EP0166703B1 - Heizkessel - Google Patents

Heizkessel Download PDF

Info

Publication number
EP0166703B1
EP0166703B1 EP19850850114 EP85850114A EP0166703B1 EP 0166703 B1 EP0166703 B1 EP 0166703B1 EP 19850850114 EP19850850114 EP 19850850114 EP 85850114 A EP85850114 A EP 85850114A EP 0166703 B1 EP0166703 B1 EP 0166703B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
flue gases
space
boiler
flue gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19850850114
Other languages
English (en)
French (fr)
Other versions
EP0166703A3 (en
EP0166703A2 (de
Inventor
Erick Arne Thuvander
Jan Evert Marten Johansson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENERTECH VAERME AKTIEBOLAG
Original Assignee
Enertech Varme AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enertech Varme AB filed Critical Enertech Varme AB
Priority to AT85850114T priority Critical patent/ATE37441T1/de
Priority to DK146485A priority patent/DK160584B/da
Publication of EP0166703A2 publication Critical patent/EP0166703A2/de
Publication of EP0166703A3 publication Critical patent/EP0166703A3/de
Application granted granted Critical
Publication of EP0166703B1 publication Critical patent/EP0166703B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • F24H1/26Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body
    • F24H1/263Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body with a dry-wall combustion chamber

Definitions

  • the present invention relates to a boiler which is primarily intended for single-family houses and smaller apartment buildings and is preferably heated with liquid or gaseous fuels.
  • the invention relates to an improvement of so-called low-temperature boilers with a combustion chamber of round cross-section, which is delimited by a first tubular jacket which extends inwards from the front wall of the boiler to a rear wall facing the front wall and delimiting the length of the combustion chamber, one Water storage device which surrounds the combustion chamber at its periphery and is delimited on the inside by a second tubular jacket which, together with the first-mentioned jacket, delimits a space which is annular in cross section and which is connected to the combustion chamber and a flue gas exhaust so that it is generated in the combustion chamber Flue gases flow through said space and thereby give off heat to the water storage tank before they leave the boiler through the flue gas outlet, the flue gases flowing along steering links provided in the space, which preferably comprise longitudinal profile elements of U-shaped cross-section, which are uniform around the Combustion chamber are distributed and connected to the water storage jacket to increase the area of this jacket absorbing the heat from the flue gases.
  • Boilers of this type have been available on the market for some time. In boiler designs where the flue gases flow in the above manner, the heat of the flue gases must be used as far as possible after they have left the combustion chamber and before they escape through the flue gas outlet. Experience has shown, however, that a desired reduction in the flue gas temperature during the flow through the boiler can cause certain condensation problems, especially in the lower, colder part of the boiler, and if this is not counteracted in a constructive manner, the boiler will not work properly. In addition, corrosion damage can occur on those jacket parts where acidic condensate is precipitated due to a too low boiler temperature.
  • DE-A-2 613 186 describes a boiler of the above-mentioned type.
  • U-profiles are provided to a certain extent, which form a plurality of longitudinal, parallel channels, all at their front ends are directly connected to the combustion chamber, while their rear ends open into an outlet chamber connected to the flue gas outlet behind the combustion chamber.
  • the flue gases from the combustion chamber can thus flow with uniform distribution, seen in the circumferential direction, in a single pass through the room to this outlet chamber, and since the flue gas flow running through the room has the same temperature as the flue gas flow running below, both above and below emitted an equal amount of heat below.
  • FR-A-1 316 206 shows a heater of a similar design. There are significant differences between this heater and the boiler of the type mentioned at the outset. It is a heater for the flow of a liquid or a gas, specifically through a container 20.
  • the combustion chamber also extends only partially along the container 20 , in direct contact with this. There is therefore no annular space arranged between the combustion chamber and the container. Therefore, no constructive measures have been taken to counteract uneven heat transfers at different boiler heights.
  • the flow through the individual Channels in the subject of this document means a completely uniform heat transfer to the container 20 in terms of vertical height. If, however, which is not the case, the container 20 would represent a water reservoir, it would be impossible with the device shown to avoid temperature differences at different boiler heights.
  • the invention is generally based on the object to provide a boiler of the type mentioned, which can work without difficulty with maximum utilization of the flue gas heat and thereby obtains a high boiler efficiency. More specifically, it is an object of the invention to provide a low-temperature boiler, in which a better thermal balance between the lower and upper parts of the boiler is achieved in operation, whereby the lower part of the water tank of the boiler receives a higher temperature than the boilers available on the market today , so that the condensation problems that occur especially with low-temperature boilers and the resulting corrosion phenomena are avoided.
  • 1 denotes the combustion chamber of the boiler, which is round, expediently circular cross section, which is delimited by a tubular jacket 2 made of refractory material.
  • the jacket extends from the front wall 3 of the boiler, which is formed with an insulated flap, which has a sheet metal cover 4 lying against the jacket end on the inside.
  • the burner 6 of the boiler extends through a hole 5 in the middle of the flap into the combustion chamber.
  • the combustion chamber jacket 2 is connected in the back of the boiler to a rear wall 7, which is also made of refractory material and delimits the entire space in which the flame and the flue gases from the burner 6 can spread.
  • a rear wall 7 which is also made of refractory material and delimits the entire space in which the flame and the flue gases from the burner 6 can spread.
  • the effective length of the combustion chamber is reduced by an end wall 8, which is detachably fastened to the jacket 2 shortly in front of the rear wall 7, for example with the aid of screw connections (at 9).
  • the effect of this detachable end wall on the heat absorption in the boiler is explained in more detail below.
  • the combustion chamber 1 is enclosed by the water reservoir 10 of the boiler, which is bounded on the inside by a second tubular jacket 11.
  • the casing 11 extends over the entire length of the combustion chamber casing 2 and is preferably concentric with it, such that the two casings leave a space 12 with an annular cross section between them.
  • the water reservoir is delimited radially outwards by an outer jacket 13, which is connected at its ends to the jacket 11 by means of annular end walls 14 and 15.
  • the end wall 15 is retracted a little from the front end of the jacket 11 in order to make room for insulation 16 on the front wall of the boiler.
  • the outer jacket 13 and the end wall 14 are also covered in a conventional manner with insulating material 17 which, as can be seen in FIG. 2, can fill the space inside the outer casing 18 of the boiler.
  • the space 12 between the jackets 2 and 11 should be in a known manner partly with the combustion chamber 1 and partly with a flue 19, which is located in the illustrated embodiment in the rear part of the boiler and connected to a chimney pipe 20, so that the space from the Flue gases can flow through the combustion chamber, and the flue gases can emit their heat to the water reservoir 10 before they escape through the chimney pipe.
  • the flue gas flow here runs axially along steering links that are inserted into the room and can consist in a known manner of longitudinal profile elements 21 U-shaped cross section. As can be seen from FIGS. 2-3, the profile elements can be distributed uniformly in the circumferential direction around the combustion chamber and have a radial extension which is the same or insignificantly shorter than the radial dimension between the jackets 2 and 11.
  • the outward-facing flanges of the profile members are preferably firmly connected to the water storage jacket 11 with the aid of longitudinal welding joints, so that the profile elements distribute and guide the flue gases axially and, in addition, significantly increase the heat-absorbing surface of this jacket and thus enable greatly improved heat transfer to the water storage device .
  • the profile elements 21 serve as a guide for the combustion chamber casing, so that it can easily be pulled out through the flap opening in the front wall 3 if necessary.
  • the connection between the combustion chamber 1 and the space 12 is designed according to the invention as a flue gas discharge opening 22 located at the bottom of the combustion chamber.
  • this is preferably formed as a recess in the open end 23 of the combustion chamber casing 2 closest to the front wall 3, but in another embodiment of the flue gas ducts one or more flue gas ducts can instead be drawn from the combustion chamber inside the boiler, on the Rear wall 7 or between this and the position of the opening 22 shown in FIG. 1 are executed.
  • each partition is preferably designed as an angle iron, which is connected with its one flange to the combustion chamber jacket, expediently welded, while the other flange follows the adjacent radial flange of one of the profile elements.
  • two such partitions 24 and 24 are provided, which extend along the lower boiler part and are drawn past the ends of the profile elements 21 to the front end 23 of the combustion chamber shell, ie to the sheet metal cover 4 of the front wall, as a result of which the these two partition walls formed channel A is separated both diagonally upwards to the sides and towards the front.
  • two upper partition walls 24 3 and 24 4 are provided, which are shorter than the first two partition walls and only extend to the ends of the profile elements 21, whereby a channel 25 is formed between each of these partition wall ends and the part of the sheet metal cover 4 in front of it . Together with the free spaces on both sides thereof around the combustion chamber jacket, these channels form a front deflection chamber 27 which comprises 2/3 of the jacket circumference.
  • the last two partition walls 24 3 and 24 4 are each connected to a radially directed plate 27 at the rear, so that the radially outer part 28 of each plate forms an extension of the partition wall to the rear.
  • the radially inner sheet metal parts 29 are connected at their edges to the back of the rear wall 7 of the combustion chamber and to one another, expediently to form a V, the tip of which is located at the height of the axis line of the combustion chamber.
  • the flue gas discharge 19 is arranged in the form of a pipe socket which is alternatively directed upwards, while a rear deflection chamber 31 for the flue gases is formed under the metal sheets.
  • this opening - as can best be seen in FIG. 2 - is given an extent in the circumferential direction which corresponds to that of the channel A, ie the side edges 32 of the opening can face the mutually facing edges 33 of the partitions 24 1 and 24 2 coincide.
  • Path 36 can take through the recesses 33 and between the profile elements 21 A in the channel A.
  • the more uniform temperature distribution in the boiler according to the invention is also facilitated in that the flue gases, after they have given off heat in channel A and continue to flow in channels B and B 2 of the two-part, second train, now have a lower temperature which corresponds to the heat requirement in the Side parts of the boiler is adapted, and that the flue gases, when they are at their lowest temperature, can flow in the third draft before the flue gas outlet along the uppermost part of the water reservoir, where the boiler water to be discharged through the riser 40 is naturally the hottest, and where than the heat requirement is the lowest.
  • the series connection of the flue gas channels ABC means that the problem of condensation in the lower parts of the flue gas space 12 is eliminated and that the boiler can therefore be operated at a temperature as low as 40 ° C. without risking corrosion in these parts .
  • the lower boiler temperature in turn leads to lower radiation losses to the environment.
  • the long flow path in the series-connected ducts means that the flue gas heat can be used to the maximum, which is reflected in the low flue gas temperature at the chimney and an efficiency of up to 96%.
  • the flue gas temperature may be below the lower limit critical for the chimney, due to the operating conditions, at which condensation occurs.
  • this disadvantage can be eliminated by the arrangement of the end wall 8 releasably inserted into the combustion chamber 1. If this wall is moved to the rear, that is closer to the fixed rear wall 7, or is removed so that the effective length of the combustion chamber becomes longer, flue gases from the burner 6, before they are deflected against the discharge opening 22, can produce more heat than before Release the upper rear part of the casing 2 to the colder gases which move to the chimney on the outside of the casing in the upper flue gas ducts. The latter flue gases are thus reheated to a higher temperature than if the wall 8 is inserted into the combustion chamber or is moved forward, since the part of the combustion chamber behind it cannot be reached by the flame and the flue gases by the burner.
  • the angle iron 24 1 - 4 which in the illustrated embodiment in the form of partitions divide the space 12 between the combustion chamber and the water reservoir into the four channels, can alternatively consist of the flanges on the four U-profiles 21, which are longitudinal in the embodiment extend the angle iron, the two lower U-profile flanges, which are to replace the angle iron 24 1 and 24 2 , must have the same length as the latter in order to To prevent flue gases from the combustion chamber from upstream to flow to the side channels B1 and B2. In order to avoid leakage between the channels, care must be taken to ensure that the U-profiles mentioned are as close as possible to the outside of the combustion chamber shell 2 and that a seal is also obtained on the front edge of the two sheets 28 provided at the rear.
  • the two channels B 1 and B 2 preferably enclose a circumferential angle with one another which has the same size as the circumferential angle of each of the remaining channels.
  • Channels A and C must therefore include an angle of 120 ° and each side channel an angle of 60 °.
  • the duct system comprises a duct C 'between the partition walls 41 and 41 3 which is connected in series with the duct B' and through which the flue gases flow again in the former direction along the shells 2 and 10, after which they go to the chimney.
  • the channels are to be designed with a circumferential angle of 120 ° so that the flow resistance in each channel is the same.
  • the invention is not limited to the arrangement shown here with four or three channels, which form three series-connected trains, but the number of channels and trains can also be larger. It is also possible to implement the invention and to take advantage of it by providing only two series ducts which cover the lower and upper part of the space between the combustion chamber and the water jacket.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

  • Die vorliegende Erfindung betrifft einen Heizkessel der in erster Linie für Einfamilienhäuser und kleinere Mehrfamilienhäuser bestimmt ist und vorzugsweise mit flüssigen oder gasförmigen Brennstoffen geheizt wird.
  • Die Erfindung bezieht sich genauer gesagt auf eine Verbesserung von sog. Niedertemperaturkesseln mit einer Brennkammer runden Querschnitts, der von einem ersten rohrförmigen Mantel begrenzt ist, der sich von der Kesselvorderwand nach innen zu einer der Vorderwand zugekehrten und die Länge der Brennkammer begrenzenden Rückwand erstreckt, einem Wasserspeicher, der die Brennkammer an ihrem Umfang umschliesst und nach innen von einem zweiten rohrförmigen Mantel begrenzt ist, der zusammen mit dem erst genannten Mantel einen im Querschnitt ringförmigen Raum abgrenzt, der mit der Brennkammer und einem Rauchgasabzug in Verbindung steht, damit in der Brennkammer erzeugte Rauchgase durch den genannten Raum strömen und dabei Wärme an den Wasserspeicher abgeben, bevor sie den Kessel durch den Rauchgasabzug verlassen, wobei die Rauchgase längs im Raum vorgesehener Lenkglieder strömen, die vorzugsweise längsverlaufende Profilelemente U-förmigen Querschnitts umfassen, welche gleichmässig rund um die Brennkammer verteilt und mit dem Wasserspeichermantel verbunden sind, um die die Wärme von den Rauchgasen aufnehmende Fläche dieses Mantels zu vergrössern.
  • Heizkessel dieses Typs sind seit einiger Zeit auf dem Markt erhältlich. Bei Kesselkonstruktionen, wo die Rauchgase in der obengenannten Weise strömen, will man die Wärme der Rauchgase, nachdem sie die Brennkammer verlassen haben und bevor sie durch den Rauchgasabzug entweichen, weitmöglichst ausnutzen können. Erfahrungsgemäß kann jedoch eine an sich erwünschte Herabsetzung der Rauchgastemperatur während der Strömung durch den Kessel gewisse Kondensationsprobleme hervorrufen, vor allem im unteren, kälteren Teil des Kessels, und falls diesem nicht in konstruktiver Hinsicht entgegengewirkt wird, so wird der Heizkessel nicht einwandfrei arbeiten. Ausserdem können an denjenigen Mantelteilen, wo infolge einer allzu niedrigen Kesseltemperatur, saures Kondensat ausgefällt wird, Korrosionsschäden entstehen.
  • Die DE-A-2 613 186 beschreibt einen Heizkessel der obengenannten Art. Im ringförmigen Raum zwischen der Brennkammer und dem Wasserspeicher sind hier in gewisser Weise angebrachte U-Profile vorgesehen, die eine Mehrzahl längsverlaufender, paralleler Kanäle bilden, die alle an ihren vorderen Enden direkt mit der Brennkammer in Verbindung stehen, während sie mit ihren hinteren Enden in eine an den Rauchgasabzug angeschlossene Austrittskammer hinter der Brennkammer münden. Die Rauchgase von der Brennkammer können somit mit gleichmässiger Verteilung, in Umfangsrichtung gesehen, in einem einzigen Zug durch den Raum zu dieser Austrittskammer strömen, und da die oben durch den Raum verlaufende Rauchgasströmung dieselbe Temperatur wie die unten verlaufende Rauchgasströmung hat, wird sowohl oben als auch unten eine gleich grosse Wärmemenge abgegeben. Im unteren Teil des Kessels, zu dem das gekühlte Rücklaufwasser vom Heizsystem geleitet wird, wird also im Betrieb eine niedrigere Temperatur als im oberen Kesselteil vorherrschen. Bei einem Heizkessel, in dem die Rauchgase in der in der Patentschrift genannten Weise strömen und den man zur Erhöhung des Wirkungsgrades in einer solchen Weise zu bemessen versucht, dass eine niedrige Schornsteintemperatur erhalten wird, ist es deshalb schwierig, unten am Wasserspeicher mantel Kondensationserscheinungen zu vermeiden, jedenfalls während der bei intermittierender Ölfeuerung oft vorkommenden Ingangsetzungszeiten. Diese Kondensationsprobleme bedeuten deshalb im praktischen Betrieb, dass die Möglichkeiten, mit einem solchen Kessel aus den Rauchgasen eine maximale Wärmemenge zu erhalten, stark begrenzt werden.
  • Ähnliche Verrichtungen zum Leiten der Rauchgase von einer Brennkammer sind in der DE-B-1 778 880 beschrieben. Auch hier sind im Raum innen im Wasserspeichermantel mehrere axial verlaufende Profile vorgesehen, welche parallele Rauchgaskanäle bilden, und es sind Ausfürungsbeispiele gezeigt, wo ein gewisser, geringer Rauchgasstrom zunächst in einer Richtung in einem solchen Kanal und dann in der entgegen gesetzten Richtung in einem benachbarten Kanal strömt, bevor der Rauchgasstrom an den Schornstein abgegeben wird. Wie beim obengenannten, bekannten Heizkessel sind keine konstruktive Maßnahmen ergriffen worden, um Temperaturunterschieden (Schichtung) auf verschiedenen Kesselhöhen entgegenzuwirken, und die hierdurch verursachten Probleme sind also auch hier nicht gelöst worden.
  • Der FR-A-1 316 206 ist ein Heizer ähnlicher Bauart zu entnehmen. Es bestehen doch wesentliche Unterschiede zwischen diesem Heizer und dem Heizkessel der eingangs erwähnten Art. So handelt es sich um einen Heizer zur Durchströmung von einer Flussigkeit oder einem Gas, und zwar durch einen Behälter 20. Die Brennkammer erstreckt sich auch nur teilweise längs des Behälters 20, in direktem Kontakt mit diesem. Es fehlt also ein zwischen Brennkammer und Behälter angeordneter ringförmiger Raum. Keine konstruktive Massnahmen sind deswegen ergriffen worden, um ungleichmässigen Wärmeübertragungen auf verschiedenen Kesselhöhen entgegenzuwirken. Die Strömungsführung durch die einzelnen Kanäle beim Gegenstand dieser Druckschrift bedeutet eine völlig gleichmässige Wärmeübertragung zum Behälter 20 im Hinblick auf die vertikale Höhe. Wenn nun - was jedoch nicht der Fall ist - der Behälter 20 einen Wasserspeicher darstellen würde, wäre es mit der gezeigten Vorrichtung unmöglich, Temperaturunterschieden auf verschiedenen Kesselhöhen zu vermeiden.
  • Der Erfindung liegt allgemein die Aufgabe zugrunde, einen Heizkessel des eingangs erwähnten Typs zu schaffen, der ohne Schwierigkeiten unter maximaler Ausnutzung der Rauchgaswärme arbeiten kann und hierdurch einen hohen Kesselwirkungsgrad erhält. Genauer gesagt ist es Aufgabe der Erfindung, einen Niedertemperaturkessel zu schaffen, bei dem im Betrieb ein besseres thermisches Gleichgewicht zwischen den unteren und oberen Kesselteilen erzielt wird, wodurch der untere Teil des Wasserspeichers des Kessels eine höhere Temperatur als die heute auf dem Markt erhältlichen Heizkessel erhält, so daß die vor allem bei Nedertemperaturkesseln auftretenden Kondensationsprobleme und dadurch hervorgerufenen Korrosionserscheinungen vermieden werden.
