EP0166228B1 - Installation pour la mise en oeuvre du procédé du moulage en moules pleins - Google Patents

Installation pour la mise en oeuvre du procédé du moulage en moules pleins Download PDF

Info

Publication number
EP0166228B1
EP0166228B1 EP85106440A EP85106440A EP0166228B1 EP 0166228 B1 EP0166228 B1 EP 0166228B1 EP 85106440 A EP85106440 A EP 85106440A EP 85106440 A EP85106440 A EP 85106440A EP 0166228 B1 EP0166228 B1 EP 0166228B1
Authority
EP
European Patent Office
Prior art keywords
moulding
base plate
boxes
molding
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85106440A
Other languages
German (de)
English (en)
Other versions
EP0166228A2 (fr
EP0166228A3 (en
Inventor
Fridolin Bissinger
Erich Krzyzanowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Isover G+H AG
Original Assignee
Gruenzweig und Hartmann und Glasfaser AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gruenzweig und Hartmann und Glasfaser AG filed Critical Gruenzweig und Hartmann und Glasfaser AG
Priority to AT85106440T priority Critical patent/ATE36476T1/de
Publication of EP0166228A2 publication Critical patent/EP0166228A2/fr
Publication of EP0166228A3 publication Critical patent/EP0166228A3/de
Application granted granted Critical
Publication of EP0166228B1 publication Critical patent/EP0166228B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C21/00Flasks; Accessories therefor
    • B22C21/01Flasks; Accessories therefor for vacuum-sealed moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C11/00Moulding machines characterised by the relative arrangement of the parts of same
    • B22C11/02Machines in which the moulds are moved during a cycle of successive operations
    • B22C11/04Machines in which the moulds are moved during a cycle of successive operations by a horizontal rotary table or carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • B22C9/046Use of patterns which are eliminated by the liquid metal in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D47/00Casting plants
    • B22D47/02Casting plants for both moulding and casting

Definitions

  • the invention relates to a device for carrying out the full mold casting process with several mold boxes, in which gasified models are surrounded by granular molding material under the influence of poured melt, which is loosened with compressed air when molding the models and when the castings are removed from the mold and solidified under vacuum during the casting process, wherein each molding space of the molding box is connected via these at least partially delimiting partition walls with chambers for the gaseous working media, and in which the molding box can be moved to a plurality of work stations forming a closed work system with a rotating, intermittently controlled means of transport.
  • Such a device is known from CH-A-524415.
  • the molding boxes used in this known device each have a one-piece base plate made of porous sintered metal, which divides the molding space of the molding box filled with molding material from an underlying prechamber, which can be acted upon alternately with compressed air or with a vacuum at the individual work stations.
  • a device for carrying out the full molding process in which a molding box provided with a gas-permeable base plate is used, in which the side walls are also designed to be gas-permeable.
  • the majority of the combustion gases generated during casting are to be removed via the gas-permeable side walls provided here, so that only small amounts of hot gases can get into the vacuum pump via the base plate.
  • the base plate made of sintered metal has a comparatively low flow resistance, so that the flow resistance of the compressed air which rises overall in the molding space is determined primarily by the flow resistance of the molding material. If the molding material is present at different bed heights in the molding space at the beginning of the compressed air supply, the imported compressed air searches for the path of least resistance, e.g. B. in the region of a depression of the surface of the molding material, while molding material accumulations in the molding space are no longer flowed through in a sufficient manner to form the fluidized bed. In addition, there are confusing flow conditions in the base plate as a result of locally different flow resistances, in particular after a long period of use, if, for example, deposits in the sintered material of the base plate cause gases to flow through them.
  • the invention comes in, which is based on the object of creating a device for carrying out the full mold casting process, with which it is possible to produce medium-sized castings, such as, for. B. cylinder heads of water-cooled four-cylinder automotive engines or cast grapes, largely automated economically to produce by the full mold casting process, at the same time a complete whirling of the molding material must be guaranteed when the compressed air is introduced even with a long period of operation.
  • each work step can be precisely defined at the individual work stations. Furthermore, there is no danger that the gas-permeable partition walls used in connection with the production of a fluidized bed will clog after a short time; the latter also means that the intensity of the loosening of the molding material remains precisely controllable in the long term, thus ensuring reliable automation.
  • This in turn has the advantage that the molding material can remain in the molding box after the casting has been removed from the mold, since it can be cooled in a simple manner at several workstations by blowing in compressed air again.
  • the mold boxes therefore do not have to be completely emptied as usual after demolding, so that it is sufficient to connect them stationary to the means of transport, i.e. an automatic tilting device for the mold boxes can be saved. It should also be emphasized that with a stationary arrangement, the dust that otherwise arises when the molding box is dumped is advantageously not produced here.
  • a suction device is provided for the partial removal of the molding material from the molding box.
  • a further significant improvement of the device according to the preamble of claim 4 takes place in that a perforated plate with a flow resistance which is preferably higher than the base plate is provided below the bottom plate of each molding box.
  • a perforated plate with a flow resistance which is preferably higher than the base plate is provided below the bottom plate of each molding box.
  • the device for carrying out the full molding process essentially consists of a rotary system serving as a means of transport 1, which forms a closed system in the sense of the work steps. It has a stand 3 resting on a base plate 2, on which a turntable 5 is rotatably mounted with a bearing ring 4. In the present example, nine molding boxes are stationary on the turntable 5 at the same distance, i. H. not fixed tiltable.
  • a drive shaft 7 of an electric motor 8 meshes with a non-rotatable ring gear 9 of the turntable 5.
  • the electric motor 8 the rotary movement of the turntable 5 is controlled intermittently by control means, not shown, in such a way that one Molding box 6 at the work stations labeled A to J in FIG. 1 makes timed stops.
  • the molding steps are carried out, i. H. Create a fluidized bed, then fill the remaining molding material into the molding box and finally pour.
  • the filling takes place with the aid of a filling device, not shown, which is symbolized by the arrow 10.
  • the work steps solidify, but the number can be expanded.
  • the step of demolding i.e. H. Whirling up the molding material and removing the casting, carried out, in which case the step of partially removing the molding material from the molding box also takes place here.
  • a suction device 11 symbolized by the arrow 11 is used, which can work in a known manner on the principle of a vacuum cleaner.
  • Each molding box 6 has a circular cross section and an inner molding space 12 for receiving the granular molding material 13, which in the present case consists of binder-free sand.
  • the molding material 13 is filled into the molding space 12 through an upper opening 14 and rests on the underside of the molding space 12 on a base plate 15 which forms a partition.
  • a pre-chamber 16 with a connection 17 for the supply of compressed air according to arrow 18 is provided below the molding space 12 or the base plate 15.
  • the compressed air flowing into the pre-chamber 16 is present on the underside of the base plate 15.
  • the base plate 15 is designed to be gas-permeable, so that the compressed air present penetrates through the base plate 15 into the mold space 12 and the mold space 12 there Swirl molding material 13, so that a fluidized or fluidized bed is formed.
  • the compressed air passes through the base plate 15, which is made of sintered metal, for example, when it forms the sole separation between the molding space 12 and the pre-chamber 16, in a very different local flow.
  • Such differences in the flow through the base plate 15 can result from locally different flow resistances of the sintered material, and in particular from locally different pouring heights of the molding material 13 in the molding space 12. Accumulations of the molding material 12 in the molding space 12 become due to the higher flow resistance of the compressed air only in one Fluidization no longer flows through sufficient intensity, so that the full formation of the fluidized bed is hindered.
  • a perforated plate 19 for example made of metal, is therefore arranged below the base plate 15 and has holes 20 for the passage of air.
  • the flow resistance of the perforated plate 19 with the holes 20 is relatively high overall; in any case higher than the flow resistance that is present in the base plate 15, which is made of sintered material, for example.
  • the perforated plate 19 thus forms the main flow resistance for the compressed air in the pre-chamber 16 and forms, so to speak, a throttle in front of which a relatively high supply pressure builds up over the surface of the perforated plate 19, which has a height of, for example, up to 0.5 MPa (5 bar) can have.
  • the supply pressure on the underside of the perforated plate 19 presses the compressed air through the holes 20 in discrete flows, which thus act in a similar manner to nozzles, so that the underside of the bottom plate 15 is flowed towards in the manner indicated by arrows 21 in FIG. 4. If the base plate 15 were now missing and the core flow directly into the molding material 13 according to arrows 21, this would result in a speed profile of the inflowing compressed air, as is illustrated in FIG. 4 by a dash-dotted line 22 and corresponding speed arrows 23.
  • the combination of base plate 15 / perforated plate 19 eliminates this disadvantage of so-called “bubbling”, and advantageously a uniform speed profile of the compressed air flowing into the molding material 13 is obtained, as is also shown in FIG. 4 with the dashed line 24 and corresponding speed arrows 25 .
  • the holes 20 provided in this connection have a diameter between approximately 2 and 6 mm, preferably between 3 and 5 mm and in the illustrated example case of 4 mm. They are at a mutual distance of several cm, preferably between 3 and 5 cm, in the example at a distance of 4 cm.
  • the considerable supply pressure lies in the antechamber 16, so that spacers 26 are provided for the rear support of the perforated plate 19, which are arranged in a grid-like manner in the example and thus form a flat-looking rear support for the perforated plate 19.
  • the spacers 26 arranged in a grid-like manner each delimit square chambers 27, a hole 20 of the perforated plate 19 being assigned to a chamber 27 in the center.
  • the fact that the spacers 26 largely seal the adjacent chambers 27 against one another ensures in particular that the compressed air per chamber 27 exits evenly through the base plate 15, so that the uniform flow profile 24 is obtained.
  • the molding material 13 located in the molding space 12 is fluidized in the manner described by compressed air supply according to arrow 18.
  • the molding material 13 behaves essentially like a liquid, so that a model made of expanded polystyrene, as is customary in full mold casting, can be introduced through the opening 14 easily and without damage into and from the fluidized molding material 13 complicated undercuts or the like is completely washed around.
  • the molding material 13 settles and surrounds all surfaces of the model, which is indicated at 28 in FIG. 2.
  • a vibrating device 29 can also be switched on, which sets the molding material in vibrations of a certain amplitude and frequency in order to further compress it, so that the molding material 13 follows the contours of the outer surfaces of the model 28 cleanly and tightly even with complicated shapes.
  • the combination of the formation of a fluidized bed, on the one hand, and a final shaking, on the other hand, ensures that even the most unfavorably lying surface areas are acted upon cleanly by the molding material, on the one hand, by the general upward movement of the molding material in the fluidizing bed and, on the other hand, by the compacting settling movement during shaking.
  • Liquid metal can then be poured onto the plastic of the model 28 in order to gasify it and to fill the mold cavity thus formed with solidified metal melt.
  • the molding material is placed under vacuum by suction, the suction also simultaneously evolving gases.
  • a suction connection 30, separate from the pre-chamber 16, is provided on the molding box 6, from which air and gases are extracted according to arrow 31.
  • the suction connection 30 opens into an annular space 32 designed as a chamber in the lower region of the molding box 6 adjacent to the base plate 15, so that the suction according to arrow 31 results in a flow direction in the molding material 13 which is directed downward from the region of the opening 14.
  • the annular space 32 is separated from the molding space 12 by a gas-permeable partition 33 such that no molding material 13 can penetrate into the annular space 32, but gases can be drawn off from the molding material 13.
  • the gas-permeable partition 33 is preferably designed as a so-called slotted perforated plate, the width of the slits being matched to the grain size of the molding material 13 in such a way that the diameter of the smallest grains of the molding material occurring is on the one hand significantly greater than the width of the slots, but on the other hand significantly below the length of the Slots.
  • the molding material 13 made of sand has a grain size of 0.3 to 0.5, so that a slot width of 0.2 mm is selected with a slot length of 4 mm.
  • Such slotted perforated plates are known for other purposes and are commercially available, so that it is not necessary to go into them in detail.
  • the circumferential wall of the mold space 12, designated as a whole by 34 is formed differently from a cylindrical shape.
  • the circumferential wall 34 has a maximum diameter or maximum width in an equatorial plane 35 and tapers both upwards and downwards from the equatorial plane 35 in the example.
  • a partition wall 36 designed as a circumferential ring.
  • This partition wall 36 like the partition wall 33, consists of a slotted perforated plate and delimits a chamber 37 which is pyramidal in cross section which a suction port 38 is provided.
  • the tapering of the molding box 6 downwards which results in the shape of a truncated cone with a circular cross section of the circumferential wall 34, favors the compression of the molding material 13, in particular under the action of the vibrating device 29, since the bevel of the circumferential wall 34 during the settling movement by the vibrating means an additional movement component of the Molding material in the direction of the vertical center axis of the molding material 12, designated 39.
  • the inclined formation of the circumferential wall 34 from the equatorial plane 35 upwards advantageously prevents any tendency of the molding material to rise, which is to be feared when, in particular, large-volume models are poured and metal of greater density underneath the upper sand layers, which are released by the model fills and thus exerts pressure on the sand.
  • Such a «tendency of the molding material to float effectively counteracts the frustoconical configuration of the peripheral wall 34 above the equatorial plane 35.
  • a cover plate 40 is shown in section in FIG. 3, which is used instead of the film that is usually used in order to favor the application of a vacuum.
  • the molding space 12 should expediently be filled up with molding material 13 up to the mark denoted by 42.
  • a molding box 6 is located in the work station A, the molding space 12 of which is already filled with molding material 13.
  • a model 28, consisting of a gasifiable foam, is now embedded in the molding material 13, while air flows into the mold space 12 from the pre-chamber 16, which is pressurized with compressed air, via the perforated plate 19 through the gas-permeable base plate 15, and slightly swirls the molding material 13.
  • This swirl effect which can be regulated by a control valve (not shown), brings the molding material 13 into a floating state, which allows the model 28 to be introduced into the molding material 13 with practically no resistance.
  • the molding material 13 is compressed by the vibrating device 29 attached to the side of the molding box 6. Then a cover plate 40 is placed on the molding material 13 and the pouring funnel 41 is placed on the model 28 and refilled with additional molding material up to level 42.
  • the rotary table 5 moves one work station further, so that the filled molding box 6 just described moves to work station B.
  • the dwell time serves to cool and solidify the cast molding.
  • the molding is demolded at work station D, this demolding being facilitated by swirling the molding material, as when molding the model 28.
  • the casting thus demolded can then be fed to a work table, also not shown, by means of a lifting magnet, not shown.
  • a separate cooling about a third of the hot molding material 13 is sucked off at the work station D with the aid of the suction device 11, a separate cooling. This extracted amount is symbolically represented in FIG. 2 by means of the double arrow 43.
  • the molding box 6 described in the introduction passes through several dwell times on the workstations E to J, where compressed air is blown in via the antechamber 16 in order to swirl the remaining molding material 13 located in the respective molding space 12, thus cooling the molding material to 40 to 50 ° C.
  • the molding box 6 then arriving from work station J to work station A with a mold space 12 filled only 2/3 of its height then goes through the same work steps as described at the beginning; only with the exception that after the molding of the model 28, the amount of molding material 13 removed at work station D is replenished, with the aid of the filling device 10, which is symbolically indicated in FIG. 2 by the double arrow 44.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Devices For Molds (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Claims (12)

1. Dispositif pour l'exécution du procédé de coulée en moules pleins comportant plusieurs châssis de moulage (6) dans lesquels des modèles (28) vaporisables sous l'effet de la matière fondue introduite par coulée sont entourés d'une matière de moulage granulaire (13) qui, lors du moulage des modèles et lors du démoulage des pièces coulées est aérée au moyen d'air comprimé et, lors du processus de coulée, est compactée par dépression, étant entendu que chaque espace de moulage (12) des châssis de moulage (16) est en communication, par l'intermédiaire de cloisons de séparation qui délimitent au moins partiellement cet espace de moulage, avec des chambres destinées aux agents de travail gazeux, et dans lequel, par un moyen de transport rotatif commandé par intermittence, les châssis de moulage sont déplacés dans plusieurs postes de travail formant une unité de travail fermée, caractérisé en ce que les châssis de moulage (6) sont reliés rigidement au moyen de transport (1) et que chaque châssis de moulage présente plusieurs cloisons de séparation perméables aux gaz (15, 33, 36) indépendantes les unes des autres, avec des chambres (16, 32, 37) respectives, disposées derrière ces cloisons, par l'intermédiaire desquelles l'espace de moulage (12) peut être sollicité séparément par de l'air comprimé et par une dépression dans des postes de travail (A à J) agencés de manière correspondante.
2. Dispositif suivant la revendication 1, caractérisé en ce qu'un dispositif de remplissage (10) pour le remplissage (44) du reste des châssis de moulage (6) est prévu au poste de travail de moulage (A).
3. Dispositif suivant la revendication 1 ou 2, caractérisé en ce qu'un dispositif aspirateur (11) destiné à prélever partiellement (43) la matière de moulage (13) d'un châssis de moulage (6) est prévu dans le poste de travail de démoulage (D).
4. Dispositif suivant l'une quelconque des revendications 1 à 3, comportant des châssis de moulage dont la plaque de fond a la forme d'une cloison de séparation perméable aux gaz qui délimite d'un côté une antichambre qui est pourvue d'un raccord pour l'alimentation d'air comprimé, caractérisé en ce qu'en dessous de la plaque de fond (15) est prévue une plaque perforée (19) présentant une résistance à l'écoulement qui est de préférence supérieure à celle de la plaque de fond (15).
5. Dispositif suivant la revendication 4, caractérisé en ce qu'entre la plaque perforée (19) et la plaque de fond (15) sont disposés des moyens d'entretoisement (26) qui ont la forme de lattes délimitant des chambres (27).
6. Dispositif suivant la revendication 5, caractérisé en ce que chaque chambre (27) comporte une perforation (20) qui lui est associée au moins approximativement en son centre.
7. Dispositif suivant l'une quelconque des revendications 1 à 6, caractérisé en ce que pour chaque châssis de moulage (6) est prévu un raccord d'aspiration (30) servant à produire une dépression dans la matière de moulage (13) et que la paroi périphérique (34) délimitant la matière de moulage (13) est formée dans la zone inférieure du châssis de moulage (6), voisine de la plaque de fond (15) d'une cloison de séparation perméable aux gaz et est en communication d'écoulement avec le raccord d'aspiration (30).
8. Dispositif suivant la revendication 7, caractérisé en ce que la cloison de séparation (33) perméable aux gaz a la forme d'une tôle perforée à fentes dans la zone de la paroi périphérique (34) du châssis de moulage.
9. Dispositif suivant la revendication 7 ou 8, caractérisé en ce que la plaque de fond (15) est faite d'une matière présentant une résistance à la chaleur relativement faible, comme une matière plastique frittée.
10. Dispositif suivant l'une quelconque des revendications 1 à 9, caractérisé en ce que la paroi périphérique (34) du châssis de moulage (6) entourant la matière de moulage présente une configuration allant en se rétrécissant vers le haut à partir d'un plan équatorial (35) disposé dans une zone située à la moitié de sa hauteur.
11. Dispositif suivant l'une quelconque des revendications 1 à 10, caractérisé en ce que la paroi périphérique (34) du châssis de moulage (6) encerclant la matière de moulage (13) présente une configuration allant en se rétrécissant vers le bas au départ d'un plan équatorial (35) disposé dans une zone située à la moitié de sa hauteur, en particulier dans le cas où l'on utilise un dispositif à secousses (29).
12. Dispositif suivant l'une quelconque des revendications 1 à 11, caractérisé en ce que chaque châssis de moulage (6) est en outre pourvu d'un raccord d'aspiration (38) pour la production d'une dépression dans la matière de moulage (13) et pour l'évacuation des gaz de combustion de cette matière de moulage, ce raccord s'ouvrant dans la zone du plan équatorial (35) dans une chambre (37) qui est délimitée, vers la matière de moulage (13), par une cloison de séparation (36) formant une couronne périphérique, faite d'une tôle perforée à fentes.
EP85106440A 1984-06-22 1985-05-24 Installation pour la mise en oeuvre du procédé du moulage en moules pleins Expired EP0166228B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85106440T ATE36476T1 (de) 1984-06-22 1985-05-24 Einrichtung fuer die durchfuehrung des vollformgiessverfahrens.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3423199 1984-06-22
DE3423199A DE3423199C1 (de) 1984-06-22 1984-06-22 Einrichtung fuer die Durchfuehrung des Vollformgiessverfahrens

Publications (3)

Publication Number Publication Date
EP0166228A2 EP0166228A2 (fr) 1986-01-02
EP0166228A3 EP0166228A3 (en) 1986-09-17
EP0166228B1 true EP0166228B1 (fr) 1988-08-17

Family

ID=6238976

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85106440A Expired EP0166228B1 (fr) 1984-06-22 1985-05-24 Installation pour la mise en oeuvre du procédé du moulage en moules pleins

Country Status (4)

Country Link
EP (1) EP0166228B1 (fr)
JP (1) JPS6114046A (fr)
AT (1) ATE36476T1 (fr)
DE (2) DE3423199C1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102078916A (zh) * 2010-12-29 2011-06-01 陈祥坤 一种注蜡机

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207532A (ja) * 1986-03-10 1987-09-11 Ube Ind Ltd 鋳造装置
DE3707467C1 (de) * 1987-03-09 1988-08-04 Schubert & Salzer Maschinen Vollformverfahren und -vorrichtung
US4736787B1 (en) * 1987-06-29 1999-11-16 Vulcan Engineering Co Lost foam handling system
JPH01202339A (ja) * 1988-02-03 1989-08-15 Morikawa Sangyo Kk 鋳物の鋳造方法及びそれに用いる装置
FR2645778B1 (fr) * 1989-04-18 1991-06-07 Renault Bac pour coulee a modele perdu
GB8913168D0 (en) * 1989-06-08 1989-07-26 Cook William Plc Foundry equipment
US5725044A (en) * 1994-08-30 1998-03-10 Hirokawa; Koji Casting method using a forming die
DE19949500B4 (de) * 1999-10-14 2007-07-05 Volkswagen Ag Verfahren zur Serienherstellung von Metallgußteilen mit dem Lost-Foam-Verfahren
CN104707970B (zh) * 2015-03-09 2017-01-11 江苏省沙钢钢铁研究院有限公司 一种生产母合金的真空浇铸系统
CN104923767A (zh) * 2015-06-30 2015-09-23 林怀敏 一种真空浇铸电加热砂箱
CN112008039B (zh) * 2020-08-26 2024-06-04 合肥天鹅制冷科技有限公司 一种用于蜡模成型后的液冷装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH334017A (de) * 1955-07-18 1958-11-15 Aluminium Ind Ag Masselgiessmaschine
DE1758521B1 (de) * 1968-06-19 1970-08-27 Gruenzweig & Hartmann Vorrichtung zur Durchfuehrung des Vollformgiessverfahrens
FR2071047A5 (fr) * 1969-12-16 1971-09-17 Pont A Mousson
CH524415A (de) * 1970-04-20 1972-06-30 Gruenzweig & Hartmann Einrichtung für die Durchführung des Vollformgiessverfahrens
FR2167458B1 (fr) * 1972-01-13 1976-01-16 Anisa Sa Fr

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102078916A (zh) * 2010-12-29 2011-06-01 陈祥坤 一种注蜡机
CN102078916B (zh) * 2010-12-29 2012-11-21 陈祥坤 一种注蜡机

Also Published As

Publication number Publication date
EP0166228A2 (fr) 1986-01-02
DE3423199C1 (de) 1985-02-21
EP0166228A3 (en) 1986-09-17
JPS6114046A (ja) 1986-01-22
ATE36476T1 (de) 1988-09-15
DE3564389D1 (en) 1988-09-22

Similar Documents

Publication Publication Date Title
EP1192040B1 (fr) Procede et dispositif de production d'un objet tridimensionnel
EP1381504B1 (fr) Procede pour deballer des corps moules inseres dans un materiau particulaire non lie
EP0166228B1 (fr) Installation pour la mise en oeuvre du procédé du moulage en moules pleins
DE60111190T2 (de) Verfahren und vorrichtung zur herstellung von gegossenen schaumkörpern
DE646937T1 (de) Verfahren zur Dauermagnet-Herstellung und Apparat zur Formierung eines grünen Kompakts.
DE2258461A1 (de) Giessverfahren
DE1961234B2 (de) Verfahren und Vorrichtung zum Verdichten von Gießereiformmassen
DE3507179C1 (de) Verfahren und Vorrichtung zur Herstellung von kastenlosen Giessformen
EP0281752B1 (fr) Moulage en moules pleins et dispositif
EP0062331A1 (fr) Procédé et dispositif de compactage pneumatique de sable de moulage
DE102016124387A1 (de) Baubox zur additiven Herstellung eines Formteils und Anordnung
DE3202395A1 (de) Verfahren und vorrichtung zum pneumatischen verdichten von formsand
DD238745A5 (de) Verfahren zur herstellung von formteilen
EP0995521B1 (fr) Machine à mouler pour fonderie, procédé et l'utilisation de la machine pour la production d'un moule en sable dans un chassis
DE2403199B2 (fr)
DE3301562C1 (de) Vorrichtung zum Herstellen von Betonsteinen
DE69500442T2 (de) Verfahren und Vorrichtung zur Formschalenherstellung
DE1076901B (de) Verfahren und Einrichtung zum Herstellen von Giessformen
DE10321532A1 (de) Verfahren und Formmaschine zur Herstellung kastengebundener Sandformen
DE3002702A1 (de) Vorrichtung an sandformmaschinen zum zufuehren des formsandes
DE2554414A1 (de) Verfahren und vorrichtung zum herstellen von sandgiessformen
DE4319078C2 (de) Verfahren und Formherstellungsmaschine zur Herstellung von Gußformen oder Gußformteilen aus Formsand
DE69101641T2 (de) Verfahren und Vorrichtung zum Entnehmen von Ziegeln aus Formkästen.
DE2830479A1 (de) Verfahren und vorrichtung zum fuellen einer form zur herstellung von formlingen aus beton o.dgl.
EP0126269B1 (fr) Procédé et dispositif pour la production de moules

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19861010

17Q First examination report despatched

Effective date: 19870226

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 36476

Country of ref document: AT

Date of ref document: 19880915

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3564389

Country of ref document: DE

Date of ref document: 19880922

ET Fr: translation filed
ITF It: translation for a ep patent filed
ITPR It: changes in ownership of a european patent

Owner name: CAMBIO RAGIONE SOCIALE;GRUENZWEIG + HARTMANN AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19890524

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890531

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890804

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19891030

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900531

Ref country code: CH

Effective date: 19900531

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910201