EP0153982B1 - Kolbenmaschine, insbesondere Kolbenpumpe - Google Patents

Kolbenmaschine, insbesondere Kolbenpumpe Download PDF

Info

Publication number
EP0153982B1
EP0153982B1 EP84108027A EP84108027A EP0153982B1 EP 0153982 B1 EP0153982 B1 EP 0153982B1 EP 84108027 A EP84108027 A EP 84108027A EP 84108027 A EP84108027 A EP 84108027A EP 0153982 B1 EP0153982 B1 EP 0153982B1
Authority
EP
European Patent Office
Prior art keywords
space
piston
pump
cylinder
lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP84108027A
Other languages
English (en)
French (fr)
Other versions
EP0153982A3 (en
EP0153982A2 (de
Inventor
Bernhard Frey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydrowatt Systems Ltd
Original Assignee
Hydrowatt Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydrowatt Systems Ltd filed Critical Hydrowatt Systems Ltd
Priority to AT84108027T priority Critical patent/ATE51683T1/de
Publication of EP0153982A2 publication Critical patent/EP0153982A2/de
Publication of EP0153982A3 publication Critical patent/EP0153982A3/de
Application granted granted Critical
Publication of EP0153982B1 publication Critical patent/EP0153982B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0408Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0439Supporting or guiding means for the pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • F04B43/084Machines, pumps, or pumping installations having flexible working members having tubular flexible members the tubular member being deformed by stretching or distortion

Definitions

  • the invention relates to a piston machine according to the preamble of claim 1.
  • a machine of this type designed as a piston pump is known from DE-A-2 554 733.
  • Piston machines of the above type generally have a comparatively high space requirement with regard to the usable stroke volume, because the stroke deformation of the tubular sealing member may only make up a fraction of the hose length due to the material-related limitation of the permanent alternating deformation.
  • the devices for supporting the elastically deformable sealing hose by means of pressure lubrication have a similar influence. There is therefore a particular need for this type of machine, due to its specific characteristics, to reduce the space required for the guiding and driving device of the piston-cylinder arrangement.
  • the frictional heat that arises in the area of the sliding guide of the piston and the sealing hose should have a low temperature gradient, i.e. can be dissipated to the outside through large contact areas.
  • the above-mentioned arrangement of known type is in need of improvement.
  • the object of the invention is therefore to provide a piston engine or driven machine which is distinguished by a comparatively short overall length of the piston-cylinder arrangement, including the adjacent parts of the drive device.
  • the inventive solution to this problem is characterized by the features specified in claim 1.
  • the subsequent design, encompassing the cylinder, of the drive member, for example a ram or the like which is conventional per se and which cooperates with an eccentric drive device makes it possible, with the same support and guide length, for this drive member, which oscillates in accordance with the working movement, to substantially shorten the overall length of the Piston-cylinder arrangement.
  • the easily possible, thin-walled design of the portion of the drive member encompassing the cylinder makes it possible to avoid a substantial increase in the diameter of the piston-cylinder arrangement.
  • the reduction in the overall length of the piston-cylinder arrangement is particularly noticeable in the case of star-shaped multi-cylinder arrangements, because this overall length reduces the overall diameter of the pump.
  • a pulsating secondary space results, corresponding to the oscillating working movement of the latter, which occurs in the case of conventional pistons with leakage liquid from the working space or in the case of hermetic sealing of the working space by means of the elastically deformable sealing hose with pressure lubrication support mentioned can fill the outflowing lubricant.
  • an advantageous development of the invention provides at least one compensating channel with a large cross-section between the pulsating secondary space and a pressure equalizing space.
  • a lubricant or conveying means storage space (in view of the removal of circulating lubricant or leakage conveying means from the working space) as a pressure compensation space for the pulsating secondary space.
  • a development of the invention based on the aforementioned aspects provides that the pulsating secondary space is connected to a space located at the end of the cylinder within the drive member and pulsating in accordance with the oscillating working movement by a throttle channel.
  • the pulsating space between the cylinder end and the drive member, into which the lubricant or the leakage liquid flowing out of the cylinder or from the sealing hose collects from the work space is used as a pump or auxiliary work space for the continuous discharge of the accumulating liquid, whereby the throttle channel limits the backflow of the liquid from the pressure-relieved adjoining room at the other end of the drive member to a small extent in a particularly simple manner.
  • the throttle channel thus acts like a check valve.
  • Another development of the invention relates to a combination with features which, in a different context, belong to the subject matter of EP patent application No. 80103359.8, which has now been granted (EP-B-21315).
  • Such a combination with the present invention features relates in particular to a circulating pressure lubrication, as can be used in particular for the lubrication and support of an elastically deformable sealing hose during its sliding movement on a support surface.
  • the one Pressure lubrication pump, a return collection chamber, a return pump and a supply chamber feeding the pressure lubrication pump this development of the invention is characterized by an overflow channel connecting the supply chamber to the return collection chamber with an adjustable or controllable actuator for limiting the flow from the supply chamber to the return line. Gathering room.
  • This design enables a safe filling and thus a trouble-free operation of the return pump and thus the maintenance of the lubricant pressure, which is essential for the overall operational safety, in a simple manner. This is particularly important in the case of high-pressure pumps with a lubricated sealing hose because failure of the lubrication on the support surface can very quickly result in damage to the sealing hose.
  • the drive device 10 of the pump according to FIG. 1 consists of a shaft 1 with an eccentric 2 coupled to a motor, not shown, on which a non-rotating, translationally rotating sliding piece 3 with a number of tangential pressure surfaces 4 corresponding to the number of cylinders - here for example five - is mounted .
  • a pressure surface is indicated in operative connection with a drive member 30 of a piston 20 which is connected to an elastically deformable sealing hose 22.
  • a coil spring 23 presses the piston 20 against the bottom portion 30b of the sleeve-shaped drive member 30 and sets the sealing hose under axial tension.
  • the sealing hose sits in the bore of a cylinder 25, with which it is firmly connected at the upper end, and thus hermetically seals the working space 24 formed in the hose interior.
  • This working space changes its volume in accordance with the oscillating movement of the drive member 30 and generates the pumping action in connection with check valves 26 and 27, which are connected to a delivery and suction channel 28.
  • the lubrication system of the pump is in the form of pressure circulation lubrication with a gear pressure lubrication pump 100, a return collecting space 120 surrounding the eccentric 3 of the drive device and with an annular storage space 110 concentrically surrounding the axis of rotation XX of the drive device and with one from the return collecting space 120 into the Storage pump 110 promoting return pump 105 is formed.
  • This design and arrangement of the storage space enables a particularly space-saving multi-cylinder pump construction with a symmetrical distribution of the connections to the individual cylinders over the circumference of the ring.
  • the inclusion of the storage space in the cylindrical housing of the star-shaped multi-cylinder arrangement also serves the same purpose.
  • the pressure lubrication pump 100 delivers from the storage space 110 via channels 103 and 104 and a filter 102 into an annular distributor channel 101, from where pressure channels 90 and 95 lead to the individual cylinders 25 with adjusting throttles 90a and 95a.
  • the pressurized lubricant from the channel 90 is supplied to support the sliding movement of the outer surface of the sealing hose 22 and flows in the axial direction of the cylinder (downwards according to FIG. 1) into a pulsating space 42 formed in the area of the lower piston and cylinder end .
  • This space stands over a throttle channel 45, which is designed as a gap space between the inner surface of the cylindrical section 30a of the drive member 30 and the outside of the cylinder 25, with a formed at the upper end of the cylindrical section 30a, also pulsating adjoining room 35 in connection.
  • the throttle channel 45 acts as a quasi check valve, into the adjoining space 35, so that the space 42 essentially acts as a low-pressure space for an undisturbed outflow of the lubricant from the gap between the sealing hose and the cylinder bore or support surface acts.
  • low pressure is also required in the adjoining room 35.
  • the latter is connected to the storage space 110 via a compensation channel 40 with a large cross section, which thus serves as a pressure compensation space.
  • the lubricant supplied via the channel 95 reaches the outer surface of the cylindrical section 30a of the drive member 30, where the latter is guided so as to be displaceable coaxially with the cylinder 25.
  • the lubricant then flows via lubrication channels 47 to the pressure surfaces 4 and further into the return collecting space 120. This lubricant circuit is thus also closed.
  • the return pump 105 draws in via a duct 115 from the lower part of the collecting space 120 and delivers via an ascending return duct 106 in the apex region 110a of the storage space 110. This results in an effective ventilation of the lubricant flow entering the storage space.
  • the suction space of the latter i.e. the lower part of the collecting space 120, with the storage space 110 connecting overflow channel 130 is provided, which prevents this area from being sucked empty.
  • An actuator is provided for limiting the overflow, for which an adjustable throttle 135a may be sufficient, for example.
  • an overflow control with a controllable valve 135 as an actuator and with a float 140 as a control device is provided. This allows the maintenance of an optimal filling level in the suction space of the return pump 105.
  • the sufficient filling of the return pump is particularly important also for the avoidance of foam formation, which would impair a reliable pressure circulation lubrication.
  • FIG. 2 The pressure circulation lubrication system of the pump is shown schematically in a clear form in FIG. 2, the essential functional elements being shown symbolically, but with the same reference numerals as in FIG. 1.
  • the avoidance of foam formation in the delivery system of the circulating pressure lubrication is essential for a perfect function.
  • This is particularly useful for the design of the rotor 105a of the return pump 105 shown in FIGS. 3 and 4 with a plurality of slots designed as storage spaces 105b, which are arranged in the manner of a radial centrifugal pump and extend over a radius difference with respect to the axis of rotation XX of the pump .
  • the lubricant in these storage spaces is subject to a separation between lubricant with a greater or lesser liquid content or, conversely, a lower and greater gas or foam content.
  • an outflow control opening 108 which extends over less than 180 °, with a suitable slowdown or throttling of the outflow from the pump, essentially only that part of the lubricant which has only a very low gas or foam content is expelled radially from the storage spaces 105b.
  • the stowage spaces then come into connection with an outflow control opening 109b which receives the gas or foam-rich part of the lubricant and leads back into the collecting space 120 via an outflow channel 109c, which is not shown in detail.
  • the outflow control openings 108 and 109b which, as shown in FIG. 3, likewise extend over an angle of substantially less than 180 °, the storage spaces 105b are closed at their outer ends by a housing inner surface 107, so that this Part of the circulation is available for separating the differently dense lubricant components without disturbance due to flow.
  • FIG. 4 Another mechanism that contributes to gas and foam cut-off within the rotor of the return pump is indicated in FIG. 4. Thereafter, a radial circular flow with a course indicated at A can be generated by means of a comparatively wide gap space 109a arranged axially next to the rotor 105a, which is shown here in a strongly distorting manner, which prevents the gas-poor lubricant from accumulating in the radially outer regions of the storage spaces 105b favored and possibly also a partial return of the foam accumulated in the radially inner storage space areas in the direction of the suction space of the pump.
  • a cooling device for the lubricant is accommodated within the annular lubricant storage space 110.
  • This cooling device essentially consists of a heat exchanger 210 which has a channel system 212 through which the working medium of the pump flows and which can be seen in detail in FIG. 6.
  • the flow of the working medium in this channel system is achieved by means of the feed pump 150 already mentioned, which is accommodated coaxially to the annular storage space 110 and with an axial overlap in its inner recess space 140.
  • the inflow side 160 of the pre-conveyor Pump 150 lies in the area of an axial end cover 155 of the pump housing, which is aligned with an end wall 230 closing off the storage space 110.
  • the prefeed pump is designed as an axial flow pump, the rotor of which is seated on the pump shaft 1 in the manner shown schematically in FIG. 5 and the outflow side 170 of which is connected to an annular channel 174 by radial channels 172. From the latter, axial branch ducts 176 (only one of these ducts is shown in FIG. 5) lead to the individual, pump-shaped pump cylinders (not shown in detail). In this way, the piston-cylinder arrangements of the pump receive the working fluid with a pre-pressure of, for example, a few atmospheres, which is sufficient for a safe filling in the suction stroke of the pistons.
  • Channel sections 178 which are lengthened at the rear connect the outflow side 170 of the pre-feed pump 150 to an annular channel 180 in a central, section-like section 232 of the end wall 230.
  • a radial channel 182 leads to an inflow distributor 216 of the heat exchanger which is inserted in the outer part of the end wall 230 210.
  • the inflow distributor arranged in the lower apex area of the storage space 110 From this inflow distributor arranged in the lower apex area of the storage space 110, the partial flow of the cool working medium branched off from the outflow side of the pre-feed pump passes via a channel system 212 of the heat exchanger 210, which can be seen in detail in FIG.
  • Outflow collector 218 arranged diametrically to the inflow distributor 216.
  • the latter is also inserted into the outer part of the end wall 230.
  • the outflow collector is connected to the suction side 160 of the prefeed pump via a radial channel 184. This results in a return flow circuit parallel to the main delivery flow for the branched-off part of the delivery flow of the prefeed pump 150, which is fed to the inflow side of the main pump.
  • a throttle screw 220 is inserted into the end wall 230, the tip of which engages in the channel 182 and here forms an adjustable throttle point in the partial feed flow to the inflow distributor 216.
  • the design of the heat exchanger can be seen in detail in FIG. 6.
  • the channel system 212 of the heat exchanger is then practically completely submerged within the lubricant storage space 110 and below the lubricant level.
  • a lubricant flow results in the annular storage area, which flows downward in essentially both circumferential directions from the upper apex area lower apex runs.
  • the channel system 212 of the heat exchanger 210 comprises a plurality of ring-shaped heat exchanger tubes 214 which extend in the circumferential direction of the storage space 110 and which, as mentioned, essentially below the lubricant level and therefore enable heat exchange over their entire surface.
  • a plurality of heat exchanger tubes 214 connected in parallel, arcuate and adapted to the ring shape of the storage space 110 are connected.
  • the result is an essentially cylindrical arrangement of heat exchanger tubes lying side by side in the cylinder axis direction, i.e. a large-scale arrangement of heat transfer surfaces adapted to the spatial conditions of the storage space and the lubricant flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Reciprocating Pumps (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

  • Die Erfindung bezieht sich auf eine Kolbenmaschine nach dem Oberbegriff des Anspruchs 1. Eine als Kolbenpumpe ausgebildete Maschine dieser Art bekannt aus der DE-A-2 554 733.
  • Kolbenmaschinen der vorstehenden Art sind im allgemeinen mit einem vergleichsweise hohen Raumbedarf in Bezug auf das nutzbare Hubvolumen behaftet, weil die Hubverformung des schlauchförmigen Dichtungsgliedes wegen der Materialbedingten Begrenztheit der Dauerwechselverformung nur einen Bruchteil der Schlauchlänge ausmachen darf. Von ähnlichem Einfluss sind die Vorrichtungen für die Abstützung des elastisch verformbaren Dichtungsschlauches mittels einer Druckschmierung. Es besteht daher bei diesem Maschinentyp ein durch seine spezifischen Merkmale bedingtes, besonderes Bedürfnis nach einer Verminderung des Raumbedarfes für die Führungs- und Antriebsvorrichtung der Kolben-Zylinderanordnung. Ausserdem sollte die Reibungswärme, die im Bereich der Gleitführung von Kolben und Dichtungsschlauch anfällt, mit geringem Temperaturgefälle, d.h. durch grossflächige Berührungsflächen, nach aussen abgeführt werden. In dieser Hinsicht ist die obengenannte Anordnung bekannter Art verbesserungsbedürftig.
  • Aus der GB-A-650 312 ist eine tassenstösselartige Ausführung eines Kolbens für eine Hydraulikpumpe bekannt, innerhalb dessen eine Schraubenfeder für die Anpressung des Kolbens gegen einen Antriebsexzenter untergebracht ist. Ein schlauchartiges, elastisch verformbares Dichtungsglied ist dort nicht vorhanden. Es stellt sich daher bei dieser bekannten Anordnung weder das Problem der Verminderung des spezifischen Raumbedarfes noch dasjenige der Reibungswärmeabfuhr aus dem Bereich eines unter Innendruck stehenden und wegen seiner Elastizität unter entsprechendem Anpressdruck gegen die Führungsfläche stehenden Dichtungselementes.
  • Aufgabe der Erfindung ist daher die Schaffung einer Kolben-Kraft- oder Arbeitsmaschine, die sich durch vergleichsweise geringe Baulänge der Kolben-Zylinderanordnung einschliesslich der benachbarten Teile der Antriebsvorrichtung auszeichnet. Die erfindungsgemässe Lösung dieser Aufgabe kennzeichnet sich durch die in Anspruch 1 angegebenen Merkmale. Die danach vorgesehene, den Zylinder umgreifende Ausbildung des Antriebsgliedes, beispielsweise eines an sich üblichen, mit einer Exzenter-Antriebsvorrichtung zusammenwirkenden Stössels oder dergl., ermöglicht bei gleicher Stütz- und Führungslänge dieses - entsprechend der Arbeitsbewegung oszillierenden - Antriebsgliedes grundsätzlich eine beträchtliche Verkürzung der Baulänge der Kolben-Zylinderanordnung. Die ohne weiteres mögliche, dünnwandige Ausbildung des den Zylinder umgreifenden Abschnitts des Antriebsgliedes erlaubt dabei die Vermeidung einer wesentlichen Durchmesservergrösserung der Kolben-Zylindernanordnung. Die Verminderung der Baulänge der Kolben-Zylinderanordnung macht sich insbesondere bei sternförmigen Mehrzylinderanordnungen vorteilhaft bemerkbar, weil diese Baulänge den Gesamtdurchmesser der Pumpe verkleinert.
  • Bei Konstruktionen der vorliegenden Art ergibt sich an der Aussenseite des vom Antriebsglied umschlossenen Zylinders entsprechend der oszillierenden Arbeitsbewegung des Letzteren ein pulsierender Nebenraum, der sich bei üblichen Kolben mit Leckflüssigkeit aus dem Arbeitsraum bzw. bei hermetischer Arbeitsraumabdichtung mittels des erwähnten, elastisch verformbaren Dichtungsschlauches mit Druckschmierungsabstützung mit dem abströmenden Schmiermittel füllen kann. Zur Beherrschung der sich hieraus ergebenden Probleme der Flüssigkeitsabführung sieht eine vorteilhafte Weiterbildung der Erfindung mindestens einen im Querschnitt grossflächigen Ausgleichskanal zwischen dem pulsierenden Nebenraum und einem Druckausgleichsraum vor. Dadurch werden in einfacher Weise Druckstösse innerhalb der Kolben-Zylinderanordnung vermeiden und insbesondere eine einwandfreie Abführung auch grösserer Schmiermitteldurchsatzmengen gewährleistet. Zweckmässig wird dabei ohnehin vorhandener Schmiermittel- oder Fördermittel-Vorratsraum (im Hinblick auf die Abführung von umlaufendem Schmiermittel bzw. Leckfördermittel aus dem Arbeitsraum) als Druckausgleichsraum für den pulsierenden Nebenraum vorgesehen.
  • Eine von den vorgenannten Gesichtspunkten ausgehende Weiterbildung der Erfindung sieht vor, dass der pulsierende Nebenraum mit einem am Zylinderende innerhalb des Antriebsgliedes befindlichen, entsprechend der oszillierenden Arbeitsbewegung pulsierenden Raum durch einen Drosselkanal verbunden ist. Durch diese Ausbildung wird der pulsierende Raum zwischen Zylinderende und Antriebsglied, in den sich das vom Zylinder oder vom Dichtungsschlauch abströmende Schmiermittel bzw. die Leckflüssigkeit aus dem Arbeitsraum sammelt, als Pumpen-oder Hilfs-Arbeitsraum für den laufenden Ausstoss der sich ansammelnden Flüssigkeit verwendet, wobei der Drosselkanal in besonders einfacher Weise die Rückströmung der Flüssigkeit vom druckentlasteten Nebenraum am anderen Ende des Antriebsgliedes auf ein geringes Mass begrenzt. Der Drosselkanal wirkt somit nach Art eines Rückschlagventils.
  • Eine andere Weiterbildng der Erfindung bezieht sich auf eine Kombination mit Merkmalen, die in anderem Zusammenhang zum Gegenstand der inzwischen zur Erteilung gelangten EP-Patentanmeldung Nr. 80103359.8 gehören (EP-B-21315). Eine solche Kombination mit den vorliegenden Erfindungsmerkmalen bezieht sich insbesondere auf eine Druckumlaufschmierung, wie sie insbesondere für die Schmierung und Abstützung eines elastisch verformbaren Dichtungsschlauches bei seiner Gleitbewegung an einer Stützfläche verwendet werden kann. Bei einer Maschine mit Druckumlaufschmierung, die eine Druckschmierpumpe, einen Rücklauf-Sammelraum, eine Rücklaufpumpe und einen die Druckschmierpumpe speisenden Vorratsraum aufweist, kennzeichnet sich diese Weiterbildung der Erfindung durch einen den Vorratsraum mit dem Rücklauf-Sammelraum verbindenden Ueberströmkanal mit einem einstellbaren oder steuerbaren Stellglied für eine Begrenzung der Strömung vom Vorratsraum zum Rücklauf-Sammelraum. Diese Ausbildung ermöglicht auf einfache Weise eine sichere Füllung und damit einen einwandfreien Betrieb der Rücklaufpumpe und damit die für die gesamte Betriebssicherheit wesentliche Aufrechterhaltung des Schmiermitteldrukkes. Dies ist besonders bei Hochdruckpumpen mit geschmiertem Dichtungsschlauch bedeutsam, weil ein Ausfall der Schmierung an der Stützfläche sehr rasch eine Beschädigung des Dichtungsschlauches zur Folge haben kann.
  • Eine Weiterbildung der Erfindung bezieht sich auf jene bekannte Bauart von als Pumpe ausgebildeten Arbeitsmaschinen, bei denen eine Vorförderpumpe für die Druckzuführung des Arbeitsmittels an der Zuströmseite der Pumpe vorgesehen ist. Ein besonders intensiver Wärmeaustausch zwischen Arbeitsmittel und Schmiermittel und damit wiederum die Möglichkeit der räumlichen Verkleinerung der Kühleinrichtung ergibt sich hierfür erfindungsgemäss dadurch, dass die Arbeitsmittel-Zuströmseite des Wärmetauschers an die Abströmseite der Vorförderpumpe angeschlossen ist. Damit wird die ohnehin vorhandene Vorförderpumpe für einen Zwangsumlauf des kühlenden Arbeitsmittels im Schmiermittel-Wärmetauscher ausgenutzt. Eine besonders vorteilhafte Ausführung ergibt sich in diesem Zusammenhang durch Ausbildung des Arbeitsmittelsystems des Wärmetauschers als Rückstromzweit zwischen der Abströmseite und der Zuströmseite der Vorförderpumpe. Um hierbei die Rückströmung des Arbeitsmittels in passenden Grenzen zu halten, kann nach einer zweckmässigen Ausgestaltung der Erfindung eine Drossel, vorzugsweise eine einstellbare Drossel, im Wärmetauscher-Rückstromzweig angeordnet werden. Auch diese Merkmale gehören in anderem Zusammenhang zum Gegenstand der EP-A-80103359.8. Weiter Merkmale und Vorteile der Erfindung werden anhand der in den Zeichnungen veranschaulichten Beispielsausführungen erläutert. Hierin zeigt:
    • Fig. 1 einen Axialschnitt einer Kolbenpumpe mit sternförmiger Mehrzylinderanordnung mit Exzenterantrieb,
    • Fig. 2 das Prinzipschaltbild des Schmiermittelsystems der Pumpe nach Fig. 1,
    • Fig. 3 in grösserem Masstab eine Axialansicht einer Rücklaufpumpe des Schmiermittelsystems der Pumpe nach Fig. 1 und
    • Fig. 4 einen Teilschnitt des Pumpenrades gemäss Fig. 3 entsprechend Schnittebene IV-IV,
    • Fig. 5 einen Teil-Axialschnitt der Pumpe, ähnlich Fig. 1, jedoch mit abgewandeltem Bereich der Vorförderpumpe und des Schmiermittel-Vorratsraumes mit eingesetztem Wärmetauscher und
    • Fig. 6 einen Querschnitt der Maschine im Bereich des Schmiermittel-Vorratsraumes mit Wärmetauscher, gemäss Schnittebene VI-VI in Fig. 5.
  • Die Antriebsvorrichtung 10 der Pumpe besteht nach Fig. 1 aus einer mit einem nicht dargestellten Motor gekuppelten Welle 1 mit Exzenter 2, auf dem eine nichtrotierendes, translatorisch umlaufendes Gleitstück 3 mit einer der Zylinderzahl - hier beispielsweise fünf - entsprechenden Anzahl von tangentialen Druckflächen 4 galagert ist. In Fig. 1 ist eine solche Druckfläche in Wirkverbindung mit einem Antriebsglied 30 eines Kolbens 20 angedeutet, der mit einem elastisch verformbaren Dichtungsschlauch 22 verbunden ist. Eine Schraubenfeder 23 drückt den Kolben 20 gegen den Bodenabschnitt 30b des büchsenförmigen Antriebsgliedes 30 und setzt den Dichtungsschlauch unter axiale Zugvorspannung. Der Dichtungsschlauch sitzt in der Bohrung eines Zylinders 25, mit dem er am oberen Ende fest verbunden ist, und dichtet somit den im Schlauchinneren gebildeten Arbeitsraum 24 hermetisch ab. Dieser Arbeitsraum verändert sein Volumen entsprechend der oszillierenden Bewegung des Antriebsgliedes 30 und erzeugt in Verbindung mit Rückschlagventilen 26 und 27, die an einen Förder- und Ansaugkanal 28 angeschlossen sind, die Pumpwirkung.
  • Das Schmiersystem der Pumpe ist als Druckumlaufschmierung mit einer Zahnrad-Druckschmierpumpe 100, einem den Exzenter 3 der Antriebsvorrichtung umgebenden Rücklauf-Sammelraum 120 und mit einem die Rotationsachse XX der Antriebsvorrichtung konzentrisch umgebenden, ringförmigen Vorratsraum 110 sowie mit einer aus dem Rücklauf-Sammelraum 120 in den Vorratsraum 110 fördernden Rücklaufpumpe 105 ausgebildet. Diese Ausbildung und Anordnung des Vorratsraumes ermöglicht eine besonders raumsparende Mehrzylinder-Pumpenkonstruktion mit symmetrischer Verteilung der Anschlüsse zu den einzelnen Zylindern über den Ringumfang. Dem gleichen Zweck dient auch die Einbeziehung des Vorratsraumes in das zylindrische Gehäuse der sternförmigen Mehrzylinderanordnung.
  • Die Druckschmierpumpe 100 fördert aus dem Vorratsraum 110 über Kanäle 103 und 104 sowie ein Filter 102 in einen ringförmigen Verteilerkanal 101, von wo aus Druckkanäle 90 und 95 mit Einstelldrosseln 90a bzw. 95a zu den einzelnen Zylindern 25 führen. Die unter Druck stehende Schmierflüssigkeit aus dem Kanal 90 wird zur Abstützung der Gleitbewegung der Aussenfläche des Dichtungsschlauches 22 zugeführt und strömt in Axialrichtung des Zylinders (gemäss Fig. 1 nach unten) in einen im Bereich des unteren Kolben- und Zylinderendes gebildeten, pulsierenden Raum 42 ab. Dieser Raum steht über einen Drosselkanal 45, der als Spaltraum zwischen der Innenfläche des zylindrischen Abschnitts 30a des Antriebsgliedes 30 und der Aussenseite des Zylinders 25 ausgebildet ist, mit einem am oberen Ende des zylindrischen Abschnitts 30a gebildeten, ebenfalls pulsierenden Nebenraum 35 in Verbindung. Auf diese Weise wird die in dem Raum 42 abströmende, entspannte Schmierflüssigkeit über den als Quasi-Rückschlagventil wirkenden Drosselkanal 45 in den Nebenraum 35 gefördert, so dass der Raum 42 im wesentlichen als Niederdruckraum für eine ungestörte Abströmung des Schmiermittels aus dem Spaltraum zwischen Dichtungsschlauch und Zylinderbohrung bzw. Stützfläche wirkt. Für diese selbsttätige Abström-Pumpwirkung ist weiterhin Niederdruck auch im Nebenraum 35 erforderlich. Dazu ist letzterer über einen im Querschnitt grossflächigen Ausgleichskanal 40 mit dem Vorratsraum 110 verbunden, der somit als Druckausgleichsraum dient.
  • Das über den Kanal 95 zugeführte Schmiermittel gelangt an die Aussenfläche des zylindrischen Abschnitts 30a des Antriebsgliedes 30, wo letzteres koaxial zum Zylinder 25 verschiebbar geführt ist. Ueber Schmierkanäle 47 fliesst das Schmiermittel sodann zu den Druckflächen 4 und weiterhin in den Rücklauf-Sammelraum 120. Damit ist auch dieser Schmiermittelkreislauf geschlossen.
  • Die Rücklaufpumpe 105 saugt über einen Kanal 115 aus dem unteren Teil des Sammelraumes 120 an und fördert über einen aufsteigenden Rückförderkanal 106 in dem Scheitelbereich 110a des Vorratsraumes 110. Damit ergibt sich eine wirksame Entlüftung des in den Vorratsraum eintretenden Schmiermittelstromes. Zur sicheren Füllung der Rücklaufpumpe ist ein den Ansaugraum der letzteren, d.h. dem unteren Teil des Sammelraums 120, mit dem Vorratsraum 110 verbindender Ueberströmkanal 130 vorgesehen, der ein Leersaugen dieses Raumes verhindert. Für die Begrenzung der Ueberströmung ist ein Stellglied vorgesehen, wofür beispielsweise eine justierbare Drossel 135a ausreichend sein kann. Im Beispielsfall ist dagegen eine Ueberströmregelung mit einem steuerbaren Ventil 135 als Stellglied und mit einem Schwimmer 140 als Regeleinrichtung vorgesehen. Dies erlaubt die Aufrechterhaltung eines optimalen Füllungsstandes im Ansaugraum der Rücklaufpumpe 105. Die ausreichende Füllung der Rücklaufpumpe ist insbesondere auch für die Vermeidung von Schaumbildung wesentlich, die eine zuverlässige Druckumlaufschmierung beeinträchtigen würde.
  • In Fig. 2 ist das Druckumlauf-Schmiersystem der Pumpe in übersichtlicher Form schematisch wiedergegeben, wobei die wesentlichen Funktionselemente symbolisch dargestellt, jedoch mit den gleichen Bezugszeichen wie in Fig. 1 versehen sind.
  • Wie bereits erwähnt, ist die Vermeidung von Schaumbildung im Fördersystem der Druckumlaufschmierung wesentlich für eine einwandfreie Funktion. Diesem Zweck dient besonders die in Fig. 3 und 4 dargestellte Ausbildung des Rotors 105a der Rücklaufpumpe 105 mit einer Mehrzahl von als Stauräume 105b ausgebildeten Schlitzen, die nach Art einer Radial-Schleuderpumpe angeordnet sind und sich über eine Radiusdifferenz bezüglich der Rotationsachse XX der Pumpe erstrecken. Das in diesen Stauräumen befindliche Schmiermittel unterliegt infolge der starken Zentrifugalkräfte einer Separierung zwischen Schmiermittel mit grösserem bzw. geringerem Flüssigkeitsgehalt bzw. umgekehrt geringerem und grösserem Gas- oder Schaumgehalt. Im Bereich einer sich über weniger als 180° erstrekkenden Abström-Steueröffnung 108 wird bei geeigneter Verlangsamung oder Drosselung der Abströmung von der Pumpe im wesentlichen nur derjenige Teil des Schmiermittels aus den Stauräumen 105b radial ausgestossen, der nur einen sehr geringen Gas- oder Schaumgehalt aufweist. Anschliessend treten die Stauräume mit einer Abström-Steueröffnung 109b in Verbindung, die den gas- bzw. schaumreichen Teil des Schmiermittels aufnimmt und über einen nicht näher dargestellten Abströmkanal 109c in den Sammelraum 120 zurückführt. Im Bereich zwischen den Abström-Steueröffnungen 108 und 109b, die sich, wie in Fig. 3 dargestellt, gleichermassen über einen Winkel von wesentlich weniger als 180° erstrecken, sind die Stauräume 105b an ihren äusseren Enden durch eine Gehäuseinnenfläche 107 verschlossen, so dass dieser Teil des Umlaufes für eine Separierung der unterschiedlich dichten Schmiermittelanteile ohne Störung infolge Durchströmung zur Verfügung steht.
  • Eine weiterer Mechanismus, der zur Gas- und Schaumabschneidung innerhalb des Rotors der Rücklaufpumpe beiträgt, ist in Fig. 4 angedeutet. Danach kann mittels eines vergleichsweise breiten, axial neben dem Rotor 105a angeordneten Spaltraumes 109a, der hier stark verzerrend grösser dargestellt ist, eine radiale Zirkularströmung mit einem bei A angedeuteten Verlauf erzeugt werden, der die Ansammlung des gasarmen Schmiermittels in den radial äusseren Bereichen der Stauräume 105b begünstigt und gegebenenfalls auch eine teilweise Rückführung des in den radial inneren Stauraumbereichen angesammelten Schaumes in Richtung zum Ansaugraum der Pumpe bewirkt oder begünstigt.
  • Besonders ist zu erwähnen, dass die aus Fig. 1 ersichtliche, kompakte Konstruktionsform der Pumpe noch dadurch gegünstigt wird, dass innerhalb des ringförmigen und stirnseitig zu den Zylindern 25 angeordneten Schmiermittel-Vorratsraumes 110 auch eine Vorförderpumpe 150 für das Arbeitsmittel der Pumpe untergebracht ist.
  • Bei der in Fig. 5 und 6 dargestellten Pumpenausführung ist eine insgesamt mit 200 bezeichnete Kühleinrichtung für das Schmiermittel innerhalb des ringförmigen Schmiermittel-Vorratsraumes 110 untergebracht. Diese Kühleinrichtung besteht im wesentlichen aus einem Wärmetauscher 210, der ein vom Arbeitsmittel der Pumpe durchströmtes, im einzelnen aus Fig. 6 ersichtliches Kanalsystem 212 aufweist. Die Strömung des Arbeitsmittels in diesem Kanalsystem wird mittels der bereits erwähnten Vorförderpumpe 150 erreicht, die koaxial zum ringförmigen Vorratsraum 110 sowie mit axialer Ueberdeckung in dessen innerem Aussparungsraum 140 untergebracht ist. Die Zuströmseite 160 der Vorförderpumpe 150 liegt im Bereich eines axialen Stirndeckels 155 des Pumpengehäuses, der mit einer den Vorratsraum 110 abschliessenden Stirnwandung 230 fluchtet. Die Vorförderpumpe ist im Beispielsfall als Axial-Strömungspumpe ausgebildet, deren Rotor in der aus Fig. 5 schematisch ersichtlichen Weise auf der Pumpenwelle 1 sitzt und deren Abströmseite 170 durch Radialkanäle 172 mit einem Ringkanal 174 verbunden ist. Von letzterem führen axiale Abzweigkanäle 176 (in Fig. 5 ist nur einer dieser Kanäle dargestellt) zu den einzelnen, sternförmig angeordneten Pumpenzylindern (nicht näher dargestellt). Auf diese Weise erhalten die Kolben-Zylinderanordnungen der Pumpe das Arbeitsmittel mit einem Vordruck von beispielsweise einigen atü, der für eine sichere Füllung im Saughub der Kolben ausreicht.
  • Rückwärtig verlängerte Kanalabschnitte 178 verbinden die Abströmseite 170 der Vorförderpumpe 150 mit einem Ringkanal 180 in einem zentralen, deckelartig eingesetzten Abschnitt 232 der Stirnwandung 230. Von dem Ringkanal 180 aus führt ein Radialkanal 182 zu einem in den äusseren Teil der Stirnwandung 230 eingesetzten Zuströmverteiler 216 des Wärmetauschers 210. Von diesem im unteren Scheitelbereich des Vorratsraumes 110 angeordneten Zuströmverteiler gelangt der von der Abströmseite der Vorförderpumpe abgezweigte Teilstrom des kühlen Arbeitsmittels über ein im einzelnen aus Fig. 6 ersichtliches Kanalsystem 212 des Wärmetauschers 210 zu einem im oberen Scheitelbereich des Vorratsraumes 110, d.h. diametral zum Zuströmverteiler 216 angeordneten Abströmsammler 218. Letzterer ist ebenfalls in den äusseren Teil der Stirnwandung 230 eingesetzt. Ueber einen Radialkanal 184 ist der Abströmsammler mit der Ansaugseite 160 der Vorförderpumpe verbunden. Es ergibt sich somit für den abgezweigten Teil des Förderstromes der Vorförderpumpe 150 ein Rückstromkreislauf parallel zum Hauptförderstrom, welcher der Zuströmseite der Hauptpumpe zugeleitet wird. Um die Ueberbrükkung und die Druckverhältnisse an der Vorförderpumpe 150 unter Berücksichtigung des Rückströmkreislaufes passend einstellen zu können, ist in die Stirnwandung 230 eine Drosselschraube 220 eingesetzt, deren Spitze in den Kanal 182 eingreift und hier eine justierbare Drosselstelle in dem Teilförderstrom zum Zuströmverteiler 216 bildet.
  • Die Ausbildung des Wärmetauschers ist im einzelnen aus Fig. 6 ersichtlich. Danach befindet sich das Kanalsystem 212 des Wärmetauschers innerhalb des Schmiermittel-Vorratsraumes 110 praktisch vollständig eingetaucht und unterhalb des Schmiermittelspiegels. Infolge der Einmündung des Rückströmkanals 106 von der Schmiermittel-Rücklaufpumpe 105 im oberen Scheitelbereich 110a des Vorratsraumes 110 und der Absaugung durch die Druckschmierpumpe 100 im unteren Scheitelbereich ergibt sich in dem ringförmigen Vorratsraum eine Schmiermittelströmung, die im wesentlichen in beiden Umfangsrichtungen vom oberen Scheitelbereich aus abwärts zum unteren Scheitelbereich verläuft. Diese Strömung is ersichtlich gegensinnig zur Arbeitsmittelströmung im Kanalsystem des Wärmetauschers 210 zwischen dem unteren Zuströmverteiler 216 und dem oberen Abströmsammler 218 gerichtet. Es ergibt sich also zwischen dem Schmiermitteldurchsatz im Vorratsraum 110 einerseits und der Arbeitsmittelströmung im Kanalsystem des Wärmetauschers 210 andererseits eine Gegenstrom-Wärmeübertragung und damit eine intensive Kühlung des Schmiermittels durch das frisch eintretende Arbeitsmittel.
  • Für den Aufbau des Wärmetauschers gilt mit Bezug auf Fig. 6 im einzelnen folgendes: Das Kanalsystem 212 des Wärmetauschers 210 umfasst eine Mehrzahl von ringförmigen, sich in Umfangsrichtung des Vorratsraumes 110 erstrekkenden Wärmetauscherrohren 214, die - wie erwähnt - im wesentlichen unter dem Schmiermittelspiegel und daher über ihre gesamte Oberfläche den Wärmeaustausch ermöglichen. Auf beiden Seiten des Zuströmverteilers 216 und des Abströmsammlers 218 ist jeweils eine Mehrzahl von zueinander parallel geschalteten, bogenförmig ausgebildeten und der Ringform des Vorratsraumes 110 angepassten Wärmetauscherrohren 214 angeschlossen. Es ergibt sich so eine im wesentlichen zylindrische Anordnung von in Zylinderachsrichtung nebeneinanderliegenden Wärmetauscherrohren, d.h. eine den räumlichen Verhältnissen des Vorratsraumes und der Schmiermittelströmung angepasste, grossflächige Anordnung von Wärmeübergangsflächen.
  • Ersichtlich ist für diese intensiv wirkende Wärmetauschanordnung kein zusätzlicher Raumbedarf gegeben, weil die gesamte Anordnung innerhalb des ohnehin vorhandenen Schmiermittel-Vorratsraumes untergebracht ist. Die ringförmige Ausbildung des letztgenannten Raumes ermöglicht nicht nur eine raumsparende Einbeziehung in die Gesamtkonstruktion des Maschinengehäuses, sondern erzwingt auch eine Schmiermittelströmung in Umfangsrichtung des Vorratsraumes längs der Wärmetauscherrohre im Sinne der Gegenstromkühlung.

Claims (11)

1. Hydraulik-Kolbenmaschine mit mindestens einer Kolben-Zylinderanordnung (20, 25) zur Bildung eines pulsierenden Arbeitsraumes (24), wobei die Kolben-Zylinderanordnung für die Abdichtung des pulsierenden, flüssigkeitsgefüllten Arbeitsraumes ein schlauchförmiges, weichelastisch verformbares, einerseits mit dem Zylinder (25) und andererseits mit dem Kolben (20) fest verbundenes Dichtungsglied (22) aufweist, das sich am Schlauchumfang über ein Schmiermittel an einer gehäuseseitigen Stützfläche gleitend abstützt, dadurch gekennzeichnet, dass eine mit dem Kolben (20) in Wirkverbindung stehende, exzentrisch umlaufende Antriebsvorrichtung (10) vorgesehen ist und dass jeder Kolben-Zylinderanordnung (20, 25) ein den Zylinder auf wenigstens einem Teil seiner Länge umgreifendes, büchsenförmiges Antriebsglied (30) zugeordnet ist, dessen Bodenabschnitt (30b) an seiner Innenfläche mit dem Kolben (20) in Verbindung steht und sich mit seiner Aussenfläche an einer Tragfläche (4) der Antriebsvorrichtung (10) abstützt.
2. Kolbenmaschine nach Anspruch 1, dadurch gekennzeichnet, dass der an der Aussenseite des Zylinders (25) durch das Antriebsglied (30) gebildete, entsprechend der oszillierenden Arbeitsbewegung pulsierende Nebenraum (35) über mindestens einen im Querschnitt grossflächigen Ausgleichskanal (40) mit einem Druckausgleichsraum (110) verbunden ist.
3. Kolbenmaschine nach Anspruch 2, dadurch gekennzeichnet, dass der pulsierende Nebenraum (35) mit einem am Zylinderende (25a) innerhalb des Antriebsgliedes (30) befindlichen, entsprechend der oszillierenden Arbeitsbewegung pulsierenden Raum (42) durch einen Drosselkanal (45) verbunden ist.
4. Kolbenmaschine nach Anspruch 3, dadurch gekennzeichnet, dass der Drosselkanal (45) durch einen Spaltraum zwischen der Innenfläche des Antriebsgliedes (30) und der Aussenseite des Zylinders (25) gebildet ist.
5. Kolbenmaschine nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass als Druckausgleichsraum (110) für den pulsierenden Nebenraum (35) ein Schmiermittel- oder Fördermittel-Vorratsraum vorgesehen ist.
6. Kolbenmaschine nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine Druckumlaufschmierung mit einer Druckschmierpumpe (100), einem Rücklauf-Sammelraum (120), einer Rücklaufpumpe (105) und einem die Druckschmierpumpe speisenden Vorratsraum (110) vorgesehen ist und dass der Vorratsraum (110) mit dem Rücklauf-Sammelraum (120) durch einen Überströmkanal (130) verbunden ist.
7. Kolbenmaschine nach Anspruch 6, gekennzeichnet durch einen Ueberströmkanal (130) mit einem einstellbaren oder steuerbaren Stellglied (135) für eine Begrenzung der Strömung von Vorratsraum (110) zum Rücklauf-Sammelraum (120).
8. Kolbenmaschine nach Anspruch 7, dadurch gekennzeichnet, dass für den Rücklauf-Sammelraum (120) eine Regel- oder Steuereinrichtung (140) zur Aufrechterhaltung einer Mindestfüllung vorgesehen ist und dass diese Steuer- oder Regeleinrichtung (140) mit dem Strömungs-Stellglied (135) im Ueberströmkanal (130) in Wirkverbindung steht.
9. Kolbenmaschine nach einem dervorangehenden Ansprüche, dadurch gekennzeichnet, dass eine rotierende Antriebsvorrichtung (10) zur Bildung des pulsierenden Arbeitsraumes sowie eine Druckumlaufschmierung mit einem an den Schmiermittelrücklauf angeschlossenen Vorrats-oder Sammelraum (110) vorgesehen ist und dass der Vorrats- oder Sammelraum (110) ringförmig und die Rotationsachse (XX) der Antriebsvorrichtung (10) umgebend sowie vorzugsweise konzentrisch zu dieser ausgebildet ist.
10. Kolbenmaschine nach Anspruch 9, dadurch gekennzeichnet, dass die Ringmittelebene des Vorrats- oder Sammelraumes (110) im wesentlichen vertikal angeordnet ist und dass ein an die Rücklaufpumpe (105) angeschlossener Rückförderkanal (106) vorgesehen ist, der im Scheitelbereich (110a) des ringförmigen Vorrats- oder Sammelraumes mündet.
11. Kolbenmaschine nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass eine sternförmige Mehrzylinderanordnung vorgesehen ist und dass der Vorrats- oder Sammelraum (110) stirnseitig und koaxial zu der sternförmigen Mehrzylinderanordnung in einem gemeinsamen Gehäuse mit dieser angeordnet ist.
EP84108027A 1979-06-20 1980-06-17 Kolbenmaschine, insbesondere Kolbenpumpe Expired - Lifetime EP0153982B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84108027T ATE51683T1 (de) 1979-06-20 1980-06-17 Kolbenmaschine, insbesondere kolbenpumpe.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH5779/79 1979-06-20
CH577979A CH645435A5 (de) 1979-06-20 1979-06-20 Kolbenpumpe.

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP80103359.8 Division 1980-06-17

Publications (3)

Publication Number Publication Date
EP0153982A2 EP0153982A2 (de) 1985-09-11
EP0153982A3 EP0153982A3 (en) 1985-11-21
EP0153982B1 true EP0153982B1 (de) 1990-04-04

Family

ID=4299196

Family Applications (2)

Application Number Title Priority Date Filing Date
EP80103359A Expired EP0021315B1 (de) 1979-06-20 1980-06-17 Kolbenmaschine, insbesondere Kolbenpumpe
EP84108027A Expired - Lifetime EP0153982B1 (de) 1979-06-20 1980-06-17 Kolbenmaschine, insbesondere Kolbenpumpe

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP80103359A Expired EP0021315B1 (de) 1979-06-20 1980-06-17 Kolbenmaschine, insbesondere Kolbenpumpe

Country Status (16)

Country Link
US (1) US4671743A (de)
EP (2) EP0021315B1 (de)
JP (2) JPS5627086A (de)
AR (1) AR219466A1 (de)
AT (2) ATE14915T1 (de)
AU (1) AU5935080A (de)
BR (1) BR8003711A (de)
CA (1) CA1142030A (de)
CH (1) CH645435A5 (de)
CS (1) CS229656B2 (de)
DD (1) DD151487A5 (de)
DE (2) DE3072177D1 (de)
HU (1) HU183151B (de)
PL (1) PL130376B1 (de)
SU (1) SU1380617A3 (de)
ZA (1) ZA803580B (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3332355C1 (de) * 1983-09-08 1984-11-15 Hemscheidt Maschf Hermann Zylinderkolben-Anordnung für eine Kolbenmaschine
US4997344A (en) * 1988-06-15 1991-03-05 Deere & Company Rotor bearing pre-load for a radial piston pump
US5709536A (en) * 1995-01-30 1998-01-20 Titan Tool, Inc. Hydro mechanical packingless pump and liquid spray system
DE19804275A1 (de) * 1998-02-04 1999-08-12 Bosch Gmbh Robert Radialkolbenpumpe zur Kraftstoffhochdruckversorgung
JP3349945B2 (ja) 1998-03-13 2002-11-25 日本電気株式会社 信号変換装置及び信号変換装置を用いた光伝送方式
EP1058001B1 (de) * 1999-05-31 2005-02-16 CRT Common Rail Technologies AG Hochdruckförderpumpe
DE10228552B9 (de) * 2002-06-26 2007-08-23 Siemens Ag Radialkolbenpumpeneinheit
DE102009060733A1 (de) 2009-12-29 2011-06-30 European Charcoal Ag Vorrichtung zur kontinuierlichen Umwandlung von Biomasse und System zur Energiegewinnung daraus
US9752590B2 (en) * 2013-03-13 2017-09-05 Ghsp, Inc. Two pump design with coplanar interface surface
US10087927B2 (en) 2014-05-01 2018-10-02 Ghsp, Inc. Electric motor with flux collector
US11015585B2 (en) 2014-05-01 2021-05-25 Ghsp, Inc. Submersible pump assembly

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US781678A (en) * 1904-05-17 1905-02-07 Clarence H Richwood Air-compressing machine.
GB224013A (en) * 1924-04-23 1924-11-06 William Thomas Shannon Improvements in engine lubricating systems
US1750170A (en) * 1926-04-15 1930-03-11 Frisch August Pumping apparatus
DE530598C (de) * 1927-11-28 1931-07-30 Drysdale & Co Ltd Umlaufschmiervorrichtung
FR666890A (fr) * 1929-01-03 1929-10-07 Cem Comp Electro Mec Dispositif de refroidissement de l'huile de graissage des machines actionnant des pompes
US2064750A (en) * 1932-04-23 1936-12-15 Bosch Robert Piston pump for the conveyance of liquids
US2179354A (en) * 1935-08-07 1939-11-07 Super Diesel Tractor Corp Pump
GB524199A (en) * 1938-10-26 1940-08-01 Hamilton Neil Wylie Improvements in variable stroke radial pumps
GB549670A (en) * 1941-01-23 1942-12-07 Clement Brown Improvements in or relating to rotary pumps
US2364111A (en) * 1942-03-20 1944-12-05 John W Tucker Pump and the like
US2472355A (en) * 1946-02-01 1949-06-07 New York Air Brake Co Pump
GB650312A (en) * 1946-02-09 1951-02-21 Poul Haahr Improvements in or relating to high-pressure pumps
US2523543A (en) * 1946-04-29 1950-09-26 James E Smith Variable stroke radial pump
FR1095226A (fr) * 1954-03-12 1955-05-31 Régulateur de niveau d'huile
US2917003A (en) * 1957-04-22 1959-12-15 James E Smith Variable stroke variable pressure pump or compressor
US2963886A (en) * 1958-01-02 1960-12-13 Carrier Corp Lubricant cooling system
CH422524A (de) * 1963-04-23 1966-10-15 Philips Nv Zum Fördern siedender Flüssigkeiten geeignete Kreiselpumpe
US3289651A (en) * 1963-12-10 1966-12-06 Yanmar Diesel Engine Co Cooling device for rotary piston engines
GB1114679A (en) * 1964-05-18 1968-05-22 Sibany Mfg Corp Improvements in heat exchange apparatus
US3554090A (en) * 1969-04-04 1971-01-12 Arthur G Wallace Fluid pressure actuated motor
US3703342A (en) * 1971-07-30 1972-11-21 Walbro Corp Fuel pump bellows construction
US3854383A (en) * 1972-12-26 1974-12-17 Dynacycle Corp Tension actuated pressurized gas driven rotary motors
IT1042341B (it) * 1975-09-08 1980-01-30 Pirelli Miglioramenti negli impianti di pompaggio per cavi elettrici in o.f.
DE2914694C2 (de) * 1979-04-11 1980-09-11 Hermann Hemscheidt Maschinenfabrik Gmbh & Co, 5600 Wuppertal Zylinderkolben-Aggregat

Also Published As

Publication number Publication date
ATE51683T1 (de) 1990-04-15
HU183151B (en) 1984-04-28
PL130376B1 (en) 1984-08-31
JPS6365830B2 (de) 1988-12-16
DD151487A5 (de) 1981-10-21
DE3070978D1 (en) 1985-09-19
EP0021315B1 (de) 1985-08-14
EP0021315A1 (de) 1981-01-07
AR219466A1 (es) 1980-08-15
JPS6426096A (en) 1989-01-27
BR8003711A (pt) 1981-01-13
US4671743A (en) 1987-06-09
DE3072177D1 (de) 1990-05-10
AU5935080A (en) 1981-01-08
EP0153982A3 (en) 1985-11-21
CA1142030A (en) 1983-03-01
CS229656B2 (en) 1984-06-18
JPS5627086A (en) 1981-03-16
EP0153982A2 (de) 1985-09-11
ZA803580B (en) 1981-07-29
ATE14915T1 (de) 1985-08-15
SU1380617A3 (ru) 1988-03-07
CH645435A5 (de) 1984-09-28
PL225024A1 (de) 1981-04-24
JPH0250358B2 (de) 1990-11-02

Similar Documents

Publication Publication Date Title
DE102012020999B4 (de) Hydraulischer Freilauf für variable Triebwerksteile
EP1592887B1 (de) Hochdruckpumpe
EP0153982B1 (de) Kolbenmaschine, insbesondere Kolbenpumpe
EP0767864A1 (de) Axialkolbenmaschine mit einem kühlkreislauf für die zylinder und kolben
DE19530507A1 (de) Pumpe variabler Förderung mit Überström-Steuerung
DE2059836A1 (de) Axialkolbeneinheit
EP0642430B1 (de) Von einem verbrennungsmotor angetriebene hydraulikpumpe
DE2747843B2 (de) Kolbenpumpe, insbesondere Hochdruck-Kolbenpumpe in Liegendbauweise
EP0461213B1 (de) Kraftstoffeinspritzpumpe für brennkraftmaschinen
DE3605452C2 (de)
DE4135904A1 (de) Kolbenpumpe, insbesondere radialkolbenpumpe
DE3242983A1 (de) Regelbare fluegelzellenpumpe
EP2137412B1 (de) Verdrängermaschine nach dem spiralprinzip
EP1651866B1 (de) Exzentertriebwerk für volumetrisch wirkende pumpen oder motoren
DE69000833T2 (de) Vorrichtung zur verstellung des vorhubs einer kraftstoffeinspritzpumpe.
AT521887B1 (de) System und Verfahren zum Einstellen einer wirksamen Länge einer Pleuelstange mittels Schmiermittelversorgung
DE1156605B (de) Kraftstoffeinspritzpumpe fuer mehrzylindrige Brennkraftmaschinen
DE3441215A1 (de) Hydraulische pumpe
DE1426090C (de) Regeleinrichtung für eine Kraftstoffeinspritzpumpe
DE2630385A1 (de) Kraftstoffeinspritzvorrichtung
DE29619824U1 (de) Freilaufrückschlagventil
AT220427B (de) Gerät zum Einspritzen schlecht schmierender Kraftstoffe in Verbrennungsmotore
DE10108007A1 (de) Hubkolbenmaschine
DE356552C (de) Hydraulischer Umformer mechanischer Dreharbeit in Arbeit mit Laengsbewegung
DE1601394A1 (de) Kraftstoffeinspritzpumpe mit hin- und hergehendem Kolben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 21315

Country of ref document: EP

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19860521

17Q First examination report despatched

Effective date: 19870304

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 21315

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 51683

Country of ref document: AT

Date of ref document: 19900415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3072177

Country of ref document: DE

Date of ref document: 19900510

ITF It: translation for a ep patent filed

Owner name: CON LOR S.R.L.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 84108027.8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990414

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990528

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990604

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19990608

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990614

Year of fee payment: 20

Ref country code: AT

Payment date: 19990614

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990630

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990823

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990916

Year of fee payment: 20

BE20 Be: patent expired

Free format text: 20000617 *HYDROWATT SYSTEMS LTD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000616

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20000616

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20000617

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000617

Ref country code: AT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20000617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000618

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20000616

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20000617

EUG Se: european patent has lapsed

Ref document number: 84108027.8