  • Insbesondere ist es Aufgabe der Erfindung, auf der Rauchgasseite eines Heizkessels des genannten Typs Mittel vorzusehen, die die Rauchgasströmung derart zu den verschiedenen Kesselteilen leiten, dass zwischen diesen Teilen eine günstigere Verteilung der Rauchgaswärme entsteht, wobei eine einfache Konstruktion und Fertigung dieser Mittel erstrebt ist.
  • Ausserdem ist es Aufgabe der Erfindung, einen Niederdruckkessel der genannten Art, welcher Mittel besitzt, die die Rauchgasströmung im Kessel in einer solchen Weise beeinflussen, daß die obengenannten, erstrebten Verbesserungen erzielt werden, auch mit Mitteln zu versehen, die die gesamte Wärmeaufnahme im Kessel in einer solchen Weise einregeln, daß die Temperatur der zum Schornstein abgehenden Rauchgase einen kritischen Wert nicht unterschreitet.
  • Diese Aufgaben werden erfindungsgemäß durch die in den Patentansprüchen genannten Merkmale des Heizkessels gelöst.
  • Die Erfindung ist im folgenden anhand der Zeichnung näher beschrieben. Es zeigen
    • Fig. 1 einen Längsschnitt durch den erfindungsgemässen Kessel,
    • Fig. 2 einen Querschnitt nach der Linie 11-11 in Fig. 1,
    • Fig. 3 in perspektivischer Ansicht die von den Rauchgasen bestrichenen Teile des Kessels gemäß Fig. 1 und 2, und
    • Fig. 4 einen Querschnitt entsprechend Fig. 2 des erfindungsgemässen Heizkessels in einer alternativen Ausführungsform.
  • Obgleich die Erfindung nicht ausschließlich für Niedertemperaturkessel bestimmt ist, die mit Öl oder Gas geheizt werden, sondern auch für andere Wärmeanlagen benutzt werden kann, ist im folgenden ein Heizkessel dieses Typs als eine bevorzugte Ausführungsform der Erfindung beschrieben.
  • In der Zeichnung bezeichnet 1 die Brennkammer des Heizkessels, welche runden, zweckdienlicherweise kreisförmigen Querschnitts ist, der von einem rohrförmigen Mantel 2 aus feuerfestem Werkstoff begrenzt ist. Der Mantel erstreckt sich von der Vorderwand 3 des Kessels, die mit einem isolierten Klappe ausgebildet ist, welche auf der Innenseite eine gegen das Mantelende anliegende Blechabdeckung 4 aufweist. Der Brenner 6 des Kessels erstreckt sich durch ein in der Mitte der Klappe aufgenommenes Loch 5 in die Brennkammer hinein.
  • Der Brennkammermantel 2 ist hinten im Kessel mit einer Rückwand 7 verbunden, die ebenfalls aus feuerfestem Werkstoff gefertigt ist und den gesamten Raum abgrenzt, in dem sich die Flamme und die Rauchgase vom Brenner 6 ausbreiten können. In der in der Zeichnung dargestellten Ausführungsform ist jedoch die wirksame Länge der Brennkammer durch eine Stirnwand 8 reduziert, die beispielsweise mit Hilfe von Schraubverbänden (bei 9) lösbar am Mantel 2 kurz vor der Rückwand 7 befestigt ist. Die Einwirkung dieser lösbaren Stirnwand auf die Wärmeaufnahme im Kessel ist im folgenden näher erläutert. Die Brennkammer 1 ist vom Wasserspeicher 10 des Kessels umschlossen, der nach innen von einem zweiten rohrförmigen Mantel 11 begrenzt ist. Der Mantel 11 erstreckt sich über die gesamte Länge des Brennkammermantels 2 und ist vorzugsweise mit diesem konzentrisch, derart, dass die beiden Mäntel zwischen sich einen im Querschnitt ringförmigen Raum 12 belassen. Radial nach aussen ist der Wasserspeicher von einem Aussenmantel 13 abgegrenzt, der an seinen Enden mit Hilfe von kreisringförmigen Stirnwänden 14 und 15 mit dem Mantel 11 verbunden ist. Wie aus Fig. 1 ersichtlich, ist die Stirnwand 15 ein Stück vom Vorderende des Mantels 11 zurückgezogen, um einer Isolierung 16 an der Kesselvorderwand Platz zu bereiten. Auch der Aussenmantel 13 und die Stirnwand 14 sind in herkömmlicher Weise mit Isolierstoff 17 abgedeckt, der wie aus Fig. 2 ersichtlich den Raum innerhalb der äusseren Abkleidung 18 des Kessels ausfüllen kann.
  • Der Raum 12 zwischen den Mänteln 2 und 11 soll in bekannter Weise teils mit der Brennkammer 1 und teils mit einem Rauchgasabzug 19 in Verbindung stehen, der im dargestellten Ausführungsbeispiel im hintersten Kesselteil gelegen und an ein Schornsteinrohr 20 angeschlossen ist, so daß der Raum von den Rauchgasen von der Brennkammer durchströmt werden kann, und die Rauchgase ihre Wärme an den Wasserspeicher 10 abgeben können, bevor sie durch das Schornsteinrohr entweichen. Der Rauchgasstrom verläuft hier axial längs Lenkglieder, die in den Raum eingesetzt sind und in bekannter Weise aus längsverlaufenden Profilelementen 21 U-förmigen Querschnitts bestehen können. Wie aus Fig. 2 - 3 ersichtlich, können die Profilelemente gleichmässig in Umfangrichtung um die Brennkammer verteilt sein und eine radiale Ausdehnung haben, die der radialen Abmessung zwischen den Mänteln 2 und 11 gleich oder unbedeutend kürzer ist. Die nach aussen gerichteten Flansche der Profilglieder sind vorzugsweise mit Hilfe von längsverlaufenden Schweissfugen fest mit dem Wasserspeichermantel 11 verbunden, so dass die Profilelemente die Rauchgase verteilen und axial lenken und ausserdem die wärmeaufnehmende Fläche dieses Mantels wesentlich vergrössern und somit eine stark verbesserte Wärmeübertragung an den Wasserspeicher ermöglichen. Ausserdem dienen die Profilelemente 21 dem Brennkammermantel als Führung, so dass dieser bei Bedarf leicht durch die Klappenöffnung in der Vorderwand 3 herausgezogen werden kann.
  • Die Verbindung zwischen der Brennkammer 1 und dem Raum 12 ist erfindungsgemäß als eine unten in der Brennkammer gelegene RauchgasAbleitungsöffnung 22 ausgebildet. Diese ist vorzugsweise wie im dargestellten Ausführungsbeispiel als eine Ausnehmung in dem der Vorderwand 3 am nächsten liegenden, offenen Ende 23 des Brennkammermantels 2 ausgebildet, jedoch kann bei einer anderen Ausführungsform der Rauchgaskanäle stattdessen ein oder mehrere Rauchgasabzüge von der Brennkammer im Inneren des Kessels, an der Rückwand 7 oder zwischen dieser und der in Fig. 1 gezeigten Lage der Öffnung 22 ausgeführt werden. Ferner ist es ein wichtiges Merkmal der Erfindung, daß der genannte Raum 12 Trennwände 24 besitzt, die sich in Querrichtung nach aussen vom Brennkammermantel 2 zum Wasserspeichermantel 11 erstrecken und in Längsrichtung vom einen Ende des Raums zum anderen verlaufen, so dass die Trennwände den Raum in voneinander getrennte, längsverlaufende Kanäle A, B und C unterteilen. Wie aus Fig. 1 - 3 ersichtlich, ist jede Trennwand vorzugsweise als ein Winkeleisen ausgeführt, das mit seinem einen Flansch mit dem Brennkammermantel verbunden, zweckmässigerweise verschweisst ist, während der andere Flansch dem benachbarten radialen Flansch eines der Profilelemente folgt. Im dargestellten Ausführungsbeispiel sind zwei solche Trennwände 24, und 24, vorgesehen, die sich längs des unteren Kesselteils erstrecken und an den Enden der Profilelemente 21 vorbei bis zum Vorderende 23 des Brennkammermantels, d. h. bis zur Blechabdeckung 4 der Vorderwand, gezogen sind, wodurch der zwischen diesen beiden Trennwänden gebildete Kanal A sowohl schräg nach oben nach den Seiten wie nach vorn dicht abgetrennt ist. Ferner sind zwei obere Trennwände 243 und 244 vorgesehen, welche kürzer sind als die beiden erstgenannten Trennwände und sich nur bis an die Enden der Profilelemente 21 heran erstrecken, wodurch zwischen jedem dieser Trennwandenden und dem davorliegenden Teil der Blechabdeckung 4 ein Kanal 25 gebildet wird. Diese Kanäle bilden zusammen mit den auf beiden Seiten davon liegenden, freien Räumen um den Brennkammermantel herum eine vordere Umlenkkammer 27, die 2/3 des Mantelumfangs umfasst.
  • Die beiden letztgenannten Trennwände 243 und 244 sind, wie am besten aus Fig. 3 ersichtlich, hinten an je ein radial gerichtetes Blech 27 angeschlossen, so dass der radial äussere Teil 28 jedes Blechs eine Verlängerung der Trennwand nach hinten bildet. Die radial inneren Blechteile 29 sind an ihren Kanten mit der Rückseite der Rückwand 7 der Brennkammer sowie miteinander verbunden, zweckdienlicherweise zu einem V, dessen Spitze in der Höhe der Achslinie der Brennnkammer gelegen ist.
  • In Verbindung mit dem von den Blechen 27 abgegrenzten oberen Raum 30 ist der Rauchgasabzug 19 in Form eines nach hinten alternativ nach oben gerichteten Rohrstutzens angeordnet, während unter den Blechen eine hintere Umlenkkammer 31 für die Rauchgase gebildet ist.
  • Um an der Ableitungsöffnung 22 günstige Strömungsverhältnisse zu schaffen, ist dieser Öffnung - wie am besten aus Fig. 2 ersichtlich - in Umfangrichtung eine Ausdehnung zu geben, die mit der des Kanals A übereinstimmt, d. h. die Seitenkanten 32 der Öffnung können mit den einander zugewandten Kanten 33 der Trennwände 241 und 242 zusammenfallen. Ferner ist es zweckdienlich, in den vorderen Enden der unten aus dem Kanal A herausragenden U-Profile 21A Ausnehmungen 34 in den Stegen der Profile vorzusehen. In dieser Weise wird, wie durch den Pfeil 35 angedeutet, ein gewisser, geringerer Teil der Rauchgasströmung von der Brennkammer nach vorn in Richtung gegen den untersten Teil der vorderwand 3 gezwungen werden und wird somit ganz vorn an der Stirnwand 5 im Wasserspeicher Wärme abgeben, während der Hauptanteil der Rauchgasströmung den kürzeren . Weg 36 durch die Ausnehmungen 33 und zwischen den Profilelementen 21A in den Kanal A hinein nehmen kann.
  • Durch die soeben beschriebene Anordnung auf der Rauchgasseite des Kessels wird sämtlicher bei der Verbrennung in der Brennkammer 1 erzeugter Rauch durch die Abzugsöffnung 22 abgehen, von der die Rauchgase in einem ersten Zug axial nach hinten durch den Kanal A strömen. Da die Rauchgastemperatur beim Eintritt in den Kanal dieselbe ist wie die Endtemperatur in der Brennkammer, werden diejenigen Kanalwände, die zum Wasserspeicher 10 gehören, d. h. der Teil des Mantels 11 zwischen den Trennwänden 241 und 242 und die daran angebrachten Profilelemente 21A, eine kräftige Wärmezufuhr erhalten, im Anfang des Kanals hauptsächlich in der Form einer Strahlung und dann mit einem zunehmenden Anteil von Konvektionswärme.
  • Wenn die Rauchgase die Umlenkkammer 31 hinter der Brennkammerwand 7 erreichen, werden sie von den den Weg nach oben gegen den Raum 10 sperrenden Blechen 27 gezwungen, sich in zwei Strömungen aufzuteilen, die eine auf der linken Kesselseite durch den Kanal B, und die andere auf der rechten Seite durch den Kanal B2. Die Rauchgase, die durch die Wärmeabgabe im unteren Kanal A etwas kühler geworden sind, strömen nun also in einem zweiten, sich vorwärts bewegenden Zug (der Pfeil 37 in Fig. 1), wobei die Rauchgastemperatur infolge der Wärmeaufnahme in denjenigen Flächen auf beiden Seiten des Wasserspeichermantels, die nun von den Rauchgasen bestrichen werden, weiter reduziert wird.
  • Wenn die Rauchgase am vorderen Teil des Raumes 12 zwischen der Brennkammer und dem Wasserspeicher angekommen sind, werden sie wieder gezwungen, ihre Richtung zu ändern, wobei sie von den Enden der Profilelemente 21 links und rechts aufwärts durch die Umlenkkammer 26 an den Enden der Trennwände 243 und 244 vorbei und zwischen die Flansche der zum Kanal 111 (die Pfeile 38 in Fig. 1 und 3) gehörenden Profilelemente hineinströmen. In diesem dritten Zug, der sich also rückwärts zwischen den Mänteln 2 und 11 bewegt und die gesamte Rauchgasmenge des Kessels umfaßt, wird der weitere, gewinnbare Teil der Rauchgaswärme an den oberen Teil des Wasserspeichermantels 11 abgegeben, wonach die Rauchgase über den Raum 30 an der Oberseite der Bleche 27 und den Rauchgasabzug 19 zum Schornsteinrohr 20 geleitet werden.
  • Es leuchtet ein, dass der erfindungsgemässe Heizkessel im Vergleich mit herkömmlichen Kesseln, in denen der Oberteil des Wasserspeichers ebenso viel Wärme wie der untere Teil aufnimmt, wobei sich das Kesselwasser "schichten" kann und ganz unten merkbar kälter wird, mit einer wesentlich gleichmässigeren Temperatur des Kesselwassers arbeiten wird, indem der Wasserspeicher, durch den die Rauchgase im ersten Zug im Kanal A strömen, Wärme aufnimmt, während die Rauchgase in diesem Teil am heissesten sind und also eine grössere Wärmemenge als bei herkömmlichen Kesseln abgeben. In dieser Weise wird also der infolge des abwärts aus der Rücklaufleitung 39 strömenden Wassers auftretende Wärmeabfall ausgeglichen, gleichzeitig wie der Neigung des erwärmten Wassers, im Wasserspeicher hoch zu steigen, entgegengewirkt wird. Die gleichmässigere Temperaturverteilung im erfindungsgemässen Heizkessel wird auch dadurch erleichtert, daß die Rauchgase, nachdem sie im Kanal A Wärme abgegeben haben und in den Kanälen B, und B2 des zweiteiligen, zweiten Zugs weiterströmen, nun eine niedrigere Temperatur aufweisen, die dem Wärmebedarf in den Seitenteilen des Kessels angepaßt ist, und daß die Rauchgase, wenn sie ihre niedrigste Temperatur aufweisen, im dritten Zug vor dem Rauchgasabzug längs des obersten Teils des Wasserspeichers strömen können, wo das durch die Steigleitung 40 abzuleitende Kesselwasser aus natürlichen Gründe am heissesten ist, und wo als der Wärmebedarf am niedrigsten ist.
  • Die Reihenschaltung der Rauchgaskanäle A-B-C führt dazu, dass das Probleme der Kondensaterscheinungen in den unteren Teilen des Rauchgasraumes 12 beseitigt wird, und dass man deshalb den Kessel bei einer so niedrigen Temperatur wie 40°C arbeiten lassen kann, ohne in diesen Teilen eine Korrosion zu riskieren. Die niedrigere Kesseltemperatur führt ihrerseits zu niedrigeren Strahlungsverlusten an die Umgebung. Gleichzeitig führt der lange Strömungsweg in den reihengeschalteten Kanälen dazu, dass die Rauchgaswärme maximal ausgenutzt werden kann, was durch eine niedrige Rauchgastemperatur an den Schornstein und einen Wirkungsgrad von bis zu 96 % zum Ausdruck kommt.
  • In gewissen Anlagen kann jedoch infolge der Betriebsverhältnisse die Rauchgastemperatur unter der für den Schornstein kritischen, unteren Grenze zu liegen kommen, bei der Kondensation eintritt. Dieser Nachteil kann gemäß einem besonderen Merkmal der vorliegenden Erfindung durch die Anordnung der lösbar in die Brennkammer 1 eingesetzten Stirnwand 8 beseitigt werden. Falls diese Wand nach hinten, also näher an die feste Rückwand 7 heran verlegt oder weggenommen wird, so daß die wirksame Länge der Brennkammer grösser wird, können Rauchgase vom Brenner 6, bevor sie gegen die Ableitungsöffnung 22 umgelenkt werden, mehr Wärme als bisher durch den hinteren oberen Teil des Mantels 2 an die kälteren Gase abgeben, die sich auf der Aussenseite des Mantels in den oberen Rauchgaskanälen zum Schornstein bewegen. Die letztgenannten Rauchgase werden also auf eine höhere Temperatur wiedererhitzt, als wenn die Wand 8 in die Brennkammer eingesetzt oder darin nach vorn versetzt wird, da ja der dahinterliegende Teil der Brennkammer nicht von der Flamme und den Rauchgasen vom Brenner erreicht werden kann.
  • Obgleich es vorzuziehen ist, die Ableitungsöffnung 22 im Vorderteil des Kessels und den Rauchgasabzug hinten anzubringen, ist es durchaus möglich, in einer umgekehrten Lage die Rauchgaskanäle in der nun beschriebenen Weise anzubringen, so dass die Rauchgase stattdessen sowohl im ersten als auch im dritten Zug im Kessel vorwärts strömen.
  • Die Winkeleisen 241 - 4, die im dargestellten Ausführungsbeispiel in der Form von Trennwänden den Raum 12 zwischen der Brennkammer und dem Wasserspeicher in die vier Kanäle unterteilen, können alternativ aus den Flanschen auf den vier U-Profilen 21 bestehen, die sich im Ausführungsbeispiel längs der Winkeleisen erstrecken, wobei die beiden unteren U-Profilflansche, welche also die Winkeleisen 241 und 242 ersetzen sollen, dieselbe Länge wie die letzteren haben müssen, um die Rauchgase von der Brennkammer daran zu hindern, aufwärts zu den Seitenkanälen B1 und B2 zu strömen. Um eine Leckage zwischen den Kanälen zu vermeiden, ist dafür zu sorgen, dass sich die genannten U-Profile so dicht wie möglich gegen die Aussenseite des Brennkammermantels 2 anschliessen, und daß auch an der Vorderkante der beiden hinten vorgesehenen Bleche 28 eine Abdichtung erhalten wird.
  • Zur Vermeidung unnötiger Druckgefälle in der Ausführungsform gemäß Fig. 1 - 3 schliessen die beiden Kanäle B1 und B2 vorzugsweise einen Umfangwinkel miteinander ein, welcher die gleiche Grösse hat wie der Umfangwinkel jeder der restlichen Kanäle. Die Kanäle A und C müssen also je einen Winkel von 120° und jeder Seitenkanal einen Winkel von 60° einschliessen.
  • In der in Fig. 4 schematisch dargestellten, alternativen Ausführungsform sind im Raum 12 zwischen den Brennkammer- und Wassermänteln 2 bzw. 11 nur drei Trennwände 411 - 3 angebracht. Die beiden unteren Trennwände 411 und 412 trennen hier einen unteren Kanal A' ab, der in Analogie mit dem vorhergehenden mit der Brennkammer 1 durch eine Ableitungssöffnung 22' in Verbindung steht und längs dem die Rauchgase des ersten Zuges in Richtung gegen dasjenige Ende strömen, wo der Rauchgasabzug 19' gelegen ist. Oberhalb und links vom Kanal A' ist zwischen den Trennwänden 412 und 413 ein Seitenkanal B' gebildet, der über eine Umlenkkammer im genannten Ende unterhalb und links von den V-gestellten Blechen 27' mit dem Kanal A' reihengeschaltet ist, um die Rauchgase in einem zweiten Zug in der entgegengesetzten Richtung zu lenken. Schliesslich umfasst das Kanalsystem einen Kanal C' zwischen den Trennwänden 41 und 413 der mit dem Kanal B' reihengeschaltet ist und durch den die Rauchgase erneut in der erstgenannten Richtung längs der Mäntel 2 und 10 strömen, wonach sie zum Schornstein abgehen. Die Kanäle sind mit einem Umfangwinkel von 120° auszubilden, so daß der Strömungswiderstand in jedem Kanal derselbe wird.
  • In Analogie mit dem vorhergehenden Ausführungsbeispiel erfolgt zum unteren Teil des Wasserspeichers 10 eine kräftige Wärmezufuhr durch das Wassermantelsegment zwischen den Trennwänden 411 und 412 während ein kleinerer Teil der Rauchgaswärme durch das Segment im Kanal B' und der Rest der gewonnenen Rauchgaswärme vom dritten Mantelsegment des Kanals C' an das Kesselwasser übertragen werden.
  • Die Erfindung ist nicht auf die hier gezeigte Anordnung mit vier bzw. drei Kanälen begrenzt, die drei reihengeschaltete Züge bilden, sondern die Anzahl der Kanäle und Züge kann auch grösser sein. Es ist auch möglich, die Erfindung zu verwirklichen und die durch sie gebotenen Vorteile auszunutzen, indem man nur zwei reihengeschaltete Kanäle vorsieht, die den unteren bzw. oberen Teil des Raumes zwischen der Brennkammer und dem Wassermantel umfassen.
  • Aus Obigem geht hervor, dass die Anordnung der reihengeschalteten Rauchgaskanäle gemäß der Erfindung und die hierdurch erzielten Vorteile an sich nicht voraussetzen, daß die Kanäle getrennte Glieder in Form von beispielsweise den in Fig. 1 - 3 gezeigten Profilelementen 21 aufweisen, die den Rauchgasstrom lenken und weiter aufteilen, deren Hauptaufgabe es aber ist, die Wärmeaufnahme von den Rauchgasen zu verbessern. In denjenigen Fällen, wo diese Wärmeaufnahme trotzdem befriedigend ist, kann man - wie in der Ausführungsform gemäss Fig. 4- solche besonderen Glieder entbehren und die die Rauchgaskanäle voneinander abgrenzenden Trennwände die Rolle als lenkende Glieder übernehmen lassen.

Claims (7)

1. Heizkessel mit einer Brennkammer (1) runden Querschnitts, die von einem ersten, rohrförmigen Mantel (2) abgegrenzt ist, der sich von der Vorderwand (3) des Kessels zu einer Rückwand (7) erstreckt, die der Vorderwand zugekehrt ist und die Länge der Brennkammer begrenzt, einem Wasserspeicher (10), der die Brennkammer an ihrem Umfang umschließt und nach innen von einem zweiten rohrförmigen Mantel (11) abgegrenzt ist, der zusammen mit dem ersten Mantel einen im Querschnitt ringförmigen Raum (12) abgrenzt, der mit der Brennkammer und einem Rauchgasabzug (19) in Verbindung steht, damit die in der Brennkammer erzeugten Rauchgase durch den genannten Raum strömen und dabei Wärme an den Wasserspeicher abgeben, bevor sie durch den Rauchgasabzug vom Kessel entweichen, wobei die Rauchgase längs Lenkgliedern im Raum strömen, die vorzugsweise längsverlaufende Profilelemente (21) U-förmigen Querschnitts umfassen, welche gleichmässig rund um die Brennkammer verteilt und mit dem Wasserspeichermantel (11) verbunden sind, um dessen die Wärme von den Rauchgasen aufnehmende Fläche zu vergrössern, dadurch gekennzeichnet, dass der genannte Raum (12) durch Trennwände (24) unterteilt ist, die sich in Querrichtung vom Brennkammermantel (2) zum Wasserspeichermantel (11) erstrecken und in Längsrichtung vom einen Ende des Raumes zum anderen verlaufen, derart, dass zwischen der Brennkammer (1) und dem Wasserspeicher (10) von den Trennwänden (24) getrennte, längsverlaufende Strömungskanäle (A, B, C) gebildet werden, die die genannten Lenkglieder umfassen, vorzugsweise als eine in jedem Kanal angeordnete Gruppe von Profilelementen (21), dass die Kanäle in einer Reihenschaltung miteinander verbunden sind, die von einer unten in der Brennkammer liegenden Rauchgasableitungsöffnung (22) ausgehen und in den Rauchgasabzug (19) münden, wobei die heissen, von der Brennkammer (1) kommenden Rauchgase in einem ersten Zug (in A) ausschliesslich Wärme an einen unteren Teil des Wasserspeichers (10) abgeben, wonach die in dieser Weise abgekühlten Rauchgase in darauffolgenden Zügen (in B - C) weitere Wärme an die restlichen Teile des Wasserspeichers abgeben.
2. Heizkessel nach Anspruch 1, dadurch gekennzeichnet, dass die Kanäle (A, B, C) die von der Brennkammer (1) durch die Ableitungsöffnung (22) kommenden Rauchgase zuerst in Richtung nach hinten an der Rückwand (7) vorbei und von dort in entgegengesetzter Richtung zur Vorderwand (3) und dann schliesslich wieder in Richtung nach hinten zu einem sich an den Rauchgasabzug (19) anschliessenden Raum (30) leiten.
3. Heizkessel nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Raum (12) in vier Strömungskanäle unterteilt ist, und zwar einen unteren Kanal (A) für den ersten Zug, der vorzugsweise 1/3 der Querschnittsfläche des Raumes umschliesst, zwei Seitenkanäle (B), die auf je einer Seite der Brennkammer (1) und oberhalb des unteren Kanals (A) liegen sowie je mittels einer ersten Umlenkkammer (26) an dem am weitesten von der Ableitungsöffnung (20) liegenden Brennkammerende (7) an den unteren Kanal angeschlossen sind, um die Rauchgase in einen zweiten, zweiteiligen Zug in Richtung gegen das andere Brennkammerende (23) zu leiten, wo eine zweite Umlenkkammer (31) vorgesehen ist, wobei jeder Seitenkanal (B) vorzugsweise 1/6 der Querschnittsfläche des Raumes umschliesst, sowie einen oberen Kanal (C), der zwischen und oberhalb der beiden Seitenkanäle (B) gelegen ist, und an diese mittels der zweiten Umlenkkammer (31) angeschlossen ist, um die Rauchgase in einem dritten Zug zurück zum erstgenannten Brennkammerende (7) zu leiten, von dem sie durch den Rauchgasabzug (19) abgegeben werden, wobei der obere Kanal (C) vorzugsweise das restliche 1/3 der Querschnittsfläche des Raumes umschließt.
4. Heizkessel nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Ableitungsöffnung (22) in dem der Vorderwand (3) am nächsten liegenden Teil des Brennkammermantels (2) ausgebildet ist, so dass die in der Brennkammer erzeugten Rauchgase, bevor sie von dieser abgeleitet werden, gezwungen sind, längs der Innenseite des Brennkammermantels zur Vorderwand zurückzuströmen und Wärme an die auf der Aussenseite strömenden Rauchgase abzugeben, und dass eine vor der Rückwand (7) in die Brennkammer (1) einsetzbare oder daraus herausnehmbare Stirnwand (8) vorgesehen ist, um durch Kürzung bzw. Verlängerung der von den Rauchgasen bestrichenen Innenseite der Brennkammer (1) die Temperatur der Rauchgase im letzten Zug herabzusetzen bzw. zu erhöhen.
5. Heizkessel nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, dass die Ableitungsöffnung (22) von einer im einen Ende (23) des Brennkammermantels (2) vorgesehenen Ausnehmung gebildet ist, deren Breite dem Abstand zwischen den beiden Trennwänden (241 2) hauptsächlich gleich ist, welche beiden Trennwände den an die Ableitungsöffnung angeschlossenen Kanal (A) abgrenzen und an das genannte Ende des Brennkammermantels herangezogen sind.
6. Heizkessel nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, dass die Trennwände (243, 4), welche den Kanal (C) abgrenzen, in dem die Rauchgase im letzten Zug zum Rauchgasabzug (19) strömen, in der entgegengesetzten Richtung in einem Abstand vom Ende (23) des Brennkammermantels enden, so dass hier ein freier Durchlauf (25) gebildet wird, durch den die Rauchgase vom vorhergehenden Zug umgelenkt und in den Kanal eingeführt werden.
7. Heizkessel nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der genannte, an den Rauchgasabzug (19) anchliessende Raum (30) hinter der Rückwand (7) gelegen und nach unten von zwei radial gerichteten Blechen (27) abgegrenzt ist, deren radial äussere Teile (28) in die beiden Trennwände (243,4) übergehen, zwischen denen die Rauchgase rückwärts zum Raum (30) geleitet werden, während die radial inneren Teile (29) der Bleche V-förmig miteinander verbunden und kantenweise an der Rückwand (7) befestigt sind.
EP19850850114 1984-03-30 1985-03-29 Heizkessel Expired EP0166703B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AT85850114T ATE37441T1 (de) 1984-03-30 1985-03-29 Heizkessel.
DK146485A DK160584B (da) 1984-03-30 1985-04-01 Varmekedel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE8401755A SE441778B (sv) 1984-03-30 1984-03-30 Vermepanna med ett cylindriskt vattenmagasin
SE8401755 1984-03-30

Publications (3)

Publication Number Publication Date
EP0166703A2 EP0166703A2 (de) 1986-01-02
EP0166703A3 EP0166703A3 (en) 1986-06-11
EP0166703B1 true EP0166703B1 (de) 1988-09-21

Family

ID=20355357

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19850850114 Expired EP0166703B1 (de) 1984-03-30 1985-03-29 Heizkessel

Country Status (6)

Country Link
EP (1) EP0166703B1 (de)
DE (2) DE3508936A1 (de)
DK (1) DK140785A (de)
FR (1) FR2562215A1 (de)
NO (2) NO851300L (de)
SE (1) SE441778B (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3546265A1 (de) * 1985-12-28 1987-07-02 Viessmann Hans Heizungskessel
DE3933680A1 (de) * 1989-10-09 1991-04-11 Werner Mueller Heizkessel fuer hausheizungen
DE3938090C1 (de) * 1989-11-16 1991-04-18 Viessmann Werke Gmbh & Co, 3559 Allendorf, De
EP0591563B1 (de) * 1991-04-04 1997-07-09 CAPITO GmbH & Co Verwaltungsgesellschaft Heizkessel
SE500326C2 (sv) * 1992-11-18 1994-06-06 Ctc Parca Ab Värmepanna med rökgasåterföring samt brännkammarenhet för sådan värmepanna
DE4418495C1 (de) * 1994-05-27 1995-05-11 Viessmann Werke Kg Dreizug-Heizkessel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1316206A (fr) * 1962-02-26 1963-01-25 Webasto Werk Baier Kg W Radiateur pour chauffage à circulation de combustible
SE341060B (de) * 1967-06-17 1971-12-13 Belleli & C S A S
DE2613186C3 (de) * 1976-03-27 1979-03-22 Hans 3559 Battenberg Viessmann Heizungskessel für flussige oder gasformige Brennstoffe
DE2852135A1 (de) * 1978-12-01 1980-06-12 Alfred Eisenschink Heizkessel-vorrichtung

Also Published As

Publication number Publication date
FR2562215A1 (fr) 1985-10-04
DK140785A (da) 1985-10-01
SE8401755D0 (sv) 1984-03-30
DK140785D0 (da) 1985-03-28
NO851300L (no) 1985-10-01
DE3508936A1 (de) 1985-10-10
SE441778B (sv) 1985-11-04
SE8401755L (de) 1985-10-01
EP0166703A3 (en) 1986-06-11
DE3565173D1 (en) 1988-10-27
EP0166703A2 (de) 1986-01-02
NO851299L (no) 1985-10-01

Similar Documents

Publication Publication Date Title
DE60308696T2 (de) Wärmetauscher für ein brennwertgerät mit doppelrohrbündel
EP2440855B1 (de) Gliederheizkessel
DE2349202A1 (de) Kessel fuer zentralheizungsanlagen
DE2536657C3 (de) Wärmeaustauscher zum Vorwärmen von Verbrennungsluft für insbesondere ölbeheizte Industrieöfen
DE1802196A1 (de) Brennereinheit fuer Heizkoerper
EP0166703B1 (de) Heizkessel
EP1984673B1 (de) Vorrichtung zum verbrennen organischer stoffe
DE2820832B2 (de) Wasserrohrkessel für eine Sammelheizungsanlage
DE1464490B2 (de) Im kernreaktor druckgehaeuse angeordneter waermetauscher
DE19961133C1 (de) Rauchgas-Wärmetauscher
EP0128463A2 (de) Raumheizgerät für Kleinräume
DE2521683C2 (de) Heizvorrichtung
DE874678C (de) Roehrengaserhitzer, insbesondere fuer feste Brennstoffe, vorzugsweise zur Verwendungbei zweistufigen Gasturbinenanlagen
DE2441706A1 (de) Heizkessel mit gusseisernen gerippten rohren
DE3205121C2 (de) Heizungskessel
DE202016001768U1 (de) Heizkassette und Wärmetauscheranordnung für eine solche
DE1464490C (de) Im Kernreaktor Druckgehause angeord neter Wärmetauscher
DE2239086A1 (de) Waermetauscher, insbesondere fuer durchlauferhitzer
EP0031571B1 (de) Heizungskessel
DE10158299A1 (de) Wasserrohrkessel
EP0591563B1 (de) Heizkessel
EP0079980B1 (de) Warmwasser-, Heisswasser- oder Dampfkessel mit Gas- oder Ölfeuerung
DE4340117C2 (de) Verfahren zur Beheizung von Backöfen, insbesondere Industriebacköfen und Backofen zur Durchführung des Verfahrens
DE3731916C2 (de)
LU85944A1 (de) Direktbefeuerter lufterhitzer mit heizaggregat fuer eine warmluftheizung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR LI SE

17P Request for examination filed

Effective date: 19860925

17Q First examination report despatched

Effective date: 19870225

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ENERTECH VAERME AKTIEBOLAG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19880921

REF Corresponds to:

Ref document number: 37441

Country of ref document: AT

Date of ref document: 19881015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3565173

Country of ref document: DE

Date of ref document: 19881027

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960126

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960313

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960328

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960417

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19970329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19970331

Ref country code: CH

Effective date: 19970331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19971202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST