of the other ceilings can be carried out using the previously assembled ceiling as a support base with the help of an appropriate leveling surface, supported by wires (18) from the ceiling located below.
  • the implementation of the pre-assembled ceiling will be carried out after the setting time of the concrete pour (76).
  • This ceiling is light due to the limited thickness of the reinforced concrete used and it is self-supporting thanks to the beams of which it is a part.
  • this ceiling does not require complex scaffolding since it suffices to have a few small support beams and some corresponding supports.
  • the ceiling itself can be completed with an additional concrete pour (77) superimposed on the pour (76).
  • additional concrete pour (77) As an alternative to pouring concrete, it is possible to use material for light filling, such as cellular cement, etc.
  • This kind of ceiling is of reduced thickness and low specific weight.
  • the diagram in fig. 14 refers to a thick insulated ceiling of the order of 15 cm., particularly advantageous for covering large industrial structures.
  • the pre-assembly can also be obtained using different types of profiles, for example with tubular profiles of circular, rectangular section, or other shapes, capable of withstanding all the stresses to which the structure is subjected.
  • tubular profiles allow the realization of conduits for electric cables, for pipes of hydraulic installations or air conditioning.
  • connection modules (50) (Fig. 3 and 9), comprising a limited number (three or four) of lattices (16, 26) arranged in the crossover zone between the two structures, so that the trellises (16, 26) are arranged horizontally and the wires (18) are arranged vertically.
  • the modules (50) are of similar structure to the modules (10 and 26), but the elements (12) are arranged vertically (four), their length being equal to the thickness of the structure (15) and occupying only the area the more exterior of the module, so as to constitute a formwork element retaining the concrete pour (32).
  • connection between the modules (10, 26) and the modules (50) is carried out in a very simple manner with folded U-shaped bars (55) which hold the modules together.
  • the panel (13) can be used as a ceiling.
  • the double support (71) remains empty and can be used to allow the passage of electric cables, hydraulic equipment or air ducts.
  • parts of the panel (13) and the support wires can be cut to allow the supports (71) to receive lighting equipment.
  • the steel wires are zinc-plated against oxidation and have a diameter of 2.2 mm.
  • the width Wb of the elements (12) is 154 mm.
  • the thickness Tb is 38 mm.
  • the distance between the trellises (16 and 27) is 98 mm.
  • the pitch of the transverse wires (18) is 78 mm.
  • the horizontal structures (15), derived from the modules (10), have a ceiling (42) in which Tp is 5 cm., For a total thickness of 25 cm., So as to achieve spans reaching 6 m.
  • the terminal space (73) between the wires (21-1 and 22-2) and the panel (13) is filled with a coating
  • the space between the panel (30) and the wires (21-1 and 22- 2) of the vertical structure (14) is treated in the same way.
  • Two or more modules (10, 26) of a structure (14) can be easily assembled by their end edge by inserting one or more small ladders (35) in the spaces (I 1), in view to achieve a good alignment of the modules.
  • the wires (21-1, 21-2) which are present on the edges of the modules are assembled by means of a ring (49) or of several metal rings wound between the pairs of wires (21), in the crossing zone transverse wires (18) for example.
  • the trellis (60) provide ends of elements (12) inserted between the wires (22 and 23) to form a side (61).
  • One of the faces of dimension Wb is also brought into contact with a trellis (16). Due to the dimensioning explained above of the trellis (16) and the elements (12 and 62), the edges of the bar (62), of thickness Tb, will be in contact and slightly forced between the transverse wires (18) and the side (61).
  • the module (60) finds a useful use in the assembly between two structures (14) arranged at 90 degrees between them.
  • the side (61) of the module (60) is brought into alignment with the panel (13) of a module (10).
  • the panel (13) of the other module (14) is brought into alignment with the element (62).
  • the assembly between the modules is completed by an element (65) of square section, on the side Tb inserted in the corner area opposite the angle occupied by the side (61) and the element (62).
  • the actual assembly is done by using spirals of junction between the different terminal wires, the possible extension of the concrete irons (33) and by means of a concrete pour (32).
  • the module (60) can also be assembled with a horizontal structure (15) (Fig. 12).
  • the ends of the elements (12) are aligned with the ceiling panel (13) and the side (62) defines a lateral shoulder for the pouring of concrete (32). This allows an easy realization of balconies, hanging gardens, etc ... and other structures of the species.
  • the provisional support of the horizontal structures (15), before the pouring of the concrete can be carried out in the traditional way, by means of horizontal shuttering elements and vertical props.
  • the frames (11) and the elements (12) in any case offer good resistance to the passage of the concrete pour, as well as to its weight.
  • the presence of spaces between the elements (12) supported by the wires (22-1 and 23-1) does not cause any problem with the compactness of the concrete, after it has set.
  • Fig. 13 shows the use of a module (10) with double insulation in an inclined structure used, for example, to make roofs.
  • the concrete is poured into the empty spaces between the two panels through a hole (80) made in an element (12) of the panel which constitutes the upper insulation of the roof.
  • Fig. 16 represents the use of modules which use trellis (27 h) which present five simple spaces (70) and a double space, according to the diagram of FIG. 11 b. This allows simultaneous nesting zones between the concrete columns (83) and the horizontal beams (84) in a vertical structure (14). The walls of the structure are made using two panels (85 and 86) formed of elements (12) retained in the spaces (70).
  • the formwork for the beam (84) is made laterally by two panels (85 and 86), and below, by three simple elements (12) and two other elements (12) which create a series of spaces (70 and 71 ) interposed between the panels (85 and 86).
  • the formwork of the column (83) is, in turn, obtained by pieces of elements (12) whose ends are aligned along two lattices and which define two holding surfaces (90 and 91) for the pouring of concrete.
  • the beam (84) and the column (83) can be completed by reinforcing profiles in the form of bars or by using another kind of steel profile in accordance with the design data of the reinforced concrete.
  • a structure of the type shown in Fig. 16 can give rise to several columns (83) and the beam (84) can extend downwards and be equipped with additional supports for the irons (41, 44).
  • the parts between the columns (83) and the beam (84) can be used to define the openings for the doors by cutting the desired holes in the panels (85 and 86) and the wires of the frame (11).

Abstract

There is described a prefabricated module comprising a three-dimensional armature formed by welded wires, and flat elements from light and/or heat-insulating material, retained on either side of the armature to form at least one continuous panel. One and the same module may be used either for bearing structures extending vertically, or for bearing structures extending horizontally, and having retaining means for the armatures.

Description

La présente invention concerne des modules préfabriqués à utiliser pour ériger des constructions, comprenant des éléments plats en matériel léger et une structure tridimensionnelle formée par une pluralité de treillis en fils d'acier soudés qui s'étendent le long d'une direction longitudinale et sont soudés à une série de fils transversaux, les treillis étant disposés l'un en face de l'autre et comprenant chacun des fils longitudinaux parallèles et des fils de mise à distance qui sont soudés aux fils longitudinaux et forment, conjointement aux fils de mise à distance, des emplacements d'appui vides pour les éléments plats, lesdits emplacements d'appui comprenant une première rangée et une seconde rangée d'emplacements d'appui, un espace vide intermédiaire étant défini entre les deux rangées d'emplacements d'appui, un premier groupe d'éléments plats étant prévu pour être inséré dans la première rangée afin de former un premier panneau d'un côté de la structure tridimensionnelle, un second groupe d'éléments plats étant prévu pour être inséré dans la seconde rangée de l'autre côté de la structure tridimensionnelle pour former un second panneau et l'espace vide intermédiaire étant utilisé comme espace de coffrage entre le premier panneau et le second panneau pour une coulée de béton contenant des barres de fer de renforcement.The present invention relates to prefabricated modules for use in erecting constructions, comprising flat elements of light material and a three-dimensional structure formed by a plurality of welded steel wire trellises which extend along a longitudinal direction and are welded to a series of transverse wires, the trellis being arranged one opposite the other and each comprising parallel longitudinal wires and distance wires which are welded to the longitudinal wires and form, together with the connection wires distance, empty support locations for the flat elements, said support locations comprising a first row and a second row of support locations, an intermediate empty space being defined between the two rows of support locations, a first group of flat elements being provided to be inserted in the first row in order to form a first panel on one side of the three-dimensional structure, a second group of flat elements being provided to be inserted in the second row on the other side of the three-dimensional structure to form a second panel and the intermediate empty space being used as formwork space between the first panel and the second panel for a concrete pour containing reinforcing iron bars.

Des modules préfabriqués de ce type sont décrits dans la EP-A-0 061 100, dans laquelle l'espace intermédiaire entre les deux panneaux est utilisé comme un espace de coffrage perdu qui peut être rempli directement par une coulée de béton pour une structure d'appui verticale. La résistance aux efforts de tension et de cisaillement est assurée par une structure de renforcement en barres de fer noyées dans la coulée de béton. Cependant, il n'est pas prévu une position bien définie des barres de fer à l'intérieur de la structure. Il peut en résulter le risque que les barres de fer puissent toucher les panneaux et être incorrectement noyées dans la coulée de béton. Le module utilisé pour une structure horizontale est largement différent du module utilisé pour la structure d'appui verticale et il demande un positionnement de renforcements spéciaux ou de barres de fer de structures préassemblées spéciales dans une structure de fils tridimensionnelle différente de la structure utilisée pour le module d'appui vertical. Cela augmente le coût de matière et le temps pour ériger la construction. Cependant, une structure de fils et des éléments plats prévus pour la structure verticale ne peuvent pas être utilisés pour la structure horizontale parce que le module vertical avec deux rangées d'emplacements d'appui pour les éléments plats ne procure aucun espace de coffrage pour une coulée de béton horizontale et pour le positionnement de barres de fer de renforcement.Prefabricated modules of this type are described in EP-A-0 061 100, in which the intermediate space between the two panels is used as a lost formwork space which can be filled directly with a concrete pour for a structure of 'vertical support. Resistance to tensile and shear forces is ensured by a reinforcement structure of iron bars embedded in the concrete pour. However, there is no provision for a well-defined position of the iron bars inside the structure. This can result in the risk that iron bars may touch the panels and be improperly embedded in the concrete pour. The module used for a horizontal structure is widely different from the module used for the vertical support structure and it requires the positioning of special reinforcements or iron bars of special preassembled structures in a three-dimensional wire structure different from the structure used for the vertical support module. This increases the cost of material and the time to erect the construction. However, a wire structure and flat elements intended for the vertical structure cannot be used for the horizontal structure because the vertical module with two rows of support locations for the flat elements does not provide any formwork space for a horizontal concrete casting and for positioning reinforcing iron bars.

Le problème technique de la présente invention est d'obtenir des modules préfabriqués légers et relativement peu coûteux qui puissent être utilisés de manière égale pour des structures d'appui, soit d'une structure verticale soit d'une structure horizontale, et qui permettent la formation rapide et aisée d'un renforcement, en particulier dans la structure horizontale.The technical problem of the present invention is to obtain light and relatively inexpensive prefabricated modules which can be used equally for support structures, either of a vertical structure or of a horizontal structure, and which allow the quick and easy formation of a reinforcement, in particular in the horizontal structure.

Ce problème est résolu par les modules préfabriqués de l'invention qui sont caractérisés en ce que les fils longitudinaux et les fils de mise à distance prévoient une autre rangée d'emplacements d'appui dans l'espace intermédiaire, un troisième groupe d'éléments plats pouvant être inséré dans l'autre rangée d'emplacements d'appui, au lieu de la coulée de béton, en ce que les fils longitudinaux forment des paires de fils rapprochés, soudés aux fils de mise à distance et espacés l'un de l'autre d'une distance de séparation prédéterminée, chacune desdites paires déterminant une zone de séparation telle qu'une rangée d'emplacements d'appui pour les éléments plats est en alternance avec une zone de séparation à l'intérieur de la structure tridimensionnelle, et en ce que la structure tridimensionnelle peut être utilisée pour des structures verticales ainsi que pour des structures horizontales, l'utilisation recherchée d'un module préfabriqué étant déterminée par l'agencement des éléments plats dans les emplacements d'appui de la structure tridimensionnelle. Pour une structure horizontale, le premier groupe d'éléments plats occupe entièrement la première rangée d'emplacements d'appui pour définir un panneau de plafond continu dans la partie inférieure du module tandis que le second groupe d'éléments plats et le troisième groupe d'éléments plats occupent partiellement la seconde rangée d'emplacements d'appui et l'autre rangée d'emplacements d'appui respectivement, pour former une rangée d'éléments plats superposés, séparés par des espaces de connexion vides qui sont utilisés comme espaces de coffrage horizontaux pour des nervures de coulée de béton conjointement au panneau de plafond. Les espaces de connexion susdits sont prévus pour le logement de barres de fer de renforcement horizontales transversalement aux fils longitudinaux et les fils longitudinaux de certaines des paires de fils rapprochés dans les espaces de connexion susdits forment des fils d'arrêt pour supporter les barres de fer qui sont à proximité du panneau de plafond mais qui sont espacées du panneau de plafond de la distance de séparation en vue de permettre que la coulée de béton noie complètement ladite barre de fer de renforcement.This problem is solved by the prefabricated modules of the invention which are characterized in that the longitudinal wires and the distance wires provide another row of support locations in the intermediate space, a third group of elements. dishes that can be inserted in the other row of support locations, instead of pouring concrete, in that the longitudinal wires form closely spaced pairs of wires, welded to the spacing wires and spaced apart from one another. the other by a predetermined separation distance, each of said pairs determining a separation zone such that a row of support locations for the flat elements is alternated with a separation zone inside the three-dimensional structure , and in that the three-dimensional structure can be used for vertical structures as well as for horizontal structures, the desired use of a prefabricated module being de completed by the arrangement of the flat elements in the locations support of the three-dimensional structure. For a horizontal structure, the first group of flat elements entirely occupies the first row of support locations to define a continuous ceiling panel in the lower part of the module while the second group of flat elements and the third group of flat elements partially occupy the second row of support locations and the other row of support locations respectively, to form a row of superimposed flat elements, separated by empty connection spaces which are used as spaces horizontal formwork for concrete pouring ribs together with the ceiling panel. The aforementioned connection spaces are provided for housing horizontal reinforcing iron bars transversely to the longitudinal wires and the longitudinal wires of some of the pairs of wires brought together in the aforementioned connection spaces form stop wires for supporting the iron bars. which are close to the ceiling panel but which are spaced apart from the ceiling panel by the separation distance in order to allow the concrete pour to completely drown said reinforcing iron bar.

Les modules suivant l'invention sont d'un type universel. En fait, un module prévu pour la structure verticale peut être utilisé dans la structure horizontale et, dans ce dernier cas, les éléments plats peuvent former l'espace de coffrage pour la coulée de béton horizontale, tandis que les zones de séparation évitent des contacts entre les barres de fer de renforcement de la coulée de béton et le panneau de plafond.The modules according to the invention are of a universal type. In fact, a module intended for the vertical structure can be used in the horizontal structure and, in the latter case, the flat elements can form the formwork space for horizontal concrete casting, while the separation zones avoid contact between the reinforcing iron bars of the concrete pour and the ceiling panel.

D'autres détails et avantages de l'invention
   D'autres caractéristiques et avantages de l'invention ressortiront clairement de la description qui sera donnée ci-après, à titre d'exemple non limitatif à l'aide des dessins ci-joints dans lesquels :

  • La figure 1 représente une vue schématique en perspective du module selon l'invention;
  • La figure 2 représente un détail du module selon la figure 1;
  • La figure 3 représente une vue schématique explosée de différents modules selon l'invention;
  • Les figures 3a, 3b et 3c sont des vues schématiques en perspective des modules selon la figure 3;
  • La figure 4 représente une vue schématique d'une variante des modules selon l'invention;
  • La figure 5 est une section d'un module selon la figure 3;
  • La figure 6 est une section, selon la ligne VI-VI des modules selon la figure 5;
  • La figure 7 est une vue d'un détail du modèle selon la figure 4;
  • La figure 8 est une section d'une variante d'un module selon la figure 3;
  • La figure 9 est une vue schématique d'une zone de liaison entre deux modules selon la figure 3;
  • La figure 10 est une vue schématique d'une autre zone de liaison entre deux modules selon l'invention;
  • Les figures 11a - 11h sont des vues en coupe schématiques de modules de différentes épaisseurs;
  • La figure 12 est une vue schématique d'un autre exemple d'utilisation du module suivant l'invention,
  • La figure 13 est une vue schématique d'un autre exemple d'utilisation du module suivant l'invention;
  • La figure 14 est une vue en coupe d'un module selon l'invention, utilisé avec des profilés en double T;
  • La figure 15 est une vue en plan schématique du module selon la figure 14;
  • La figure 16 est une vue schématique d'ensemble.
Other details and advantages of the invention
Other characteristics and advantages of the invention will emerge clearly from the description which will be given below, by way of nonlimiting example with the aid of the attached drawings in which:
  • Figure 1 shows a schematic perspective view of the module according to the invention;
  • Figure 2 shows a detail of the module according to Figure 1;
  • FIG. 3 represents an exploded schematic view of different modules according to the invention;
  • Figures 3a, 3b and 3c are schematic perspective views of the modules according to Figure 3;
  • FIG. 4 represents a schematic view of a variant of the modules according to the invention;
  • Figure 5 is a section of a module according to Figure 3;
  • Figure 6 is a section along line VI-VI of the modules according to Figure 5;
  • Figure 7 is a detail view of the model according to Figure 4;
  • Figure 8 is a section of a variant of a module according to Figure 3;
  • Figure 9 is a schematic view of a connecting area between two modules according to Figure 3;
  • FIG. 10 is a schematic view of another connection zone between two modules according to the invention;
  • Figures 11a - 11h are schematic sectional views of modules of different thicknesses;
  • FIG. 12 is a schematic view of another example of use of the module according to the invention,
  • Figure 13 is a schematic view of another example of use of the module according to the invention;
  • Figure 14 is a sectional view of a module according to the invention, used with double T profiles;
  • Figure 15 is a schematic plan view of the module according to Figure 14;
  • Figure 16 is a schematic overview.

Le module préfabriqué, représenté par la référence (10) (Fig. 1 - 2 et 3), comprend une armature tridimentionnelle (11), formée de fils métalliques soudés, et des éléments plats (12) en matériau léger et/ou thermoisolant, maintenus de chaque côté de l'armature (11) de façon à réaliser au moins un panneau continu (13). Un même module (10) peut être employé, soit pour des structures portantes à développement vertical (14), soit pour des structures portantes à développement horizontal (15).The prefabricated module, represented by the reference (10) (Fig. 1 - 2 and 3), comprises a three-dimensional reinforcement (11), formed of welded metal wires, and flat elements (12) made of light and / or heat-insulating material, maintained on each side of the frame (11) so as to produce at least one continuous panel (13). The same module (10) can be used, either for load-bearing structures with vertical development (14), or for load-bearing structures with horizontal development (15).

L'armature (11) comprend une série de treillis (16), égaux entre eux, sensiblement plans et de forme rectangulaire allongée dans l'axe longitudinal (17). Les treillis (16) sont disposés, l'un en face de l'autre, perpendiculairement au panneau (13)et sont maintenus fermement dans leurs positions respectives au moyen d'une double série de fils transversaux (18). La longueur des fils (18) est égale à la longueur L des modules eux-mêmes.The frame (11) comprises a series of lattices (16), equal to each other, substantially planar and of rectangular shape elongated in the longitudinal axis (17). The trellises (16) are arranged, one opposite the other, perpendicular to the panel (13) and are held firmly in their respective positions by means of a double series of transverse wires (18). The length of the wires (18) is equal to the length L of the modules themselves.

Quand le module (10) est assemblé dans la construction, les axes (17) des treillis (16) sont verticaux dans les structures (14) et horizontaux dans les structures (15). Les fils transversaux (18) sont, par contre, horizontaux et parallèles à la surface (13), laquelle est verticale dans la structure (14) et horizontale dans la structure (15).When the module (10) is assembled in the construction, the axes (17) of the trellises (16) are vertical in the structures (14) and horizontal in structures (15). The transverse wires (18) are, on the other hand, horizontal and parallel to the surface (13), which is vertical in the structure (14) and horizontal in the structure (15).

Chaque treillis (16) est obtenu en soudant plusieurs paires de fils longitudinaux (4, à la figure 1)(21-1, 22-1, 23-1, 24-1, 23-2, 24-2, 22-2, 21-2) rapprochés entre eux et parallèles à l'axe (17), avec des fils de mise à distance (25) perpendiculaires entre eux et disposés selon un pas constant.Each trellis (16) is obtained by welding several pairs of longitudinal wires (4, in Figure 1) (21-1, 22-1, 23-1, 24-1, 23-2, 24-2, 22-2 , 21-2) close to each other and parallel to the axis (17), with spacing wires (25) perpendicular to each other and arranged in a constant pitch.

Les deux fils (21-1, 21-2) sont les fils les plus extérieurs des treillis (16) et la distance entre eux détermine l'épaisseur TM du module (10); les deux fils (24-1 et 24-2) sont les fils les plus intérieurs et les fils (22-1, 22-2, 23-1, 23-2) sont intérieurs par rapport aux fils (21-1, 24-1, 21-2, 24-2).The two wires (21-1, 21-2) are the outermost wires of the trellis (16) and the distance between them determines the thickness TM of the module (10); the two wires (24-1 and 24-2) are the innermost wires and the wires (22-1, 22-2, 23-1, 23-2) are interior with respect to the wires (21-1, 24 -1, 21-2, 24-2).

L'armature complète (11) des modules (10) et (26) est obtenue en soudant les fils transversaux (18) aux fils longitudinaux (21-1, 22-1) de façon que les fils de mise à distance correspondants (25) des différents treillis (16 et 27) puissent se trouver dans le même plan et perpendiculaires aux plans des fils longitudinaux (21 - 24) et des fils transversaux (18). Un procédé particulièrement efficace pour la réalisation d'armatures tridimensionnelles comportant des fils longitudinaux, des fils de mise à distance et des fils transversaux est décrit dans la demande de brevet européen n° 84870056 déposée le 24/4/1984 par SISMO INTERNATIONAL p.v.b.a., titulaire de la présente demande.The complete reinforcement (11) of the modules (10) and (26) is obtained by welding the transverse wires (18) to the longitudinal wires (21-1, 22-1) so that the corresponding distance wires (25 ) different trellises (16 and 27) can be in the same plane and perpendicular to the planes of the longitudinal wires (21 - 24) and the transverse wires (18). A particularly effective method for producing three-dimensional reinforcements comprising longitudinal wires, distance wires and transverse wires is described in European patent application No. 84870056 filed on 4/4/1984 by SISMO INTERNATIONAL pvba, holder of this request.

Les modules préfabriqués (10, 26)-(Figures 1, 11a et 11h) emploient normalement des éléments en polystyrène expansé, de même épaisseur Tb et de largeur Wb (Fig. 2), indépendemment de l'usage particulier du module même. La longueur Lb des éléments (12) est en général égale à la largeur L du module (10 -26). Les fils longitudinaux (21, 24 et 29) définissent, avec les fils de mise à distance (25) des emplacements d'appui simples (70) pour un élément plat (12) et pour deux éléments plats (12), tandis que les emplacements d'appui double (71) définissent des zones de séparation (72), à l'intérieur du module,et deux zones terminales (73) dans les parties situées le plus à l'extérieur. L'interaxe des emplacements (70 - 71) et des zones (72 et 73) est égal dans chaque module indépendemment de l'épaisseur et de l'usage du module lui-même.The prefabricated modules (10, 26) - (Figures 1, 11a and 11h) normally use expanded polystyrene elements, of the same thickness Tb and width Wb (Fig. 2), independently of the particular use of the module itself. The length Lb of the elements (12) is generally equal to the width L of the module (10 -26). The longitudinal wires (21, 24 and 29) define, with the distance wires (25) simple support locations (70) for a flat element (12) and for two flat elements (12), while the double support locations (71) define separation zones (72), inside the module, and two end zones (73) in the outermost parts. The distance between the locations (70 - 71) and the zones (72 and 73) is equal in each module regardless of the thickness and the use of the module itself.

L'interaxe Pl des fils longitudinaux (22-1 et 23-1) et des fils (22-2 et 23-2) (fig. 2) des emplacements d'appui simples (70) est sensiblement égal à l'épaisseur Tb des éléments (12), plus le diamètre des fils, tandis que l'interaxe entre les fils (24-1 et 24-2) des emplacements d'appui doubles (70) et entre les fils (24-1 et 28-1) ainsi qu'entre les fils (24-2 et 28-2) des treillis (27) est substantiellement égal au double de l' interaxe Pl.The interaxis Pl of the longitudinal wires (22-1 and 23-1) and the wires (22-2 and 23-2) (fig. 2) of the simple support locations (70) is substantially equal to the thickness Tb elements (12), plus the diameter of the wires, while the interaxis between the wires (24-1 and 24-2) of the double support locations (70) and between the wires (24-1 and 28-1 ) as well as between the wires (24-2 and 28-2) of the trellis (27) is substantially equal to twice the interaxis Pl.

En plus, l'interaxe Ps, entre les fils (21-1 et 22-1, 23-1 et 24-1) de deux zones terminales (73) et entre les fils (21-2 et 22-2, 23-2 et 24-2, 28-1 et 28-2) des zones de séparation (72) est égal à 1/4 Pl.In addition, the interaxis Ps, between the wires (21-1 and 22-1, 23-1 and 24-1) of two end zones (73) and between the wires (21-2 and 22-2, 23- 2 and 24-2, 28-1 and 28-2) of the separation zones (72) is equal to 1/4 Pl.

Soit N le nombre d'emplacements d'appui simples (70) et M le nombre d'emplacements doubles (71), chaque module aura une épaisseur déterminée égale à la somme des interaxes des N emplacements simples, des M emplacements doubles (71) et chaque module aura une épaisseur déterminée par la somme des interaxes des N emplacements simples, des M emplacements doubles, des N + (M-1)

Figure imgb0001
distances entre les fils des zones de séparation (72) et des distances entre les fils des deux zones terminales (73). En utilisant un interaxe PS de 1 cm., on obtient des modules normalisés de 15, 20, 25, 30 et 35 cm., dont les modules de 20, 30 et 35 cm. sont visibles aux figures 2, 11b et 11g. Les autres modules peuvent être facilement obtenus par une combinaison adéquate des emplacements N et M et d'une section des fils de mise à distance (25) des modules de 35 cm.Let N be the number of single support locations (70) and M the number of double locations (71), each module will have a determined thickness equal to the sum of the interaxes of the N single locations, of the M double locations (71) and each module will have a thickness determined by the sum of the interaxes of the N single locations, M double locations, N + (M-1)
Figure imgb0001
distances between the wires of the separation zones (72) and distances between the wires of the two terminal zones (73). By using a PS interaxis of 1 cm., We obtain standardized modules of 15, 20, 25, 30 and 35 cm., Including the modules of 20, 30 and 35 cm. are visible in Figures 2, 11b and 11g. The other modules can be easily obtained by a suitable combination of locations N and M and a section of the distance wires (25) of the modules of 35 cm.

En particulier, on obtient aisément à l'aide des treillis (27g) (Fig. 11g), un module de 15 cm. en coupant les fils de mise à distance (25) adjacent à la zone de séparation (72-1) pour inclure uniquement une rangée d'appuis simples (70) et une rangée d'appuis doubles (71) (N = M = 1)

Figure imgb0002
et dans laquelle la zone terminale (73) du module de 15 cm. est définie par la zone de séparation (72-1) du treillis (27g).In particular, a 15 cm module is easily obtained using the trellis (27g) (Fig. 11g). by cutting the distance wires (25) adjacent to the separation zone (72-1) to include only a row of single supports (70) and a row of double supports (71) (N = M = 1)
Figure imgb0002
and in which the terminal area (73) of the 15 cm module. is defined by the separation zone (72-1) of the trellis (27g).

Un module 10 (d'une épaisseur de 20 cm.) est obtenu en coupant les fils de mise à distance (25) adjacent à la zone de séparation (72-2), afin d'inclure uniquement deux appuis (70) et un siège (71) (N = 2 et M = 1)

Figure imgb0003
. De façon similaire, des modules de 25 et 30 cm. peuvent être obtenus en coupant les fils de mise à distance (25) adjacents aux zones de séparation respectives (72-3 et 72-4).A module 10 (with a thickness of 20 cm.) Is obtained by cutting the distance wires (25) adjacent to the separation zone (72-2), in order to include only two supports (70) and one seat (71) (N = 2 and M = 1)
Figure imgb0003
. Similarly, modules 25 and 30 cm. can be obtained by cutting the distance wires (25) adjacent to the respective separation zones (72-3 and 72-4).

Les parties de treillis qui subsistent après la découpe des modules de 15, 20 et 25 cm. peuvent utilement être utilisées pour réaliser des cloisons de diverses épaisseurs dans le bâtiment. De cette manière, ce simple type de treillis peut donner naissance en substance à tous les modules nécessaires dans le bâtiment en ne perdant que de petits morceaux de fils (25).The parts of the lattice that remain after the 15, 20 and 25 cm modules have been cut. can usefully be used to make partitions of various thicknesses in the building. In this way, this simple type of trellis can give rise in substance to all the modules necessary in the building by losing only small pieces of wire (25).

L'interaxe Pd entre les fils de mise à distance (25) des treillis (16 et 27) est sensiblement égal à quatre fois l'interaxe Pl moins deux diamètres de fils et égal à la largeur Wb des éléments (12).The interaxis Pd between the spacing wires (25) of the trellises (16 and 27) is substantially equal to four times the interaxis Pl minus two wire diameters and equal to the width Wb of the elements (12).

Les figures 11a et 11 h montrent qu'il est possible de disposer les éléments (12) en différents endroits du treillis. En outre, l'espace délimité entre les éléments (12) peut être utilisé en toute liberté comme armature pour une ou plusieurs coulées de béton de différentes épaisseurs, ou bien comme chambre vide. Avantageusement, la zone de séparation (72), entre deux couches isolantes contigues, peut être utilisée comme zone anti-condensation.Figures 11a and 11h show that it is possible to arrange the elements (12) in different places of the trellis. In addition, the space delimited between the elements (12) can be freely used as a reinforcement for one or more concrete flows of different thicknesses, or as an empty chamber. Advantageously, the separation zone (72), between two contiguous insulating layers, can be used as an anti-condensation zone.

Après avoir formé les armatures (11), chaque élément (12) est inséré, en fonction de la destination du module (16, 26), entre les fils de mise à distance (25), et cela dans les emplacements (70) entre les fils longitudinaux (22 et 23) et, par paires, dans les emplacements (71) entre les fils (24-1 et 24-2) des treillis (16), ou encore entre les fils (24-1 et 28-1) et entre les fils (24-2 et 28-2) des treillis (27). L'insertion des élements (12) entre les fils de l'armature est facilitée par la souplesse des fils d'acier et du matériau léger dont sont formés les éléments (12).After having formed the reinforcements (11), each element (12) is inserted, according to the destination of the module (16, 26), between the distance wires (25), and this in the locations (70) between the longitudinal wires (22 and 23) and, in pairs, in the locations (71) between the wires (24-1 and 24-2) of the trellis (16), or even between the wires (24-1 and 28-1) and between the wires (24-2 and 28-2) trellises (27). The insertion of the elements (12) between the wires of the frame is facilitated by the flexibility of the steel wires and of the light material from which the elements (12) are formed.

Dans les structures verticales (14), les éléments (12) occupent uniquement l'espace délimité des deux paires de fils longitudinaux (22-1, 23-1 et 22-2, 23-2) de chaque succession de treillis (16 et 26). Les éléments (12) sont disposés côte à côte et superposés dans le sens de l'épaisseur Tb réalisant, en plus du panneau vertical (13), un deuxième panneau continu et vertical (30), séparé du panneau (13) par un espace I 1 = 2Pl + 2PS

Figure imgb0004
dans les modules (10) et par un espace I 2 = 4Pl + 3PS
Figure imgb0005
Figure imgb0006
dans le module (26) (Fig. 4).In the vertical structures (14), the elements (12) occupy only the space delimited by the two pairs of longitudinal wires (22-1, 23-1 and 22-2, 23-2) of each succession of trellis (16 and 26). The elements (12) are arranged side by side and superimposed in the thickness direction Tb making, in addition to the vertical panel (13), a second continuous and vertical panel (30), separated from the panel (13) by a space I 1 = 2Pl + 2PS
Figure imgb0004
in the modules (10) and by a space I 2 = 4Pl + 3PS
Figure imgb0005
Figure imgb0006
in the module (26) (Fig. 4).

Les espaces I 1 et I 2 peuvent être employés comme coffrage perdu pour une coulée de béton armé (32). Les paires de fils (24-1, 24-2 et 28-1, 28-2) sont noyés dans la coulée et favorisent le positionnement des fers à béton horizontaux (31) d'une armature pour une coulée de béton (32), en empêchant en même temps que les fers à béton (31) puissent se rapprocher des fers à béton (12) et être ainsi privés du revêtement en béton.The spaces I 1 and I 2 can be used as lost formwork for a reinforced concrete pour (32). The pairs of wires (24-1, 24-2 and 28-1, 28-2) are embedded in the casting and favor the positioning of the horizontal concrete reinforcing bars (31) of a reinforcement for a concrete casting (32) , while at the same time preventing the concrete bars (31) from approaching the concrete bars (12) and thus being deprived of the concrete covering.

Les modules (10, 26) sont assemblés entre eux au moyen de petites échelles horizontales (35) réalisées, elles aussi, en filsd'acier soudés. Les petites échelles (35) sont pourvues de fils transversaux (36), de mise à distance (I 1) et de fils de mise à distance (37) ayant un pas égal à la moitié du pas des treillis (16 , 27).The modules (10, 26) are assembled together by means of small horizontal scales (35) also made of welded steel wires. The small scales (35) are provided with transverse wires (36), with distance spacing (I 1) and with distance spacing wires (37) having a pitch equal to half the pitch of the trellis (16, 27).

Les petites échelles (35) sont insérées sous une légère contrainte, dans les espaces (I 1) des treillis (16) entre les fils (24-1 et 24-2) ou, par paires, entre les espaces des treillis (27), entre les fils longitudinaux (24-1, 28-1 et 24-2, 28-2).The small scales (35) are inserted under a slight constraint, in the spaces (I 1) of the trellis (16) between the wires (24-1 and 24-2) or, in pairs, between the spaces of the trellis (27) , between the longitudinal wires (24-1, 28-1 and 24-2, 28-2).

Les petites échelles (35) ont pour but d'aligner exactement plusieurs modules (10, 26) et de constituer des éléments de positionnement précis pour des fers à béton verticaux (33) de l'armature du béton armé (32).The aim of the small scales (35) is to align exactly several modules (10, 26) and to constitute precise positioning elements for vertical concrete irons (33) of the reinforcement of the reinforced concrete (32).

Dans des structures antisismiques ou particulièrement sollicitées, les petites échelles (35) peuvent être réalisées avec des fils transversaux (36) dimensionnés de façon à résister aux efforts perpendiculaires au panneau (13), soulageant ainsi la fonction des fers à béton (31).In earthquake-resistant or particularly stressed structures, small ladders (35) can be made with transverse wires (36) dimensioned so as to withstand the forces perpendicular to the panel (13), thus relieving the function of concrete irons (31).

Les fils longitudinaux (30) des petites échelles (35), butant contre les fils (24-1 et 24-2) des treillis (16 et 27) assurent que les fers à béton (33) se trouvent à une distance telle des panneaux (13 et 30) pour permettre que les fers à béton (33) soient bien entourés par la coulée de béton, garantissant ainsi la meilleure prise du béton avec son armature. Les fils de mise à distance (37) assurent, en outre, le positionnement vertical correct des fers à béton (33).The longitudinal wires (30) of the small ladders (35), abutting against the wires (24-1 and 24-2) of the trellises (16 and 27) ensure that the concrete irons (33) are at a distance like panels (13 and 30) to allow the concrete irons (33) to be well surrounded by the concrete pouring, thus guaranteeing the best grip of the concrete with its reinforcement. The distance wires (37) also ensure the correct vertical positioning of the concrete irons (33).

Dans les structures (15) de type horizontal, les éléments (12) (Fig. 5 et 6) occupent de manière continue uniquement l'espace entre les fils (22-1 et 23-1) de la partie inférieure des treillis selon la figure 3, de manière à former le seul panneau (13).In structures (15) of horizontal type, the elements (12) (Fig. 5 and 6) continuously occupy only the space between the wires (22-1 and 23-1) of the lower part of the trellis according to the Figure 3, so as to form the only panel (13).

L'espace entre les autres fils est occupé partiellement par un groupe (48) d'éléments (12) superposés selon leur côté de dimension supérieure Wb. Les groupes (48) sont séparés par des espaces d'interconnection longitudinaux (41) lesquels sont employés comme coffrage pour la coulée de béton (32).The space between the other wires is partially occupied by a group (48) of elements (12) superimposed according to their side of greater dimension Wb. The groups (48) are separated by longitudinal interconnection spaces (41) which are used as formwork for the pouring of concrete (32).

En alternative, au lieu d'utiliser des élements (12) superposés, le coffrage pour la coulée de béton peut être délimité par des éléments isolants minces (63) prenant appui sur les fils de mise à distance (25) à côté des espaces d'interconnection (41) dans les espaces d'appui (71), en épargnant ainsi une remarquable quantité d'isolant.Alternatively, instead of using superimposed elements (12), the formwork for concrete pouring can be delimited by thin insulating elements (63) resting on the distance wires (25) next to the spaces d 'interconnection (41) in the support spaces (71), thereby saving a remarkable amount of insulation.

La coulée de béton (32) s'étale au-dessus des éléments (12) les plus hauts et recouvre les fils longitudinaux (21-2) et les fils transversaux (18). Cette partie forme un plafond supérieur (42) d'épaisseur Tp + Ps

Figure imgb0007
et est pourvue de nervures inférieures (43) de largeur égale à Wb ou à des multiples de Wb et qui occupent les espaces d'interconnection (41).The concrete pour (32) spreads over the tallest elements (12) and covers the longitudinal wires (21-2) and the transverse wires (18). This part forms an upper ceiling (42) of thickness Tp + Ps
Figure imgb0007
and is provided with lower ribs (43) of width equal to Wb or multiples of Wb and which occupy the interconnection spaces (41).

Dans les nervures (43) de la coulée en béton sont noyés des profilés en acier, par exemple de barres d'adhérence élevée (44), lesquels sont maintenus par des fils d'arrêt (24-1). Le nombre et la section des barres (44) sont calculés de façon à résister aux efforts de traction dans la partie inférieure de la structure (15). Si nécessaire, d'autres parties des barreaux (44) prendront appui sur les fils (21-1) pour consolider le plafond, afin de resister aux sollicitations de traction des parties supérieures de la construction.In the ribs (43) of the concrete casting are embedded steel sections, for example of high grip bars (44), which are held by stop wires (24-1). The number and the section of the bars (44) are calculated so as to withstand the tensile forces in the lower part of the structure (15). If necessary, other parts of the bars (44) will bear on the wires (21-1) to consolidate the ceiling, in order to resist the tensile stresses of the upper parts of the construction.

Dans les plafonds qui nécessitent une armature transversale, en plus de l'armature longtudinale, les éléments (12) (Fig. 8) ont une longueur Lr inférieure à la longueur Lg du plafond et sont disposés en superposition de façon à définir des parties isolées (47) dépassant du panneau inférieur (13) et qui délimitent, en plus des espaces longitudinaux (41), également les espaces transversaux (45) destinés, eux aussi, à recevoir des barres en acier (46) et une coulée de béton qui constituera les nervures transversales du plafond (42).In ceilings which require a transverse reinforcement, in addition to the longtudinal reinforcement, the elements (12) (Fig. 8) have a length Lr less than the length Lg of the ceiling and are arranged in superposition so as to define isolated parts. (47) protruding from the lower panel (13) and which delimit, in addition to the longitudinal spaces (41), also the transverse spaces (45) also intended to receive steel bars (46) and a concrete pour which will constitute the transverse ribs of the ceiling (42).

Alternativement, on peut au lieu d'utiliser des barreaux (44), employer des profilés d'une autre forme. L'emploi d'un profilé (71) en double T a été trouvé particulièrement avantageux (Fig. 19).Alternatively, it is possible, instead of using bars (44), to use profiles of another shape. The use of a double T profile (71) has been found to be particularly advantageous (Fig. 19).

Le nombre de profilés (49) est calculé de façon que ces profilés résistent à toutes les sollicitations du plafond entier.The number of sections (49) is calculated so that these sections resist all stresses on the entire ceiling.

Dans un module dont Pl est de 4 cm., il a été utilisé avantageusement un profilé normalisé UNI 725-726, dont la section a une hauteur de 80 mm. et une largeur de 42 mm. Le profilé est introduit dans l'emplacement (71) dans le sens de sa plus petite dimension pour éviter ainsi tous les obstacles dus à d'éventuelles erreurs d'alignement des différents treillis.In a module whose Pl is 4 cm., A standard UNI 725-726 profile has been advantageously used, the section of which has a height of 80 mm. and a width of 42 mm. The profile is introduced into the location (71) in the direction of its smallest dimension to avoid all obstacles due to possible alignment errors of the different trellises.

Le profilé est ensuite tourné de 90 degrés, jusqu'à se placer dans la position selon la fig. 14.The profile is then turned 90 degrees, until it is in the position according to fig. 14.

La souplesse des fils (24-1 et 23-2) permet d'obtenir l'espace nécessaire à une telle rotation. Même en ce cas, la portée nécessaire est obtenue par le cotoiement des modules et d'une longueur adéquate du profilé (75).The flexibility of the wires (24-1 and 23-2) makes it possible to obtain the space necessary for such a rotation. Even in this case, the necessary span is obtained by the cotouage of the modules and an adequate length of the profile (75).

Les profilés d'armature, et en particulier les profilés en double T, permettent le préassemblage du plafond ou d'un mur à pied d'oeuvre, c'est-à-dire avant leur placement et l'éventuelle coulée de béton.The reinforcing profiles, and in particular the double-T profiles, allow the pre-assembly of the ceiling or of a wall at work, that is to say before their placement and the possible pouring of concrete.

Dans ce but, les différents modules (10, 26) (Fig. 15), destinés à former des plafonds, prennent appui sur un plan de répère.For this purpose, the various modules (10, 26) (Fig. 15), intended to form ceilings, are supported on a reference plane.

Les profilés (75) sont insérés dans les espaces (71) des modules accolés et leur longueur est choisie de façon à permettre que les extrémités des profilés dépassent des modules d'une longueur sensiblement égale à l'épaisseur de la structure verticale avec laquelle le plafond doit être assemblé.The profiles (75) are inserted into the spaces (71) of the adjoining modules and their length is chosen so as to allow the ends of the profiles to protrude from the modules by a length substantially equal to the thickness of the vertical structure with which the ceiling must be assembled.

Dans les espaces d'interconnection entre les groupes (48) est effectuée une coulé de béton (76), de manière à recouvrir les fils (24-1), la base et une partie du profilé (75).In the interconnection spaces between the groups (48) a concrete pour (76) is made, so as to cover the wires (24-1), the base and part of the profile (75).

La couche de béton (76) est, en outre, vibrée pour assurer une bonne pénétration du béton dans la zone comprise entre la base du profilé (75) et le panneau (13). Le préassemblage des autres plafonds peut être effectué en utilisant comme base d'appui le plafond précédemment assemblé avec l'aide d'une surface de nivellement appropriée, prenant appui sur des fils (18) du plafond situé en-dessous.The concrete layer (76) is further vibrated to ensure good penetration of the concrete into the area between the base of the profile (75) and the panel (13). The pre-assembly of the other ceilings can be carried out using the previously assembled ceiling as a support base with the help of an appropriate leveling surface, supported by wires (18) from the ceiling located below.

La mise en oeuvre du plafond pré-assemblé sera exécutée après le temps de prise de la coulée de béton (76). Ce plafond est léger en raison de l'épaisseur limitée du béton armé employé et il est autoportant grâce aux poutrelles dont il fait partie.The implementation of the pre-assembled ceiling will be carried out after the setting time of the concrete pour (76). This ceiling is light due to the limited thickness of the reinforced concrete used and it is self-supporting thanks to the beams of which it is a part.

Il peut donc être facilement transporté et peut largement être utilisé dans la construction de maisons, même dans des zones d'accès difficiles.It can therefore be easily transported and can be widely used in the construction of houses, even in difficult access areas.

En outre, en raison de sa remarquable résistance, la mise en oeuvre de ce plafond n'exige pas d'échafaudages complexes puisqu'il suffit d'avoir quelques petites poutres de support et quelques appuis correspondants.In addition, because of its remarkable resistance, the implementation of this ceiling does not require complex scaffolding since it suffices to have a few small support beams and some corresponding supports.

Après la mise en oeuvre du plafond préassemblé, le plafond même peut être complété avec une coulée supplémentaire de béton (77) superposée à la coulée (76). En alternative à la coulée de béton, on peut utiliser du matériel pour remplissage léger, tel que le ciment cellulaire, etc...After the installation of the preassembled ceiling, the ceiling itself can be completed with an additional concrete pour (77) superimposed on the pour (76). As an alternative to pouring concrete, it is possible to use material for light filling, such as cellular cement, etc.

Ce genre de plafond est d'épaisseur réduite et de bas poids spécifique. Le schéma de la fig. 14 se réfère à un plafond isolé d'une épaisseur de l'ordre de 15 cm., particulièrement avantageux pour couvrir de grandes structures industrielles.This kind of ceiling is of reduced thickness and low specific weight. The diagram in fig. 14 refers to a thick insulated ceiling of the order of 15 cm., particularly advantageous for covering large industrial structures.

Dans les plafonds d'épaisseur supérieure, qui utilisent les modules (26) selon la fig. 4, sont insérés deux profilés (75) superposés dans les espaces d'appui correspondants (71).In ceilings of greater thickness, which use the modules (26) according to fig. 4, are inserted two sections (75) superimposed in the corresponding support spaces (71).

Le préassemblage peut être obtenu aussi à l'aide de profilés de type différent, par exemple avec des profilés tubulaires de section circulaire, rectangulaire, ou d'autres formes, capables de résister à toutes les sollicitations auxquelles est soumise la structure.The pre-assembly can also be obtained using different types of profiles, for example with tubular profiles of circular, rectangular section, or other shapes, capable of withstanding all the stresses to which the structure is subjected.

Ces profilés tubulaires permettent la réalisation de conduits pour câbles électriques, pour tuyaux d'installations hydrauliques ou de conditionnement d'air.These tubular profiles allow the realization of conduits for electric cables, for pipes of hydraulic installations or air conditioning.

La liaison entre les structures (15) et les structures (14) est réalisée en employant des modules de raccord (50) (Fig. 3 et 9), comportant un nombre limité (trois ou quatre) de treillis (16, 26) disposés dans la zone de croisement entre les deux structures, de façon que les treillis (16, 26) soient disposés horizontalement et que les fils (18) soient disposés verticalement. Les modules (50) sont de structure similaire aux modules (10 et 26), mais les éléments (12) sont disposés verticalement (quatre), leur longueur étant égale à l'épaisseur de la structure (15) et occupant seulement la zone la plus extérieure du module, de façon à constituer un élément de coffrage retenant la coulée de béton (32).The connection between the structures (15) and the structures (14) is carried out by using connection modules (50) (Fig. 3 and 9), comprising a limited number (three or four) of lattices (16, 26) arranged in the crossover zone between the two structures, so that the trellises (16, 26) are arranged horizontally and the wires (18) are arranged vertically. The modules (50) are of similar structure to the modules (10 and 26), but the elements (12) are arranged vertically (four), their length being equal to the thickness of the structure (15) and occupying only the area the more exterior of the module, so as to constitute a formwork element retaining the concrete pour (32).

La liaison entre les modules (10, 26) et les modules (50) est réalisée de façon très simple avec des barres pliées à forme de U (55) qui maintiennent entre elles les modules mêmes.The connection between the modules (10, 26) and the modules (50) is carried out in a very simple manner with folded U-shaped bars (55) which hold the modules together.

Dans la structure horizontale (15) faisant usage de treillis (27h)(Fig. 11h) le panneau (13) peut être utilisé comme plafond. Dans ce cas, le double appui (71) demeure vide et peut être utilisé pour permettre le passage de câbles électriques, d'équipements hydrauliques ou de conduits à air. De plus, des parties du panneau (13) et les fils de support peuvent être coupés pour permettre aux appuis (71) de recevoir des équipements d'éclairage.In the horizontal structure (15) using trellis (27h) (Fig. 11h) the panel (13) can be used as a ceiling. In this case, the double support (71) remains empty and can be used to allow the passage of electric cables, hydraulic equipment or air ducts. In addition, parts of the panel (13) and the support wires can be cut to allow the supports (71) to receive lighting equipment.

Dans une réalisation particulière, donnée à titre purement exemplatif, les fils d'acier sont zingués contre l'oxydation et ont un diamètre de 2,2 mm. La largeur Wb des éléments(12)est de 154 mm., l'épaisseur Tb est de 38 mm., la distance entre les treillis (16 et 27) est de 98 mm. et le pas des fils transversaux (18) est de 78 mm. Les structures horizontales (15), dérivées des modules (10), ont un plafond (42) dans laquelle Tp est de 5 cm., pour une épaisseur totale de 25 cm., de manière à réaliser des portées atteignant 6 m.In a particular embodiment, given purely by way of example, the steel wires are zinc-plated against oxidation and have a diameter of 2.2 mm. The width Wb of the elements (12) is 154 mm., The thickness Tb is 38 mm., The distance between the trellises (16 and 27) is 98 mm. and the pitch of the transverse wires (18) is 78 mm. The horizontal structures (15), derived from the modules (10), have a ceiling (42) in which Tp is 5 cm., For a total thickness of 25 cm., So as to achieve spans reaching 6 m.

Les plafonds exécutés à l'aide de modules (26) ont, par contre, un plafond supérieur d'épaisseur Tp2 égale à 6 cm. pour une épaisseur totale du plafond égale à 35 cm., de manière à réaliser des portées atteignant 10 m.The ceilings executed using modules (26), on the other hand, have an upper ceiling with a thickness Tp2 equal to 6 cm. for a total thickness of the ceiling equal to 35 cm., so as to achieve spans up to 10 m.

Soit dans les structures verticales (14), soit dans les structures horizontales (15), l'espace terminal (73) entre les fils (21-1 et 22-2) et le panneau (13) est rempli par un enduit, l'espace entre le panneau (30) et les fils (21-1 et 22-2) de la structure verticale (14) est traité de la même façon.Either in vertical structures (14) or in horizontal structures (15), the terminal space (73) between the wires (21-1 and 22-2) and the panel (13) is filled with a coating, the space between the panel (30) and the wires (21-1 and 22- 2) of the vertical structure (14) is treated in the same way.

Deux ou plusieurs modules (10, 26) d'une structure (14) (Fig. 1) peuvent être assemblés aisément par leur bord d'extrémité en insérant une ou plusieurs petites échelles (35) dans les espaces (I 1), en vue de réaliser un bon alignement des modules.Two or more modules (10, 26) of a structure (14) (Fig. 1) can be easily assembled by their end edge by inserting one or more small ladders (35) in the spaces (I 1), in view to achieve a good alignment of the modules.

Les fils (21-1, 21-2) qui se présentent sur les bords des modules sont assemblés au moyen d'une bague (49) ou de plusieurs bagues métalliques enroulés entre les paires de fils (21), dans la zone de croisement des fils transversaux (18) par exemple.The wires (21-1, 21-2) which are present on the edges of the modules are assembled by means of a ring (49) or of several metal rings wound between the pairs of wires (21), in the crossing zone transverse wires (18) for example.

La largeur des éléments (12) est Wb = 4Tb

Figure imgb0008
plus le diamètre du fil de mise à distance et égal à la distance entre deux fils de mise à distance (25).The width of the elements (12) is Wb = 4Tb
Figure imgb0008
plus the diameter of the distance wire and equal to the distance between two distance wires (25).

Ces dimensions sont particulièrement avantageuses dans les modules (60) (Fig. 10) ayant une structure de treillis (16) égale à celle des modules (50). Les treillis (60) prévoient des bouts d'éléments (12) insérés entre les fils (22 et 23) pour former un côté (61). Une des faces de dimension Wb est, en outre, mise en contact avec un treillis (16). En raison du dimensionnement expliqué ci-dessus des treillis (16) et des éléments (12 et 62), les bords de la barre (62), d'épaisseur Tb, seront en contact et légèrement forcés entre les fils transversaux (18) et le côté (61).These dimensions are particularly advantageous in the modules (60) (Fig. 10) having a trellis structure (16) equal to that of the modules (50). The trellis (60) provide ends of elements (12) inserted between the wires (22 and 23) to form a side (61). One of the faces of dimension Wb is also brought into contact with a trellis (16). Due to the dimensioning explained above of the trellis (16) and the elements (12 and 62), the edges of the bar (62), of thickness Tb, will be in contact and slightly forced between the transverse wires (18) and the side (61).

Le module (60) trouve un emploi utile dans l'assemblage entre deux structures (14) disposées à 90 degrés entre elles. Dans ce cas, le côté (61) du module (60) est mis en alignement avec le panneau (13) d'un module (10). Le panneau (13) de l'autre module (14) est mis en alignement avec l'élément (62). L'assemblage entre les modules est complété par un élément (65) de section carrée, de côté Tb inséré dans la zone d'angle opposée à l'angle occupé par le côté (61) et l'élément (62). L'assemblage proprement dit se fait par utilisation de spirales de jonction entre les différents fils terminaux, la prolongation éventuelle des fers à béton (33) et au moyen d'une coulée de béton (32).The module (60) finds a useful use in the assembly between two structures (14) arranged at 90 degrees between them. In this case, the side (61) of the module (60) is brought into alignment with the panel (13) of a module (10). The panel (13) of the other module (14) is brought into alignment with the element (62). The assembly between the modules is completed by an element (65) of square section, on the side Tb inserted in the corner area opposite the angle occupied by the side (61) and the element (62). The actual assembly is done by using spirals of junction between the different terminal wires, the possible extension of the concrete irons (33) and by means of a concrete pour (32).

Le module (60) peut également être assemblé avec une structure horizontale (15) (Fig. 12). Dans ce cas, les extrémités des eléments (12) sont alignées avec le panneau de plafond (13) et le côté (62) définit un épaulement latéral pour la coulée de béton (32). Ceci permet une réalisation aisée de balcons, jardins suspendus, etc... et d'autres structures de l'espèce.The module (60) can also be assembled with a horizontal structure (15) (Fig. 12). In this case, the ends of the elements (12) are aligned with the ceiling panel (13) and the side (62) defines a lateral shoulder for the pouring of concrete (32). This allows an easy realization of balconies, hanging gardens, etc ... and other structures of the species.

Dans le cas où il n'est pas possible d'utiliser le préassemblage du plafond, le soutien provisoire des structures horizontales (15), avant la coulée du béton, peut être réalisé de façon traditionnelle, au moyen d'éléments de coffrage horizontaux et d'étais verticaux. Les charpentes (11) et les éléments (12) offrent en tout cas une bonne résistance au passage de la coulée de béton, ainsi qu'à son poids. En plus, la présence d'espaces entre les éléménts (12) supportés par les fils (22-1 et 23-1) ne cause aucun problème à la compacité du béton, après sa prise.In the case where it is not possible to use the pre-assembly of the ceiling, the provisional support of the horizontal structures (15), before the pouring of the concrete, can be carried out in the traditional way, by means of horizontal shuttering elements and vertical props. The frames (11) and the elements (12) in any case offer good resistance to the passage of the concrete pour, as well as to its weight. In addition, the presence of spaces between the elements (12) supported by the wires (22-1 and 23-1) does not cause any problem with the compactness of the concrete, after it has set.

La disposition particulière des treillis (16) dans les structures horizontales (15) et l'utilisation des modules (50 et 60) permettent de réaliser des portées de dimensions variables, en employant des modules égaux et de faible largeur, sans qu'il soit nécessaire de faire appel à des éléments structurels spéciaux comme de petits étançons et similaires, dimensionnés sur mesure. La Fig. 13 montre l'emploi d'un module (10) avec double isolation dans une structure inclinée utilisée, par exemple, pour réaliser des toits. Dans ce cas, la coulée de béton dans les espaces vides entre les deux panneaux se fait au travers d'un trou (80) pratiqué dans un élément (12) du panneau qui constitue l'isolant supérieur du toit.The particular arrangement of the trellis (16) in the horizontal structures (15) and the use of the modules (50 and 60) make it possible to produce spans of variable dimensions, by using equal modules and of small width, without it being it is necessary to use special structural elements such as small props and the like, made to measure. Fig. 13 shows the use of a module (10) with double insulation in an inclined structure used, for example, to make roofs. In this case, the concrete is poured into the empty spaces between the two panels through a hole (80) made in an element (12) of the panel which constitutes the upper insulation of the roof.

La Fig. 16 représente l'emploi de modules qui utilisent des treillis (27 h) qui présentent cinq espaces simples (70) et un espace double, suivant le schéma de la Fig. 11 b. Ceci permet de simultanément réaliser des zones d'emboîtement entre les colonnes en béton (83) et les poutres horizontales (84) dans une structure verticale (14). Les parois de la structure sont réalisées à l'aide de deux panneaux (85 et 86) formés d'éléments (12) retenus dans les espaces (70).Fig. 16 represents the use of modules which use trellis (27 h) which present five simple spaces (70) and a double space, according to the diagram of FIG. 11 b. This allows simultaneous nesting zones between the concrete columns (83) and the horizontal beams (84) in a vertical structure (14). The walls of the structure are made using two panels (85 and 86) formed of elements (12) retained in the spaces (70).

Le coffrage pour la poutre (84) est réalisé latéralement par deux panneaux (85 et 86), et en-dessous, par trois éléments simples (12) et deux autres éléments (12) qui créent une série d'espaces (70 et 71) interposés entre les panneaux (85 et 86). Le coffrage de la colonne (83) est, à son tour, obtenu par des morceaux d'éléments (12) dont les extrémités sont alignées le long de deux treillis et qui définissent deux surfaces (90 et 91) de maintien pour la coulée de béton. La poutre (84) et la colonne (83) peuvent être complétées par des profilés d'armature en forme de barres ou en utilisant un autre genre de profilé d'acier en accord avec les données de calcul du béton armé.The formwork for the beam (84) is made laterally by two panels (85 and 86), and below, by three simple elements (12) and two other elements (12) which create a series of spaces (70 and 71 ) interposed between the panels (85 and 86). The formwork of the column (83) is, in turn, obtained by pieces of elements (12) whose ends are aligned along two lattices and which define two holding surfaces (90 and 91) for the pouring of concrete. The beam (84) and the column (83) can be completed by reinforcing profiles in the form of bars or by using another kind of steel profile in accordance with the design data of the reinforced concrete.

Une structure du type représenté à la Fig.16 peut donner naissance à plusieurs colonnes (83) et la poutre (84) peut s'étendre vers le bas et être équipée d'appuis additionnels pour les fers (41, 44). Les parties situées entre les colonnes (83) et la poutre (84) peuvent être utilisées pour définir les ouvertures pour les portes en découpant les orifices désirés dans les panneaux (85 et 86) et les fils de l'armature (11).A structure of the type shown in Fig. 16 can give rise to several columns (83) and the beam (84) can extend downwards and be equipped with additional supports for the irons (41, 44). The parts between the columns (83) and the beam (84) can be used to define the openings for the doors by cutting the desired holes in the panels (85 and 86) and the wires of the frame (11).

Claims (14)

  1. Prefabricated modules (10,26) to be utilized for erecting building structures, comprising flat elements (12) of light material and a threedimensional structure (11) formed by a plurality of lattices (16, 27) of welded steel wires which extend along a longitudinal direction and are welded to a series of transverse wires (18), these lattices being disposed facing one another and each comprising parallel longitudinal wires (21-24) and distancing wires (25) welded to the longitudinal wires which define conjointly with the distancing wires, empty supporting places for the flat elements, these supporting places comprising a first row and a second two of supporting places (70), an intermediary empty space and a first group of flat elements being provided to be inserted in the first row with a view to forming a first panel (13) of a side of the threedimensional structure, a second group of flat elements being provided to be inserted in the second row of the other side of the threedimensional structure with a view to forming a second panel (30) and the above said intermediary empty space being utilized as shuttering space between the first panel and the second panel for a concrete casting (32) containing iron reinforcement bars, characterised in that:

    the longitudinal wires and the distancing wires form another row of supporting places (70, 71) in the said intermediary space (11, 12) and a third group of flat elements (12) may be inserted in the other row of supporting places instead of the concrete casting,

    in that the longitudinal wires (24-1, 24-2) forming pairs of wires brought together welded to the distancing wires spaced one from another by a predetermined distance of separation (Ps), each of these pairs determining an area of separation (72) such that one row of supporting places (70, 71) for the flat elements (12) is in alternation with an area of separation (72) inside the threedimensional structure (11),

    in that the threedimensional structure (11) may be utilized for vertical structures (14) as well as for horizontal structures (15), the utilization sought of a prefabricated module being determined by the arrangement of the flat elements (12) in the supporting places (70, 71) of the threedimensional structure,

    in that for a horizontal structure (14) the first group of flat elements (12) occupies completely the first row of supporting places to form a continuous ceiling panel (13) in the lower part of the module whilst the second group of flat elements and the third group of flat elements partly occupy the second row of supporting elements and the other row of supporting places respectively to form a row (48) of superposed flat elements separated by empty connection spaces (41) which are utilized as horizontal shuttering spaces for ribs (43) of concrete casting (32) conjointly with the ceiling panel,

    in that the said connection spaces (41) are provided for lodging horizontal iron reinforcement bars (44) transversely to the longitudinal wires (21-24) and

    in that the longitudinal wires of certain pairs of wires brought together form in the said connection spaces (41), catch wires to support the iron bars (44) which are situated close to the ceiling panel (13) but are spaced from the ceiling panel by the separation distance (Ps) to permit the concrete casting (32) to embed completely the iron reinforcement bar (31).
  2. Prefabricated modules according to claim 1, characterised in that the flat elements (12) all have rectangular sections of identical predetermined thickness (Tb) and width (Wb), the first row and the second row of supporting places each determining a single row of supporting places (70) provided to support single rows of flat elements (12) along their width (Tb) and in that the other row of supporting places determine a row of double supporting places (71) arranged to permit each double supporting place to receive two flat elements (12) joined to one another along their width direction.
  3. Prefabricated modules according to claim 2, characterised in that the distance (Pl) between axes of two longitudinal wires which form each a supporting place is a whole multiple of the separation distance (Ps) between axes of two longitudinal wires in each of the pairs of wires brought together which form the separation area (72).
  4. Prefabricated modules according to claim 3, in which two pairs of longitudinal wires (21-1, 22-1; 21-2, 22-2) form two end areas (73) outside the module, the wires situated more outside (21-1; 21-2) being spaced by a distance which forms the thickness (TM) of the module (10, 26), characterised in that the distance between the axis of the longitudinal wires in the end areas is equal to the predetrermined separation distance (Ps) in that the thickness of the modules (10, 26) is only defined by a number "M" of single rows of supporting places and by a number "N" of double supporting places and in that the number of separation areas (72) is equal to "N + M - 1"
    Figure imgb0010
    where "N" and "M" are whole numbers to realize modules of standardized thickness according to the values of the numbers "N" and "M".
  5. Prefabricated modules according to one of the claims 3 and 4, characterised in that the whole module is four.
  6. Prefabricated modules according to claim 5, characterised in that the separation distance is 1cm and in that the modules have different standardized thickness of 5cm one from the other between 15cm and 35cm.
  7. Prefabricated modules according to any one of the claims 2 to 6, characterised in that the predetermined width (Wb) of each flat element (12) is equal to four times the thickness (Tb), the distance between the axes of the longitudinal wires in the row of single supporting places being equal to the thickness (Tb) of the flat element (12) plus a wire diameter and the spacing between two separation wires (25) being equal to the predetermined width (Wb) of the flat element.
  8. Prefabricated modules according to any one of the claims 2 to 7, characterised in that the iron reinforcement bars have a transverse section in double T form (75) and in that the row of double supporting places provide for two positioning wires (24-1, 24-2) of two of the said pairs of wire brought together in order that they may be spaced by the double T transverse section (75) by a distance equal to the height of a predetermined section of standardized type and in that the positioning wires secure the iron reinforcement bars in a predetermined position in the connection spaces (41) formed by the row (48) of superposed flat elements.
  9. Prefabricated modules according to any one of the preceding claims, characterised in that the width of the modules is determined by the length of the transverse wires (18), the ribs (43) of concrete casting being in relative position parallel to the transverse wires, the horizontal structure having a bearing surface which is longer than the length of the transverse wires (18) and in that the horizontal structure is obtained by arrangement side by side of a large number of modules (10) interconnected by iron reinforcement bars (44) presenting a length corresponding to the bearing surface of the horizontal structure and held by the positioning wires of two or several of the said modules.
  10. Prefabricated modules according to claim 9, characterised in that the iron reinforcement bars are preassembled with the plurality of modules by embedding the iron reinforcement bars over a limited thickness.
  11. Prefabricated modules according to any one of the preceding claims, characterised in that the separation areas (72) are provided to cause a displacement of two adjacent rows of flat elements with respect to the other of the predetermined separation distance in a vertical structure (14).
  12. Prefabricated modules according to any one of the preceding claims with a view to its use in a vertical structure (14), characterised in that the shuttering space between the first panel (13) and the second panel (30) lodges a wire ladder (35, Figure 1) for the spacing of vertical iron bars (33) in a concrete casting no matter which of the longitudinal wires of the said pairs of wires drawn together being in the shuttering space between the first panel and the second panel and forming catch wires and in that the said ladder is held by two catch wires to determine in a precise manner the position of the vertical iron reinforcement bars in the concrete casting.
  13. Prefabricated modules according to any one of the claims 2 to 7 for their use as a joining structure (50) between a vertical structure (14) and a horizontal structure (15), characterised in that the joining structure (50) comprises a limited number (three or four) of lattices (16) arranged in a transverse area between the vertical and horizontal structures (14, 13) and in that no matter which of the flat elements is inserted in the joining module to be positioned in an outer area of the joining structure (50) with a view to holding the concrete casting.
  14. Prefabricated modules according to any one of the preceding claims for their use in a vertical structure (14), characterised by another group of flat elements filling partly the said other row of supporting places between the first panel and the second panel with a view to determining a shape for a horizontal concrete beam (84) and a concrete column (83).
EP84201602A 1984-11-08 1984-11-08 Preassembled modules and their use in a building construction Expired - Lifetime EP0180667B1 (en)

Priority Applications (32)

Application Number Priority Date Filing Date Title
AT84201602T ATE72858T1 (en) 1984-11-08 1984-11-08 PREFABRICATED UNITS AND USE IN BUILDING CONSTRUCTION.
DE8484201602T DE3485525D1 (en) 1984-11-08 1984-11-08 Prefabricated building units and use in building construction.
EP84201602A EP0180667B1 (en) 1984-11-08 1984-11-08 Preassembled modules and their use in a building construction
OA58717A OA08317A (en) 1984-11-08 1985-10-29 Improvement in prefabricated modules and their use in the building.
IN867/MAS/85A IN166811B (en) 1984-11-08 1985-10-29
AU49226/85A AU585542B2 (en) 1984-11-08 1985-10-31 Improvements in prefabricated modules, and the use thereof in the building industry
NZ228852A NZ228852A (en) 1984-11-08 1985-10-31 Prefabricated building module and lightweight permanent formwork
HU854208A HU213764B (en) 1984-11-08 1985-11-01 Single-layer or multilayer permanent shutterin for multiple-purpose application to building and process for shaping bearing structures with permanent shutterin
IL76915A IL76915A (en) 1984-11-08 1985-11-01 Prefabricated modules,and the use thereof in the building industry
EG70785A EG18030A (en) 1984-11-08 1985-11-04
MA20789A MA20564A1 (en) 1984-11-08 1985-11-05 IMPROVEMENT IN PREFABRICATED MODULES AND THEIR USE IN BUILDINGS
BG72297A BG49725A3 (en) 1984-11-08 1985-11-06 Assembling building module and method for building of building constructions with it
SU3973324A SU1561829A3 (en) 1984-11-08 1985-11-06 Prefabricated module for housing construction
PH33016A PH26627A (en) 1984-11-08 1985-11-06 Prefabricated modules and the use thereof in the building industry
DZ850244A DZ858A1 (en) 1984-11-08 1985-11-06 Improvement to prefabricated modules and their use in building.
UA3973324A UA7199A1 (en) 1984-11-08 1985-11-06 Pre-assembled module for building of houses
FI854363A FI82520C (en) 1984-11-08 1985-11-06 Prefabricated module for use in house building
YU174185A YU47132B (en) 1984-11-08 1985-11-07 IMPROVED PREFABRICATED MODULES / 10
SI8511741A SI8511741B (en) 1984-11-08 1985-11-07 Improved prefabricated modules
TR45565/85A TR23187A (en) 1984-11-08 1985-11-07 IMPROVEMENT AND USE OF THE BUILDING IN PREFABRICATED MODUELS
IE277185A IE58437B1 (en) 1984-11-08 1985-11-07 Improvements in prefabricated modules, and the use thereof in the building industry
CN85108069A CN1006727B (en) 1984-11-08 1985-11-07 Improvements in prefabricated modules, and the use thereof in the building industry
BR8505723A BR8505723A (en) 1984-11-08 1985-11-07 IMPROVEMENTS IN PREFABRICATED MODULES AND THEIR USE IN THE CONSTRUCTION INDUSTRY
ES548732A ES8708154A1 (en) 1984-11-08 1985-11-08 Preassembled modules and their use in a building construction.
ZA858612A ZA858612B (en) 1984-11-08 1985-11-08 Prefabricated modules and the use thereof in the building industry
KR1019850008369A KR900008987B1 (en) 1984-11-08 1985-11-08 Prefabricated module
MX553A MX162285A (en) 1984-11-08 1985-11-08 IMPROVEMENTS IN PREFABRICATED MODULES AND THEIR USE IN THE CONSTRUCTION INDUSTRY
JP60250581A JPS61155529A (en) 1984-11-08 1985-11-08 Assembling module for building and construction thereof
US07/047,555 US4864792A (en) 1984-11-08 1987-04-27 Prefabricated modules, and the use thereof in the building industry
MYPI87001593A MY101364A (en) 1984-11-08 1987-09-08 Improvements in prefabricated modules, and the use thereof in the building industry.
US07/700,093 US5163263A (en) 1984-11-08 1991-05-06 Method of assembling a building component
HRP920603AA HRP920603A2 (en) 1984-11-08 1992-09-29 Preassembled modules and their use in a building construction. .

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP84201602A EP0180667B1 (en) 1984-11-08 1984-11-08 Preassembled modules and their use in a building construction

Publications (2)

Publication Number Publication Date
EP0180667A1 EP0180667A1 (en) 1986-05-14
EP0180667B1 true EP0180667B1 (en) 1992-02-26

Family

ID=8192495

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84201602A Expired - Lifetime EP0180667B1 (en) 1984-11-08 1984-11-08 Preassembled modules and their use in a building construction

Country Status (31)

Country Link
US (2) US4864792A (en)
EP (1) EP0180667B1 (en)
JP (1) JPS61155529A (en)
KR (1) KR900008987B1 (en)
CN (1) CN1006727B (en)
AT (1) ATE72858T1 (en)
AU (1) AU585542B2 (en)
BG (1) BG49725A3 (en)
BR (1) BR8505723A (en)
DE (1) DE3485525D1 (en)
DZ (1) DZ858A1 (en)
EG (1) EG18030A (en)
ES (1) ES8708154A1 (en)
FI (1) FI82520C (en)
HR (1) HRP920603A2 (en)
HU (1) HU213764B (en)
IE (1) IE58437B1 (en)
IL (1) IL76915A (en)
IN (1) IN166811B (en)
MA (1) MA20564A1 (en)
MX (1) MX162285A (en)
MY (1) MY101364A (en)
NZ (1) NZ228852A (en)
OA (1) OA08317A (en)
PH (1) PH26627A (en)
SI (1) SI8511741B (en)
SU (1) SU1561829A3 (en)
TR (1) TR23187A (en)
UA (1) UA7199A1 (en)
YU (1) YU47132B (en)
ZA (1) ZA858612B (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0298008B1 (en) * 1987-07-01 1993-05-12 Juan Antonio Martinez Baena Building element comprising prefabricated panels
US5771648A (en) * 1988-03-14 1998-06-30 Foam Form Systems, L.L.C. Foam form concrete system
US4972646A (en) * 1988-03-14 1990-11-27 Foam Form Systems, Inc. Concrete forming system
US5140794A (en) * 1988-03-14 1992-08-25 Foam Form Systems, Inc. Forming system for hardening material
US5373675A (en) * 1990-10-26 1994-12-20 Ellison, Jr.; Russell P. Composite building system and method of manufacturing same and components therefor
GB2254863B (en) * 1991-04-16 1994-08-17 Mariano Capozzi Building construction
ES2068110B1 (en) * 1992-12-18 1996-12-16 Herman Storch A STRUCTURAL MESH, TO BE USED IN RESISTANT COMPONENTS OF CONSTRUCTION SYSTEMS.
NO177803C (en) * 1993-06-23 1995-11-22 Nils Nessa A method of casting an entire or partially insulated wall, as well as a disposable formwork for use in the specified process.
US5455542A (en) * 1993-11-22 1995-10-03 Rockwell International Corporation Symmetrical clock crystal oscillator circuit
SK283856B6 (en) * 1993-12-20 2004-03-02 R. A. R. Consultants Ltd. Foundation member and building structure foundation
JPH10512027A (en) * 1995-01-13 1998-11-17 ベルテルス,オウグスティヌス・ウィルヘルムス・マリア Coupling between two structural elements and a spatial structure having such a coupling
ITPS20000010A1 (en) * 2000-04-10 2001-10-10 Candiracci Angelo PRE-ARMED FORMWORK PANEL
US7337591B2 (en) 2001-11-28 2008-03-04 Inteplast Group, Ltd. Building construction system
US6898912B2 (en) 2002-04-15 2005-05-31 Leonid G. Bravinski System and method for the reinforcement of concrete
US6735914B2 (en) * 2002-07-03 2004-05-18 Peter J. Konopka Load bearing wall
US6920729B2 (en) 2002-07-03 2005-07-26 Peter J. Konopka Composite wall tie
US7124547B2 (en) 2002-08-26 2006-10-24 Bravinski Leonid G 3-D construction modules
UA82128C2 (en) * 2003-11-03 2008-03-11 Полифайненс Коффор Холдинг С.А. High-strength concrete wall formwork
US7562613B2 (en) * 2003-12-19 2009-07-21 The Cooper Union For The Advancement Of Science And Art Protective structure and protective system
US6973864B1 (en) * 2003-12-19 2005-12-13 The Cooper Union For The Advancement Of Science And Art Protective structure and protective system
CA2867959C (en) * 2004-03-10 2019-02-26 Alven Way Multi-storey insulated concrete foam building and method of construction thereof
US7861479B2 (en) 2005-01-14 2011-01-04 Airlite Plastics, Co. Insulated foam panel forms
US7805908B2 (en) * 2005-04-25 2010-10-05 Cortek, Inc. Load-bearing system for fill material structure formation
EP2236686A1 (en) * 2009-04-03 2010-10-06 F.J. Aschwanden AG Reinforcing element for absorbing forces in concrete slabs in the area of supporting elements
KR101019739B1 (en) * 2009-04-28 2011-03-08 주식회사 시스모 Building assembly, building and construction method
CN102127930B (en) * 2010-07-19 2012-10-17 曾庆胜 Net die member for steel-concrete building and method for constructing enclosure by combining net die members and filling into a frame shear wall
DE102011008853A1 (en) * 2011-01-18 2012-07-19 Dieter Christandl Light-conducting component for buildings and buildings as well as manufacturing processes therefor
US8720160B1 (en) * 2011-09-14 2014-05-13 Alan Brian Cooper Process for forming concrete walls and other vertically positioned shapes
US8919067B2 (en) 2011-10-31 2014-12-30 Airlite Plastics Co. Apparatus and method for construction of structures utilizing insulated concrete forms
CA2801735C (en) 2012-01-13 2019-08-06 Bradley J. Crosby An apparatus and method for construction of structures utilizing insulated concrete forms
EP2644793B1 (en) * 2012-03-28 2016-05-11 SISMO Trading Ltd. Steel lattice configuration
US8752349B2 (en) * 2012-06-19 2014-06-17 Jesse Westaby Form system with lath covering
USD713975S1 (en) 2012-07-30 2014-09-23 Airlite Plastics Co. Insulative insert for insulated concrete form
US20140245694A1 (en) * 2013-03-01 2014-09-04 Shaw & Sons, Inc. Architectural concrete wall and method of forming the same
CN103088843B (en) * 2013-03-04 2016-03-30 济南城建集团有限公司 Pipe gallery embedded iron parts construction method of installation
KR101570790B1 (en) * 2014-08-05 2015-11-23 이승우 Prefabricated wall frame
US9593487B2 (en) * 2014-09-05 2017-03-14 James F. Harvey Modular building system
PL3045605T3 (en) * 2015-01-16 2020-03-31 Heinze Gruppe Verwaltungs Gmbh Module for producing concrete elements
CN105155856A (en) * 2015-08-06 2015-12-16 上海同凝节能科技有限公司 Construction method using prefabricated assembly type external retaining wall
ITUB20169963A1 (en) * 2016-01-13 2017-07-13 Federico Lestini Modular building structure with integrated systems
CA2985438A1 (en) 2016-11-14 2018-05-14 Airlite Plastics Co. Concrete form with removable sidewall
EP3555388A4 (en) * 2016-12-14 2020-08-19 Lifting Point Pre-Form Pty Limited Support module for a structure
CA3061942A1 (en) 2018-11-19 2020-05-19 Bradley J. Crosby Concrete form with removable sidewall
CN109441112A (en) * 2018-12-26 2019-03-08 王正发 The construction method of casting concrete modular building template
CN110778118A (en) * 2019-10-22 2020-02-11 中国建筑第八工程局有限公司 Interception device for concrete with different grades and construction method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1134813B (en) *
GB117098A (en) * 1917-05-01 1918-07-02 Nicolay Knudtzon Fougner Improvements in or connected with the Construction of Ships or Vessels and other Floating Structures of Reinforced Concrete.
DE545450C (en) * 1929-04-25 1932-06-17 Franz Hartleib Process for the production of rammed and cast concrete walls between formwork and with a continuous internal insulation made of plasterboard or other insulating panels
US3420018A (en) * 1967-10-18 1969-01-07 Robertson Co H H Underfloor electrical crossunder unit
US3721058A (en) * 1969-05-26 1973-03-20 Gen Dynamics Corp Reinforced wall structure
US3679529A (en) * 1969-08-12 1972-07-25 Architectural Res Corp Panel construction
GB1354418A (en) * 1970-05-21 1974-06-05 Rehm G Reinforcing fabric
FR2050171A5 (en) * 1970-06-09 1971-03-26 Ochs Jean
US3707817A (en) * 1970-06-26 1973-01-02 R Schmitt Building construction
LU77320A1 (en) * 1976-05-14 1977-08-24
US4336676A (en) * 1977-12-05 1982-06-29 Covington Brothers, Inc. Composite structural panel with offset core
IT1191160B (en) * 1981-03-18 1988-02-24 Silvano Casalatina DEVICE AND METHOD FOR OBTAINING PREFABRICATED ELEMENTS FOR BUILDING HOUSES AND SIMILAR AND METHOD FOR ASSEMBLING BETWEEN THESE ELEMENTS
CA1182304A (en) * 1981-08-14 1985-02-12 George A. Grutsch Concrete formwork
US4494353A (en) * 1982-05-20 1985-01-22 Lewis Alvin W Method of manufacturing and building preformed modular building wall sections
ATE23593T1 (en) * 1983-01-28 1986-11-15 Rhodius Gmbh & Co Kg Geb PERMANENT, HEAT-INSULATING FORMWORK FOR WALL CONSTRUCTION.

Also Published As

Publication number Publication date
FI82520C (en) 1991-03-11
FI82520B (en) 1990-11-30
BR8505723A (en) 1986-08-12
SI8511741B (en) 1998-06-30
ATE72858T1 (en) 1992-03-15
HRP920603A2 (en) 1994-04-30
DE3485525D1 (en) 1992-04-02
YU174185A (en) 1988-08-31
IE58437B1 (en) 1993-09-22
SU1561829A3 (en) 1990-04-30
UA7199A1 (en) 1995-06-30
HU213764B (en) 1997-10-28
FI854363A0 (en) 1985-11-06
MX162285A (en) 1991-04-22
EP0180667A1 (en) 1986-05-14
ZA858612B (en) 1986-11-26
IE852771L (en) 1986-05-08
AU4922685A (en) 1986-05-15
CN1006727B (en) 1990-02-07
FI854363A (en) 1986-05-09
BG49725A3 (en) 1992-01-15
KR900008987B1 (en) 1990-12-17
MY101364A (en) 1991-09-05
DZ858A1 (en) 2004-09-13
ES548732A0 (en) 1987-09-16
JPS61155529A (en) 1986-07-15
IL76915A0 (en) 1986-04-29
YU47132B (en) 1995-01-31
AU585542B2 (en) 1989-06-22
ES8708154A1 (en) 1987-09-16
IL76915A (en) 1989-06-30
MA20564A1 (en) 1986-07-01
HUT39487A (en) 1986-09-29
US5163263A (en) 1992-11-17
KR860004217A (en) 1986-06-18
CN85108069A (en) 1986-05-10
IN166811B (en) 1990-07-21
SI8511741A (en) 1996-04-30
OA08317A (en) 1988-02-29
US4864792A (en) 1989-09-12
EG18030A (en) 1991-12-31
PH26627A (en) 1992-08-19
NZ228852A (en) 1989-12-21
TR23187A (en) 1989-06-06

Similar Documents

Publication Publication Date Title
EP0180667B1 (en) Preassembled modules and their use in a building construction
FR2554479A1 (en) BUILDING BLOCK SYSTEM FOR ERRORING BUILDINGS
WO1991002851A2 (en) Cellular structures for sustaining walls
EP0174347A1 (en) Structural elements and method for making the same
FR2903437A1 (en) Prefabricated element for forming e.g. reinforced concrete wall e.g. bridge pillar, has metallic beam extending along longitudinal direction and comprising lower head beam drowned in plate extending between two spaced lateral sides
EP0197021B1 (en) Method for driving a tunnel
FR2556387A1 (en) Construction element of the type made of expanded polystyrene, intended for building a wall
EP0985071A1 (en) Building framework
FR2584461A1 (en) Dismantleable three-dimensional modular assembly method intended for any type of construction
EP0080398B1 (en) Industrial building supporting structure constituted of prefabricated reinforced concrete elements
EP0093030B1 (en) Sublevel space, in particular a cellar and method of creating the same
FR2464339A1 (en) Multi-storey building frame made of precast units - uses columns between doubled rectangular floor slabs with cavity connected by ties in column ducts
EP1211355A1 (en) Base wall for construction and method for realization of such
FR2766851A1 (en) Wooden frame kits for constructing timber frame buildings
FR2558868A1 (en) Method for constructing walls of buildings or of other structures, and shuttering unit for its implementation
EP2489809B1 (en) Method for manufacturing a structural element and elements thus manufactured
EP0004998A2 (en) Construction frame
EP4124692B1 (en) Movable wall with concrete framework
FR2707683A1 (en) Internally cavitied structural block intended to receive a hardening (curable) grout
EP4092215A1 (en) Frame for connection of a wall with built-in formwork
EP1784544A1 (en) Load-bearing structure for buildings and method for construction of a load-bearing structure
FR2474083A1 (en) Pre-fabricated reinforced beam for floors in building renovation - has overlapping vertical stirrups to increase I-section of reinforcing bars
FR3133866A3 (en) Method of constructing a wooden frame house
FR2898918A1 (en) Edifice for use as e.g. private home, has floor, walls and roof supported by assembly of stringers and columns which are constituted by ladders, where each ladder comprises posts assembled by horizontal cross bars and diagonal cross bars
FR2786214A1 (en) SET OF HOLLOW CONSTRUCTION BLOCKS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19860929

17Q First examination report despatched

Effective date: 19880701

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 72858

Country of ref document: AT

Date of ref document: 19920315

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3485525

Country of ref document: DE

Date of ref document: 19920402

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 84201602.4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980430

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981109

EUG Se: european patent has lapsed

Ref document number: 84201602.4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010928

Year of fee payment: 18

Ref country code: FR

Payment date: 20010928

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20011009

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20011016

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20011019

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20011109

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011126

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011129

Year of fee payment: 18

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021108

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021108

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

BERE Be: lapsed

Owner name: *SISMO INTERNATIONAL P.V.B.A.

Effective date: 20021130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030603

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST