EP0120506B1 - Metallpulver und Verfahren zu dessen Herstellung - Google Patents

Metallpulver und Verfahren zu dessen Herstellung Download PDF

Info

Publication number
EP0120506B1
EP0120506B1 EP84103487A EP84103487A EP0120506B1 EP 0120506 B1 EP0120506 B1 EP 0120506B1 EP 84103487 A EP84103487 A EP 84103487A EP 84103487 A EP84103487 A EP 84103487A EP 0120506 B1 EP0120506 B1 EP 0120506B1
Authority
EP
European Patent Office
Prior art keywords
gas
container
opening
pressure
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84103487A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0120506A3 (en
EP0120506A2 (de
Inventor
Alfred Prof. Dr.-Ing. Walz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr-Ing Lueder Gerking Te Berlijn Bondsrepubliek
Original Assignee
Walz Alfred Prof Dr-Ing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Walz Alfred Prof Dr-Ing filed Critical Walz Alfred Prof Dr-Ing
Priority to AT84103487T priority Critical patent/ATE34109T1/de
Publication of EP0120506A2 publication Critical patent/EP0120506A2/de
Publication of EP0120506A3 publication Critical patent/EP0120506A3/de
Application granted granted Critical
Publication of EP0120506B1 publication Critical patent/EP0120506B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/088Fluid nozzles, e.g. angle, distance

Definitions

  • the invention relates to a method and an apparatus for producing fine metal powders.
  • a method for producing metal powders in which a molten metal stream and gas are allowed to flow into an opening of a container.
  • the melting cone is broken up turbulently by a propellant gas jet at the angle relative to the melting cone axis.
  • the resulting relatively coarse powder parts can then only be comminuted by exploding the melt, which has been overheated by 250 ° C., by the vapor pressure of the strongly overheated powder parts. This results in relatively non-uniform particles of various sizes.
  • the invention is based on the object of specifying a method and an associated device which make it possible to produce metal powder with powder particles of smaller diameter and a relatively narrow particle size distribution.
  • This object is achieved by the features of claim 1, as far as the method is concerned, and the features of claim 5, as far as the device is concerned.
  • Advantageous further developments result from the associated subclaims.
  • the metal powders produced by the invention have average powder particle diameters between 5 and 35 ⁇ m, preferably between 5 and 201 ⁇ m and preferably between 8 and 15 ⁇ m.
  • the powder particles also have diameter distributions with a standard deviation of at most 2.5.
  • the metal powders consist predominantly of approximately strictly spherical individual powder particles, 90% of the powder particles forming the metal powder should have a deviation of less than 10% from the spherical shape: the powder particles also have simply curved surfaces, which is of essential importance for the sintered metallurgy.
  • molten metal stream and gas are allowed to flow into an opening of a container, the ratio of gas pressure in the vicinity of the inflow opening outside the container and gas pressure inside the container being predetermined to be greater than 5 and the opening of the container is also selected such that the The ratio of the mass flows of gas and molten metal entering the container is greater than 8.
  • the melt stream is first drawn out into fibers under the action of the gas flowing at supersonic speed. These fibers then disintegrate into droplets that form the powder particles after solidification.
  • the temperature of the gas flowing through the opening in the container should be in the range between 0.7 and 1.5 times the solidification temperature of the melt in ° K before the inflow.
  • the molten metal preferably only comes into contact with the gas flowing into the opening at a point in the container opening at which the gas pressure has dropped to less than 60% of the pressure before the opening, i.e. at a point where the gas already has almost the speed of sound.
  • the pressure at the point at which the melt and gas come into contact should be at least a fifth, preferably still at least a third, of the gas pressure before the container opening.
  • the gas should preferably have supersonic speed at the first point of contact with the molten metal.
  • All gases that do not react with the molten metal can be used as gases. Oxygen should therefore generally be avoided. Highly pure inert gases such as helium or argon are preferably used. Hydrogen can also be used for metals that do not form hydrides. Nitrogen can be used for metals that do not form nitrides. Combustion gases such as carbon monoxide can also be advantageous under certain conditions. It is also possible to achieve special effects by controlling the gas composition. For example, by using a gas with a low oxygen partial pressure, metal powders with a superficial oxide layer can be obtained, which e.g. can advantageously be used as catalysts.
  • the finest metal powder is formed by the process according to the invention via the intermediate stage of the formation of melt threads, the melt threads representing a thermodynamically extremely unstable intermediate state due to the high ratio of surface tension to viscosity. Because of their instability, the filaments tend to disintegrate into droplets.
  • the temperature of the gaseous medium must therefore be chosen to be sufficiently high that the melt threads do not solidify into droplets before decay.
  • the intermediate fiber stage is formed in a very short time. The melt bursts when entering the strong pressure drop and is pulled out into fibers by the high gas velocity. For the production of very fine powders it is therefore essential that sufficiently thin melt fibers are formed into droplets before they break down.
  • the melt therefore preferably emerges from the crucible at the point, ie it comes into contact with the gas at which the highest pressure gradient of the gas flow is present and at the same time the gas flow already has a sufficiently high speed but still a sufficient density for drawing out the burst melt flow .
  • the density should preferably still be at least 0.4 bar.
  • the pressure before opening the container can be 1 to 30 bar, preferably 1 to 10 bar.
  • a pressure of 1 bar is generally sufficient.
  • the nozzle should be as short as possible in the direction of flow, so that the pressure gradient below the point of the narrowest nozzle cross section is as large as possible.
  • the melt For the formation of powders, the melt must not solidify in the intermediate fiber state.
  • the solidification of fibers can generally be prevented by controlling the gas temperature. Metals with a higher solidification temperature give off their heat mainly through radiation.
  • such metals are preferably heated in the crucible to temperatures of a few 100 ° K above the solidification temperature.
  • the present invention also relates to a device for producing metal powders, which consists of two gas spaces, the gas spaces being connected by at least one gas passage opening, which furthermore has means for generating a pressure difference between the two gas spaces, which also has a crucible in the gas space with the contains higher pressure, the crucible having at least one melt outlet opening which is arranged symmetrically coaxially or concentrically to the gas passage opening.
  • the gas passage opening is designed in such a way that during operation of the device the gas at a certain speed first extracts the melt flow into fibers and then the fibers disintegrate into droplets.
  • the gas passage opening can be designed as a slot-shaped opening, the melting crucible having a plurality of melt outlet openings arranged in the central plane of the slot-shaped gas passage opening.
  • the gas passage openings can also be designed as circularly symmetrical passage openings, with a melt outlet opening being provided in the axis of each gas passage opening.
  • the melt outlet openings are preferably designed in the form of melt outlet nipples.
  • the melt outlet nipples preferably open in the plane of the narrowest cross section of the gas passage opening.
  • the length of the gas passage opening in the axial direction should not exceed the diameter of the gas passage opening at the narrowest point.
  • the gas passage opening should preferably widen from the point of the narrowest cross section in the flow direction with an opening angle of more than 90 °, particularly preferably more than 120 °.
  • the melt outlet nipples of the crucible should extend into the gas passage opening to such an extent that the melt outlet openings open in the plane in which the gas passage opening begins to widen.
  • FIG. 1 shows a metal melting crucible 1 which contains the metal melt 2.
  • the crucible can e.g. consist of quartz glass, sintered ceramic or graphite.
  • the crucible 1 contains at least one melt outlet nipple 3 on its underside.
  • the melt outlet nipple can e.g. have an opening of 0.3 to 1 mm in diameter.
  • the melting pot is also heated.
  • the crucible can be heated by means of a resistance heater 4, e.g. is embedded in a ceramic mass 5, take place.
  • the person skilled in the art is able to provide other options for heating the melt, e.g. high-frequency induction heating, direct electrical heating by means of electrodes which are immersed in the melt, etc.
  • a graphite crucible e.g.
  • the crucible 1 is arranged inside a container 6, which is divided into an upper gas space 8 and a lower gas space 9 by a partition 7.
  • the gas spaces 8 and 9 are connected by a passage opening 10.
  • the passage opening 10 is formed by a molded part 11 fitted into the partition 7.
  • the upper gas space 8 has a gas supply line 12 with a valve 13 for adjusting the gas pressure in the upper gas space 8.
  • the lower gas space 9 contains a gas discharge line 14 with a feed pump 15 for adjusting and maintaining the gas pressure in the lower gas space 9.
  • the bottom of the lower gas space 9 is conical and has a lock 16 for discharging the metal powder formed.
  • a conical intermediate floor 17 can be provided, which serves to collect and separate the metal powder from the gas.
  • Thermal insulation 18 can be provided in particular for the upper gas space.
  • the crucible 1 is added to the shredded metal filled. Then the gaseous medium is let in via the valve 13.
  • the lower gas space 9 is evacuated to a pressure of, for example, 1.3x10 3 to 1.3x10 4 Pa (10 to 100 torr) by means of the pump 15 and at the same time, so much gas is supplied via the valve 13, that a pressure of, for example, 1 bar is maintained in the upper gas space.
  • the gas supplied can have the temperature of the melt 2, for example.
  • Metal can be fed into the crucible 1, for example by pushing a metal ingot 21 through the upper crucible opening 22, the ingot melting in contact with the melt 2.
  • the molded part 11, which forms the gas passage opening 10, is preferably formed from heat-resistant material, for example ceramic or quartz glass.
  • FIG. 2 to 4 show alternative embodiments for the formation of the gas passage opening 10.
  • the numerals designate the same elements as in FIG. 1.
  • a molten metal is produced from solder with a melting point of 300 ° C. Air is used as the gaseous medium. A pressure of 1 bar prevails in the upper gas space 8. A pressure of 0.01 bar is maintained in the lower gas space 9.
  • the nipple 3 of the quartz crucible 1 arranged in the concentric gas passage opening 10 of 3 mm diameter has an open cross section of 0.5 mm diameter and a wall thickness of the nipple of 0.2 mm.
  • the helium gas supplied via line 12 has the temperature of the molten metal of 300 ° C. 19 g of metal powder per second are obtained from a melt outflow opening 3.
  • the powder consists of spheres with diameters between 5 ⁇ m and 50 ⁇ m.
  • the focus of the diameter distribution is 10 ⁇ m. Very few powder particles have diameters above 30 1 1m. Sporadic deviations from the spherical shape are obtained. These powder particles have an elliptical shape. The individual powder particles have a smooth surface on which individual crystallites can be recognized as differently reflecting areas without the spherical shape being disturbed.

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
EP84103487A 1983-03-29 1984-03-29 Metallpulver und Verfahren zu dessen Herstellung Expired EP0120506B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84103487T ATE34109T1 (de) 1983-03-29 1984-03-29 Metallpulver und verfahren zu dessen herstellung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3311343A DE3311343C2 (de) 1983-03-29 1983-03-29 Verfahren zur Herstellung von feinen Metallpulvern sowie Vorrichtung zur Durchführung des Verfahrens
DE3311343 1983-03-29

Publications (3)

Publication Number Publication Date
EP0120506A2 EP0120506A2 (de) 1984-10-03
EP0120506A3 EP0120506A3 (en) 1984-11-21
EP0120506B1 true EP0120506B1 (de) 1988-05-11

Family

ID=6194947

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84103487A Expired EP0120506B1 (de) 1983-03-29 1984-03-29 Metallpulver und Verfahren zu dessen Herstellung

Country Status (6)

Country Link
US (1) US4534917A (enrdf_load_stackoverflow)
EP (1) EP0120506B1 (enrdf_load_stackoverflow)
JP (1) JPS59229402A (enrdf_load_stackoverflow)
AT (1) ATE34109T1 (enrdf_load_stackoverflow)
CA (1) CA1224947A (enrdf_load_stackoverflow)
DE (1) DE3311343C2 (enrdf_load_stackoverflow)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3533964C1 (de) * 1985-09-24 1987-01-15 Alfred Prof Dipl-Ing Dr-I Walz Verfahren und Vorrichtung zum Herstellen von Feinstpulver in Kugelform
DE3533954A1 (de) * 1985-09-24 1987-03-26 Agfa Gevaert Ag Automatisch be- und entladbare roentgenfilmkassette und hierfuer geeignetes roentgenfilmkassettenbe- und -entladegeraet
JPH0628570B2 (ja) * 1986-02-13 1994-04-20 雪印乳業株式会社 カプセル体の製造方法及び装置
FR2605538B1 (fr) * 1986-10-27 1989-12-22 Serole Bernard Tuyere d'atomisation par gaz a ecoulement liquide stabilise aerodynamiquement
JPS63262405A (ja) * 1987-04-20 1988-10-28 Fukuda Metal Foil & Powder Co Ltd 金属粉末製造方法
DE3730147A1 (de) * 1987-09-09 1989-03-23 Leybold Ag Verfahren zur herstellung von pulvern aus geschmolzenen stoffen
DE3735787A1 (de) * 1987-09-22 1989-03-30 Stiftung Inst Fuer Werkstoffte Verfahren und vorrichtung zum zerstaeuben mindestens eines strahls eines fluessigen stoffs, vorzugsweise geschmolzenen metalls
DE3737130C2 (de) * 1987-11-02 1996-01-18 Gerking Lueder Dr Ing Verfahren und Vorrichtung zum Herstellen von Feinstpulver
US4880162A (en) * 1988-06-15 1989-11-14 Air Products And Chemicals, Inc. Gas atomization nozzle for metal powder production
EP0358162B1 (en) * 1988-09-07 1994-05-25 Daido Tokushuko Kabushiki Kaisha Apparatus for producing metal powder
NO165288C (no) * 1988-12-08 1991-01-23 Elkem As Silisiumpulver og fremgangsmaate for fremstilling av silisiumpulver.
DE3843859A1 (de) * 1988-12-24 1990-06-28 Messer Griesheim Gmbh Herstellung von titanpulvern durch verduesung der schmelze
DE3913649A1 (de) * 1989-04-26 1991-01-17 Krupp Pulvermetall Gmbh Verfahren und anlage zum herstellen metallischer pulver aus einer metallschmelze durch gasverduesen
US5238482A (en) * 1991-05-22 1993-08-24 Crucible Materials Corporation Prealloyed high-vanadium, cold work tool steel particles and methods for producing the same
JPH05117724A (ja) * 1992-04-16 1993-05-14 Fukuda Metal Foil & Powder Co Ltd 金属粉末製造方法
DE19607114A1 (de) * 1995-01-28 1996-12-05 Lueder Dr Ing Gerking Fäden aus Schmelzen mittels kalter Gasstrahlen
US5905000A (en) 1996-09-03 1999-05-18 Nanomaterials Research Corporation Nanostructured ion conducting solid electrolytes
US6933331B2 (en) 1998-05-22 2005-08-23 Nanoproducts Corporation Nanotechnology for drug delivery, contrast agents and biomedical implants
US5788738A (en) * 1996-09-03 1998-08-04 Nanomaterials Research Corporation Method of producing nanoscale powders by quenching of vapors
DE19758111C2 (de) * 1997-12-17 2001-01-25 Gunther Schulz Verfahren und Vorrichtung zur Herstellung feiner Pulver durch Zerstäubung von Schmelzen mit Gasen
DE29924924U1 (de) 1999-01-19 2006-12-21 BEGO Bremer Goldschlägerei Wilh. Herbst GmbH & Co. KG Formkörper zur Verwendung als Zahnersatz und dentales Hilfsteil
DE19929709C2 (de) * 1999-06-24 2001-07-12 Lueder Gerking Verfahren zur Herstellung von im Wesentlichen endlosen feinen Fäden und Verwendung der Vorrichtung zur Durchführung des Verfahrens
DE10001968B4 (de) * 1999-10-15 2004-02-12 Applikations- Und Technikzentrum Für Energieverfahrens-, Umwelt- Und Strömungstechnik (Atz-Evus) Verfahren zur Herstellung eines Pulvers
US6805726B1 (en) * 1999-10-15 2004-10-19 Applikations - Und Technikzentrum Fur Energieverfahrens- Umvelt- Und Stromungstechnik (Atz-Evus) Method for producing a powder
DE10015109A1 (de) * 2000-03-28 2001-10-04 Peter Walzel Verfahren und Vorrichtungen zur Herstellung gleich großer Tropfen
AT409136B (de) * 2000-05-19 2002-05-27 Tribovent Verfahrensentwicklg Einrichtung zum zerstäuben und zerkleinern von flüssigen schmelzen
US6444009B1 (en) * 2001-04-12 2002-09-03 Nanotek Instruments, Inc. Method for producing environmentally stable reactive alloy powders
US6855426B2 (en) 2001-08-08 2005-02-15 Nanoproducts Corporation Methods for producing composite nanoparticles
DE10150931A1 (de) * 2001-10-11 2003-04-30 Lueder Gerking Verbesserte Gemischbildung in Verbrennungskraftmaschinen
US7708974B2 (en) 2002-12-10 2010-05-04 Ppg Industries Ohio, Inc. Tungsten comprising nanomaterials and related nanotechnology
AT412093B (de) * 2003-03-11 2004-09-27 Tribovent Verfahrensentwicklg Vorrichtung zum zerstäuben von schmelzen
DE10340606B4 (de) * 2003-08-29 2005-10-06 Gerking, Lüder, Dr.-Ing. Vorrichtung zum Verdüsen eines Schmelzestrahls und Verfahren zum Verdüsen von hochschmelzenden Metallen und Keramikschmelzen
AT7094U3 (de) * 2004-06-17 2005-03-25 Imr Metalle Und Technologie Gm Verfahren und vorrichtung zum zerstäuben von flüssigkeitsfilmen
JP4504775B2 (ja) * 2004-10-04 2010-07-14 日本アトマイズ加工株式会社 導電ペースト
US8231369B2 (en) * 2006-10-24 2012-07-31 Beneq Oy Device and method for producing nanoparticles
CN103043665B (zh) * 2013-01-24 2014-11-26 厦门大学 一种硅粉的制备方法
DE102013022096B4 (de) 2013-12-20 2020-10-29 Nanoval Gmbh & Co. Kg Vorrichtung und Verfahren zum tiegelfreien Schmelzen eines Materials und zum Zerstäuben des geschmolzenen Materials zum Herstellen von Pulver
DE102015010209A1 (de) 2015-08-05 2016-03-17 Daimler Ag Vorrichtung zum Versehen eines Substrats mit einem Werkstoff
JP6544836B2 (ja) * 2017-07-03 2019-07-17 株式会社 東北テクノアーチ 金属粉末の製造装置及びその製造方法
BR112020009436B1 (pt) * 2017-11-14 2023-11-14 Pyrogenesis Canada Inc Processo e aparelho para esferoidizar e/ou atomizar uma matériaprima
EP3747574A1 (de) 2019-06-05 2020-12-09 Hightech Metal ProzessentwicklungsgesellschaftmbH Verfahren und vorrichtung zur herstellung von materialpulver
DE102021208605A1 (de) 2021-08-06 2023-02-09 Sms Group Gmbh Wechselsystem für eine Tundish-Einheit, Tundish-Einheit für ein Wechselsystem, Verdüsungsanlage sowie Verfahren zum Verdüsen von Metallschmelze
DE102021212367A1 (de) 2021-11-03 2023-05-04 Sms Group Gmbh Verdüsungs-Einheit zum Verdüsen von metallenen Schmelzen, insbesondere für pulvermetallurgische Zwecke
DE102022211865A1 (de) 2022-11-09 2024-05-16 Gfe Metalle Und Materialien Gmbh Vorrichtung zur Verdüsung eines Schmelzstromes mittels eines Verdüsungsgases
WO2025051364A1 (de) 2023-09-07 2025-03-13 Wacker Chemie Ag Kontinuierliches schmelzen von silicium für nachgeschaltete prozesse

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB952457A (en) * 1959-03-23 1964-03-18 Kenkichi Tachiki Atomization
FR1389512A (fr) * 1963-12-18 1965-02-19 Centre Nat Rech Scient Perfectionnements apportés aux procédés de graissage et aux lubrifiants de même qu'à la préparation de ces derniers
US3378883A (en) * 1965-06-29 1968-04-23 Stanford Research Inst Vacuum atomization
GB1123825A (en) * 1965-10-15 1968-08-14 Toho Zinc Co Ltd Production of metal powders
DE1758844A1 (de) * 1968-08-19 1971-03-04 Gerliwanow Wadim G Verfahren zum Gewinnen von feindispersen Metall- und Legierungspulvern
US3719733A (en) * 1970-12-03 1973-03-06 Monsanto Co Method for producing spherical particles having a narrow size distribution
DE2111613A1 (de) * 1971-03-11 1972-09-21 Deutsche Edelstahlwerke Ag Vorrichtung zum Gasverduesen von schmelzfluessigem Metall zu Pulver
JPS491153A (enrdf_load_stackoverflow) * 1972-04-17 1974-01-08
JPS5233910B2 (enrdf_load_stackoverflow) * 1972-05-30 1977-08-31
US4060355A (en) * 1972-08-02 1977-11-29 Firma Vki-Rheinhold & Mahla Ag Device for the manufacture of fibers from fusible materials
GB1604019A (en) * 1978-05-31 1981-12-02 Wiggin & Co Ltd Henry Atomisation into a chamber held at reduced pressure
US4469313A (en) * 1981-06-19 1984-09-04 Sumitomo Metal Industries Apparatus for production of metal powder
US4402885A (en) * 1982-04-30 1983-09-06 Owens-Corning Fiberglas Corporation Process for producing atomized powdered metal or alloy

Also Published As

Publication number Publication date
DE3311343C2 (de) 1987-04-23
EP0120506A3 (en) 1984-11-21
JPS59229402A (ja) 1984-12-22
JPH0253482B2 (enrdf_load_stackoverflow) 1990-11-16
EP0120506A2 (de) 1984-10-03
ATE34109T1 (de) 1988-05-15
DE3311343A1 (de) 1984-10-04
US4534917A (en) 1985-08-13
CA1224947A (en) 1987-08-04

Similar Documents

Publication Publication Date Title
EP0120506B1 (de) Metallpulver und Verfahren zu dessen Herstellung
EP0220418B1 (de) Verfahren und Vorrichtung zum Herstellen von Feinstpulver in Kugelform
DE68917132T2 (de) Verfahren und vorrichtung zum zerstäuben einer metallschmelze.
US4619597A (en) Apparatus for melt atomization with a concave melt nozzle for gas deflection
DE69113729T2 (de) Sauerstoff-Brennstoff-Brennereinheit und Betriebsweise.
US3719733A (en) Method for producing spherical particles having a narrow size distribution
DE3505660A1 (de) Vorrichtung und verfahren zum zerstaeuben instabiler schmelzstroeme
DE4106605A1 (de) Verfahren zur herstellung eines massiven, erstarrten amorphen legierungsmaterials
DE69202728T2 (de) Metallische spritzung mittels mehrerer düsen.
DE10340606B4 (de) Vorrichtung zum Verdüsen eines Schmelzestrahls und Verfahren zum Verdüsen von hochschmelzenden Metallen und Keramikschmelzen
DE102019214555A1 (de) Vorrichtung zur Verdüsung eines Schmelzstromes mittels eines Gases
WO1999030858A1 (de) Verfahren und vorrichtung zur herstellung feiner pulver durch zerstäubung von schmelzen mit gasen
DE69321522T2 (de) Vorrichtung zur Zerstäubung geschmolzenes Metalls
DE3505662A1 (de) Verfahren zum herstellen feinen pulvers aus geschmolzenem metall sowie vorrichtung zum zerstaeuben
JP2703818B2 (ja) 溶融体を噴霧する方法及び該方法を使用する装置
DE68902404T2 (de) Blasenduese zum zerfasern von material.
DE3505661C2 (enrdf_load_stackoverflow)
EP4368318A1 (de) Vorrichtung und verfahren zur verdüsung eines schmelzstromes mittels eines verdüsungsgases
DE2847713A1 (de) Verfahren zur herstellung von granulaten niedrig schmelzender metalle
DE3638016A1 (de) Verfahren und vorrichtung zum herstellen von schnell verfestigtem pulver aus hochschmelzendem keramikmaterial
EP1222147B1 (de) Verfahren und vorrichtung zur herstellung von aus im wesentlichen sphärischen partikeln gebildeten pulvern
EP1239983B1 (de) Herstellung eines pulvers aus geschmolzenem metall durch zerstäubung mit reaktivem gas
DE69213005T2 (de) Verfahren und vorrichtung zur herstellung von amorphem metalldraht auf eisenbasis
DE3737130C2 (de) Verfahren und Vorrichtung zum Herstellen von Feinstpulver
DE10132914C2 (de) Verfahren zur Herstellung monodisperser sphärischer Granalien

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT LI LU NL SE

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19841218

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 34109

Country of ref document: AT

Date of ref document: 19880515

Kind code of ref document: T

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
BECA Be: change of holder's address

Free format text: 880511 *GERKING LUDER DR. ING.:AMSELSTRASSE 26, D-1000 BERLIN 33

BECH Be: change of holder

Free format text: 880511 *GERKING LUDER DR. ING.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;LUDER GERKING

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: DR.-ING. LUEDER GERKING

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLS Nl: assignments of ep-patents

Owner name: DR.-ING. LUEDER GERKING TE BERLIJN, BONDSREPUBLIEK

ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 84103487.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19950401

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010312

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010319

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010323

Year of fee payment: 18

Ref country code: CH

Payment date: 20010323

Year of fee payment: 18

Ref country code: BE

Payment date: 20010323

Year of fee payment: 18

Ref country code: AT

Payment date: 20010323

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010326

Year of fee payment: 18

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020329

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

BERE Be: lapsed

Owner name: *GERKING LUDER DR. ING.

Effective date: 20020331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

EUG Se: european patent has lapsed

Ref document number: 84103487.9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021129

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20021001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST