EP0119499A1 - Zylinderkopf und Verfahren zur Herstellung - Google Patents

Zylinderkopf und Verfahren zur Herstellung Download PDF

Info

Publication number
EP0119499A1
EP0119499A1 EP84101767A EP84101767A EP0119499A1 EP 0119499 A1 EP0119499 A1 EP 0119499A1 EP 84101767 A EP84101767 A EP 84101767A EP 84101767 A EP84101767 A EP 84101767A EP 0119499 A1 EP0119499 A1 EP 0119499A1
Authority
EP
European Patent Office
Prior art keywords
sintered
heat
inorganic fibers
insulating lining
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84101767A
Other languages
English (en)
French (fr)
Other versions
EP0119499B1 (de
Inventor
Dieter Dr. Dipl.-Ing. Fingerle
Ulf Dr. Dipl.-Mineraloge Dworak
Ulrich Dr. Dipl.-Ing. Krohn
Hans Dr. Dipl.-Chem. Olapinski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Feldmuehle AG
Original Assignee
Feldmuehle AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6193830&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0119499(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Feldmuehle AG filed Critical Feldmuehle AG
Publication of EP0119499A1 publication Critical patent/EP0119499A1/de
Application granted granted Critical
Publication of EP0119499B1 publication Critical patent/EP0119499B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/02Surface coverings of combustion-gas-swept parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/11Thermal or acoustic insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/08Ceramics; Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/92Fire or heat protection feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
    • Y10T428/1314Contains fabric, fiber particle, or filament made of glass, ceramic, or sintered, fused, fired, or calcined metal oxide, or metal carbide or other inorganic compound [e.g., fiber glass, mineral fiber, sand, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1328Shrinkable or shrunk [e.g., due to heat, solvent, volatile agent, restraint removal, etc.]
    • Y10T428/1331Single layer [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/249928Fiber embedded in a ceramic, glass, or carbon matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • Y10T428/257Iron oxide or aluminum oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension

Definitions

  • the invention relates to a heat-insulating lining made of ceramic material for a metal-cast hot gas line, in particular in the cylinder head of an internal combustion engine, and a method for its production.
  • Heat-insulating linings in the form of hollow sintered shaped bodies made of ceramic materials and their use in hot gas pipes, such as Exhaust pipes in the cylinder head and exhaust manifolds are known.
  • These hollow sintered moldings are e.g. encapsulated with metal in the manufacture of a cylinder head.
  • the interior of the hollow shaped sintered body can, if necessary, be filled with molding sand in a manner known per se in order to avoid destruction of the shaped sintered body by the pressures occurring during casting.
  • a disadvantage of these proposals is e.g. with silicon carbide and aluminum oxide the insufficient insulation effect, while from other materials, e.g. Sintered moldings made from quartz have an unsatisfactory strength.
  • DE-AS 27 50 290 provides an aluminum titanate with 50 to 60% by weight of aluminum oxide, 40 to 45% by weight of titanium oxide, 2 to 5% by weight of kaolin and 0.1 to 1% by weight of magnesium silicate and is particularly suitable for the area of application in question tailored material properties.
  • aluminum titanate has a very low thermal conductivity, this proposal has not been able to gain widespread acceptance.
  • a disadvantage is in particular the still too low strength of the aluminum titanate and also that only thin wall thicknesses of approximately 2 to 3 mm of the sintered molded body can be achieved, so that the insulation effect which can actually be achieved remains unsatisfactory.
  • the low temperature resistance and therefore intensive cooling of the aluminum leads to high energy losses.
  • the invention intends to provide a heat-insulating lining which is also suitable for sheathing with aluminum, has an excellent insulating effect and has an increased thermal and mechanical strength.
  • Another object of the invention is to use ceramic materials which, because of their inadequate insulation and / or their low mechanical and thermal strength, have so far not been able to assert themselves on a broad level in the known structural solutions.
  • the present invention provides a heat-insulating lining made of ceramic material for a metal-cast hot gas line, in particular in the cylinder head of an internal combustion engine, which is characterized in that the heat-insulating lining consists of a sintered molded body made of ceramic material, which has an envelope containing or consisting of inorganic fibers.
  • the present invention makes it possible to produce heat-insulating linings for hot gas pipes to be encapsulated with metal, with a considerably higher wall thickness, and thereby to achieve improved insulation effects.
  • the wall thickness of the heat-insulating lining according to the invention can be up to three times higher than that of the sintered moldings previously proposed for this purpose.
  • the invention thus makes it possible to manufacture cylinder heads and downstream exhaust gas guides from aluminum instead of gray cast iron, without the need for increased cooling.
  • the heat-insulating lining according to the invention is also outstandingly suitable for sheathing with gray cast iron, in particular when the wall thickness of the gray cast iron shell is very high and high compressive forces thus occur when the cast melt solidifies.
  • the elastic fiber covering acts as a buffer against the compressive forces that occur during casting due to solidification of the melt and prevents deformation or destruction of the heat-insulating lining by relieving stress peaks that occur due to mass accumulations, especially when casting with gray cast iron, but also with aluminum castings.
  • the heat-insulating lining according to the invention is produced by first in a sintered molded body made of ceramic material, for example by slip casting, is known and is sintered in a conventional manner.
  • an envelope containing or consisting of inorganic fibers is applied to this shaped sintered body.
  • the inorganic fibers are mixed with an organic or inorganic binder and applied to the shaped sintered body.
  • the same ceramic material is preferably used as the inorganic binder, from which the sintered molded body to be coated with the fibers is also made.
  • Mineral fibers have proven to be particularly suitable, in particular fibers made from aluminum oxide, zirconium oxide, mullite or kaolinite.
  • the layer thickness of the covering essentially determines the manageability when casting with a metallic melt and the heat-insulating effect. Layer thicknesses of 1 to 7 mm have proven to be particularly suitable, the covering having a density of 0.8 to 1.2 g / cm 3 .
  • Ceramic materials for producing the sintered shaped body to be coated with inorganic fibers have proven to be particularly suitable: mullite, zirconium oxide, magnesium aluminum silicate (MAS), in particular cordierite, magnesium aluminum titanate (MAT), aluminum titanate (AT) or
  • LAS Lithium aluminum silicate
  • the above-mentioned ceramic materials in the form of slip suspensions are used to connect the inorganic fibers to the sintered molding.
  • slip suspensions of such ceramic materials are used, from which the sintered molding to be encased is also made.
  • a very particularly preferred embodiment has proven to be a sintered shaped body made of aluminum titanate, which contains a sheath made of inorganic fibers which are fastened to the shaped body with aluminum titanate as a binder.
  • organic binders for the production of the casing are also possible. Even if these binders ver during the heating carried out after the application of the inorganic fibers for the evaporation of water or solvent are burned, the adhesion of the inorganic fibers on the sintered molded body is sufficient for many areas of application. In this case, the covering of the shaped sintered body consists only of inorganic fibers.
  • a particularly preferred method for producing the heat-insulating lining according to the invention consists in spraying inorganic fibers, which are contained in a slip solution consisting of ceramic material, onto a sintered molded body made of ceramic material.
  • an exhaust pipe 4 is shown in a partially illustrated cylinder head 5 of an internal combustion engine.
  • the heat-insulating lining 1 of the exhaust pipe 4 consists of a sintered body 2 made of aluminum titanate with a wall thickness of 2 mm and a covering 3 made of kaolinite fibers, which are connected to the sintered body 2 with aluminum titanate as a binder.
  • the layer thickness of the covering 3 is 5 mm.
  • the density of the coating is 1.05 g / cm 3 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Thermal Insulation (AREA)
  • Exhaust Silencers (AREA)

Abstract

Eine wärmeisolierende Auskleidung (1) in der Abgasleitung (4) eines Zylinderkopfes (5) besteht aus einem Sinterformkörper (2) aus keramischem Werkstoff, der eine Umhüllung (3) aus anorganischen Fasern enthält oder daraus besteht.

Description

  • Die Erfindung betrifft eine wärmeisolierende Auskleidung aus keramischem Werkstoff für eine metallumgossene Heißgasleitung, insbesondere im Zylinderkopf eines Verbrennungsmotors und ein Verfahren zu ihrer Herstellung.
  • Wärmeisolierende Auskleidungen in Form von hohlen Sinterformkörpern aus keramischen Werkstoffen und deren Anwendung in Heißgasleitungen, wie z.B. Abgasleitungen im Zylinderkopf und Auspuffkrümmern sind bekannt. Diese hohlen Sinterformkörper werden z.B. bei der Herstellung eines Zylinderkopfes mit Metall umgossen. Das Innere des hohlen Sinterformkörpers kann dabei ggf. in an sich bekannter Weise mit Formsand gefüllt werden, um eine Zerstörung des Sinterformkörpers durch die beim Gießen auftretenden Drücke zu vermeiden.
  • Ältere Verfahren zur Herstellung solcher mit Metall zu umgießenden hohlen Sinterformkörper aus keramischen Werkstoffen sind in der DE-PS- 21 63 717 und 23 54 254 beschrieben. Diese Vorschläge sehen Mischungen aus Siliziumoxid und Aluminiumoxid, bzw. lehmhaltige Schamotte, Aluminiumoxid, Siliziumoxid, Sillimanit, Mullit, Zirkon, Chromit, Magnesia-Klinker, Siliziumcarbid, Elektrokorund, Quarzgut, Kyanit, Magnesia, geschmolzenen Spinell, Siliziumnitrid, Chrommagnesia, Chrommagnesit, Vermikulit, Vermikulitasbest, Baryt, gebrannte Diatomen-Erde und Bimsstein und als Bindemittel Tonerde oder Aluminiumphosphat zur Herstellung von Sinterformkörpern vor.
  • Nachteilig bei diesen Vorschlägen ist wie z.B. bei Siliziumcarbid und Aluminiumoxid die zu geringe Isolierwirkung, während aus anderen Werkstoffen, wie z.B. aus Quarzgut hergestellte Sinterformkörper eine noch nicht befriedigende Festigkeit aufweisen.
  • Die DE-AS 27 50 290 sieht ein Aluminiumtitanat mit 50 bis 60 Gew.% Aluminiumoxid, 40 bis 45 Gew.% Titanoxid, 2 bis 5 Gew.% Kaolin und 0,1 bis 1 Gew.% Magnesiumsilikat und für den fraglichen Anwendungsbereich besonders zugeschnittenen Materialeigenschaften vor. Obwohl Aluminiumtitanat eine sehr geringe Wärmeleitfähigkeit besitzt, hat sich auch dieser Vorschlag auf breiter Ebene nicht durchsetzen können. Nachteilig ist insbesondere die noch zu geringe Festigkeit des Aluminiumtitanats und ferner, daß nur dünne Wandstärken von ca. 2 bis 3 mm des Sinterformkörpers erzielbar sind, so daß die tatsächlich erreichbare Isolierwirkung noch unbefriedigend bleibt. Insbesondere bei mit Aluminium umgossenen Heißgasleitungen kommt es infolge der geringen Temperaturbeständigkeit und dadurch notwendigen intensiven Kühlung des Aluminiums zu hohen Energieverlusten.
  • Aufgabe der vorliegenden Erfindung ist es daher, diese bekannten Nachteile zu beseitigen und die als wärmeisolierende Auskleidung bekanntgewordenen Sinterformkörper in ihrer wärmeisolierenden Wirkung und ihrer thermischen-und mechanischen Belastbarkeit zu. verbessern. Insbesondere will die Erfindung eine wärmeisolierende Auskleidung zur Verfügung stellen, die auch für eine Ummantelung mit Aluminium geeignet ist, dabei eine ausgezeichnete Isolierwirkung aufweist und über eine erhöhte thermische und mechanische Belastbarkeit verfügt.
  • Eine weitere Aufgabe sieht die Erfindung darin, auch solche keramischen Werkstoffe zu verwenden, die bisher wegen ihrer unzureichenden Isolierwirkung und/oder ihrer geringen mechanischen und thermischen Belastbarkeit bei den bekannten konstruktiven Lösungen und für sich allein sich auf breiter Ebene nicht durchsetzen konnten.
  • Zur Lösung dieser Aufgabe sieht die vorliegende Erfindung eine wärmeisolierende Auskleidung aus keramischem Werkstoff für eine metallumgossene Heißgasleitung, insbesondere im Zylinderkopf eines Verbrennungsmotors vor, die dadurch gekennzeichnet, ist, daß die wärmeisolierende Auskleidung aus einem Sinterformkörper aus keramischem Werkstoff besteht, der eine anorganische Fasern enthaltende oder daraus bestehende Umhüllung aufweist.
  • Die vorliegende Erfindung ermöglicht es, wärmeisolierende Auskleidungen für mit Metall zu umgießende Heißgasleitungen mit erheblich höherer Wanddicke herzustellen und dadurch verbesserte Isolierwirkungen zu erzielen. Die Wanddicke der erfindungsgemäßen wärmeisolierenden Auskleidung kann dabei im Vergleich zu den bisher für diesen Verwendungszweck vorgeschlagenen Sinterformkörpern bis zu dreimal höher sein. Die Erfindung ermöglicht es damit, Zylinderköpfe und nachgeschaltete Abgasführungen aus Aluminium statt aus Grauguß herzustellen, ohne daß dabei erhöhter Kühlaufwand erforderlich ist. Die erfindungsgemäße wärmeisolierende Auskleidung ist aber auch hervorragend für die Ummantelung mit Grauguß geeignet, insbesondere dann, wenn die Wandstärke des Graugußmantels sehr hoch ist und dadurch beim Erstarren der Gußschmelze hohe Druckkräfte auftreten. Die elastische Faserumhüllung wirkt gegenüber den beim Gießen durch Erstarren der Schmelze auftretenden Druckkräften als Puffer und vermeidet eine Deformierung oder Zerstörung der wärmeisolierenden Auskleidung, indem sie Spannungsspitzen, die durch Massenanhäufungen, insbesondere beim Gießen mit Grauguß, aber auch beim Aluminiumguß, auftreten, abbaut.
  • Die Herstellung der erfindungsgemäßen wärmeisolierenden Auskleidung erfolgt, indem zunächst in an sich bekannter Weise ein Sinterformkörper aus keramischem Werkstoff, z.B. durch Schlickerguß, hergestellt und in üblicher Weise gesintert wird.
  • Anschließend wird auf diesen Sinterformkörper eine anorganische Fasern enthaltende oder daraus bestehende Umhüllung aufgebracht. Die anorganischen Fasern werden dazu mit einem organischen oder anorganischen Bindemittel vermischt und auf den Sinterformkörper aufgetragen. Als anorganisches Bindemittel wird vorzugsweise der gleiche keramische Werkstoff verwendet, aus dem auch der mit den Fasern zu umhüllende Sinterformkörper besteht. Zur Erzeugung einer optimalen Belastbarkeit der erfindungsgemäßen wärmeisolierenden Auskleidung während des Umgießens mit einer metallischen Schmelze, insbesondere mit einer Graugußschmelze, hat es sich als vorteilhaft erwiesen, nur solche anorganischen Fasern zur Herstellung der Umhüllung zu verwenden, die eine kurzzeitige Temperaturbelastbarkeit bis mindestens 1500 °C aufweisen. Als hervorragend geeignet haben sich mineralische Fasern erwiesen, insbesondere Fasern aus Aluminiumoxid, Zirkonoxid, Mullit oder Kaolinit.
  • Die Schichtdicke der Umhüllung bestimmt im wesentlichen die Handhabbarkeit beim Umgießen mit einer metallischen Schmelze un41 die wärmeisolierende Wirkung. Als besonders geeignet haben sich Schichtdicken von 1 bis 7 mm erwiesen, wobei die Umhüllung eine Dichte von 0,8 bis 1,2 g/cm3 aufweist.
  • Als keramische Werkstoffe zur Herstellung des mit anorganischen Fasern zu umhüllenden Sinterformkörpers haben sich als besonders geeignet erwiesen: Mullit, Zirkonoxid, Magnesium-Aluminiumsilikat (MAS), insbesondere Cordierit, Magnesium-Aluminiumtitanat (MAT), Aluminiumtitanat (AT) oder
  • Lithiumaluminiumsilikat (LAS), von denen insbesondere Aluminiumtitanat hervorragend geeignet ist. Auch Mischungen dieser kermaischen Werkstoffe sind zur Herstellung des Sinterformkörpers geeignet.
  • Zur Verbindung der anorganischen Fasern mit dem Sinterformkörper werden in einer zweckmäßigen Ausführungsform die vorstehend genannten keramischen Werkstoffe in Form von Schlickersuspensionen verwendet. In besonders bevorzugter Ausführungsform der Erfindung werden dabei Schlickersuspensionen solcher keramischen Werkstoffe verwendet, aus denen auch der zu umhüllende Sinterformkörper hergestellt ist. Hierbei hat sich als eine ganz besonders bevorzugte Ausführungsform ein Sinterformkörper aus Aluminiumtitanat erwiesen, der eine Umhüllung aus anorganischen Fasern enthält, die mit Aluminiumtitanat als Bindemittel auf dem Formkörper befestigt sind.
  • Es sind aber auch organische Bindemittel zur Herstellung der Umhüllung möglich. Auch wenn diese Bindemittel bei der im Anschluß an den Auftrag der anorganischen Fasern zur Verdampfung von Wasser oder Lösungsmittel durchgeführten Erhitzung verbrannt werden, reicht die Haftung der anorganischen Fasern auf dem Sinterformkörper für viele Anwendungsbereiche aus. In diesem Fall besteht die Umhüllung des Sinterformkörpers lediglich aus anorganischen Fasern.
  • Ein besonders bevorzugtes Verfahren zur Herstellung der erfindungsgemäßen wärmeisolierenden Auskleidung besteht darin, daß auf einen aus keramischem Werkstoff hergestellten Sinterformkörper anorganische Fasern, die in einer aus keramischem Werkstoff bestehenden Schlickerlösung enthalten sind, aufgespritzt werden.
  • Zur näheren Erklärung der Erfindung dient die Figur und die zugehörige Beschreibung, ohne daß die Erfindung auf die gezeigte Ausführungsform beschränkt ist.
  • In der Figur ist eine Abgasleitung 4 in einem teilweise dargestellten Zylinderkopf 5 eines Verbrennungsmotors dargestellt. Die wärmeisolierende Auskleidung 1 der Abgasleitung 4 besteht aus einem Sinterformkörper 2 aus Aluminiumtitanat mit einer Wanddicke von 2 mm und einer Umhüllung 3 aus Kaolinitfasern, die mit Aluminiumtitanat als Bindemittel mit dem Sinterformkörper 2 verbunden sind. Die Schichtdicke der Umhüllung 3 beträgt 5 mm. Die Dichte der Umhüllung beträgt 1,05 g/cm3.

Claims (10)

1. Wärmeisolierende Auskleidung aus keramischem Werkstoff für eine metallumgossene Heißgasleitung, insbesondere im Zylinderkopf eines Verbrennungsmotors, dadurch gekennzeichnet, daß die wärmeisolierende Auskleidung (1) aus einem Sinterformkörper (2) aus keramischem Werkstoff besteht, der eine anorganische Fasern enthaltende oder daraus bestehende Umhüllung (3) aufweist.
2. Sinterformkörper nach Anspruch 1, dadurch gekennzeichnet, daß die anorganischen Fasern kurzzeitig bis mindestens 1500 °C temperaturbelastbar sind.
3. Sinterformkörper nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die anorganischen Fasern mineralische Fasern sind.
4. Sinterformkörper nach Anspruch 2 und 3, dadurch gekennzeichnet, daß die mineralischen Fasern aus Aluminiumoxid, Zirkonoxid, Mullit oder Kaolinit bestehen.
5. Sinterformkörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Umhüllung (3) eine Schichtdicke D von 1 bis 7 mm, vorzugsweise 2 bis 6 mm aufweist.
6. Sinterformkörper nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Umhüllung (3) eine Dichte von 0,8 bis 1,2 g/cm3 aufweist.
7. Wärmeisolierende Auskleidung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Sinterformkörper (2) aus Mullit, Zirkonoxid, Magnesium-Aluminiumsilikat (MAS), insbesondere Cordierit, Magnesium-Aluminiumtitanat (MAT), Aluminiumtitanat (AT) oder Lithium-Aluminiumsilikat (LAS) besteht.
8. Wärmeisolierende Auskleidung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Umhüllung (3) aus anorganischen Fasern und einem keramischen Werkstoff als Bindemittel für die anorganischen Fasern besteht.
9. Wärmeisolierende Auskleidung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die wärmeisolierende Auskleidung (1) aus einem Sinterformkörper (2) aus Aluminiumtitanat besteht, der eine aus anorganischen Fasern und Aluminiumtitanat gebildete Umhüllung (3) aufweist.
10. Verfahren zur Herstellung einer wärmeisolierenden Auskleidung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die anorganischen Fasern aus einer einen keramischen Werkstoff enthaltenden Schlickersuspension auf den Sinterformkörper (2) aufgespritzt werden.
EP84101767A 1983-03-18 1984-02-21 Zylinderkopf und Verfahren zur Herstellung Expired EP0119499B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833309699 DE3309699A1 (de) 1983-03-18 1983-03-18 Waermeisolierende auskleidung
DE3309699 1983-03-18

Publications (2)

Publication Number Publication Date
EP0119499A1 true EP0119499A1 (de) 1984-09-26
EP0119499B1 EP0119499B1 (de) 1987-06-24

Family

ID=6193830

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84101767A Expired EP0119499B1 (de) 1983-03-18 1984-02-21 Zylinderkopf und Verfahren zur Herstellung

Country Status (5)

Country Link
US (1) US4526824A (de)
EP (1) EP0119499B1 (de)
JP (1) JPS59175693A (de)
DE (2) DE3309699A1 (de)
ES (1) ES530679A0 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0146731A2 (de) * 1983-12-22 1985-07-03 Dr.Ing.h.c. F. Porsche Aktiengesellschaft Hohler, rohrartiger Keramikkörper
EP0285312A2 (de) * 1987-03-24 1988-10-05 Ngk Insulators, Ltd. Zu umgiessendes keramisches Material und keramische Kanalauskleidungen
DE3711433A1 (de) * 1987-04-04 1988-10-20 Mahle Gmbh Luftgekuehlter leichtmetallzylinder fuer zweitaktmotoren
US5260116A (en) * 1987-03-24 1993-11-09 Ngk Insulators, Ltd. Ceramicm port liners
DE10029508B4 (de) * 2000-06-21 2008-11-20 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Kanaleinheit für den Ladungswechsel von Kolbenmaschinen und Verfahren zu ihrer Herstellung
DE102007026123A1 (de) * 2007-06-05 2008-12-11 Volkswagen Ag Zylinderkopf einer Brennkraftmaschine

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3444406A1 (de) * 1984-12-05 1986-06-05 Kolbenschmidt AG, 7107 Neckarsulm Gegossene bauteile fuer brennkraftmaschinen mit eingegossenen bewehrungskoerpern sowie verfahren zur herstellung der verbindung zwischen den bauteilen und den bewehrungskoerpern
DE3530924A1 (de) * 1985-08-29 1987-03-12 Alcan Aluminiumwerke Hitzebestaendiges bauteil und verfahren zu dessen herstellung
DE3638658C1 (de) * 1986-11-12 1988-04-21 Daimler Benz Ag Waermedaemmende Auskleidung fuer eine Gasturbine
US4770930A (en) * 1986-11-24 1988-09-13 Martin Marietta Energy Systems, Inc. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same
DE3706209C1 (de) * 1987-02-26 1987-10-29 Feldmuehle Ag Sinterformkoerper auf Basis von Aluminiumtitanat und Verfahren zu seiner Herstellung,sowie dessen Verwendung
JPH07111155B2 (ja) * 1987-04-11 1995-11-29 いすゞ自動車株式会社 断熱エンジン構造及びその製造方法
JPH01163444A (ja) * 1987-12-18 1989-06-27 Toyota Autom Loom Works Ltd シリンダヘッドのインテークポート
DE3843663A1 (de) * 1988-12-23 1990-06-28 Gruenzweig & Hartmann Montage Waermedaemmung fuer heisse gase fuehrende gussbauteile
US5340783A (en) * 1989-01-30 1994-08-23 Lanxide Technology Company, Lp Method of producing self-supporting aluminum titanate composites and products relating thereto
US5667898A (en) * 1989-01-30 1997-09-16 Lanxide Technology Company, Lp Self-supporting aluminum titanate composites and products relating thereto
US5139979A (en) * 1989-01-30 1992-08-18 Lanxide Technology Company, Lp Method of producing self-supporting aluminum titanate composites and products relating thereto
DE3926919C2 (de) * 1989-08-16 1998-02-05 Motoren Werke Mannheim Ag Abgaskanal mit isolierendem Leitungselement
JP2790866B2 (ja) * 1989-08-24 1998-08-27 日産自動車株式会社 燃焼装置の排気通路
JPH07508703A (ja) * 1992-06-12 1995-09-28 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー モノリシックセラミック/繊維強化セラミック複合材料
US5593745A (en) * 1994-02-24 1997-01-14 Caterpillar Inc. Insulated port liner assembly
JP3011076B2 (ja) * 1995-10-31 2000-02-21 トヨタ自動車株式会社 内燃機関のシリンダヘッド
DE19542944C2 (de) * 1995-11-17 1998-01-22 Daimler Benz Ag Brennkraftmaschine und Verfahren zum Aufbringen einer Wärmedämmschicht
DE19738622C2 (de) 1997-09-04 2003-06-12 Daimler Chrysler Ag Abgasleitung für eine einen Katalysator aufweisende Abgasanlage einer Verbrennungskraftmaschine
US20040177609A1 (en) * 2001-12-07 2004-09-16 Moore Dan T. Insulated exhaust manifold having ceramic inner layer that is highly resistant to thermal cycling
US6725656B2 (en) 2001-12-07 2004-04-27 Dan T. Moore Company Insulated exhaust manifold
US20100313832A1 (en) * 2007-06-01 2010-12-16 Rotec Design Ltd Low Heat Rejection High Efficiency Engine System
US7950441B2 (en) * 2007-07-20 2011-05-31 GM Global Technology Operations LLC Method of casting damped part with insert
DE102011018281A1 (de) * 2011-04-20 2012-10-25 Volkswagen Aktiengesellschaft Zylinderkopf einer Brennkraftmaschine und Verfahren zur Herstellung eines Zylinderkopfs
DE102011119219B4 (de) * 2011-11-15 2019-01-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines wärmedämmenden Isolationselements für Hochtemperaturanwendungen
DE102012025283A1 (de) * 2012-12-21 2014-06-26 Mahle International Gmbh Kolben für einen Verbrennungsmotor und Verfahren zu seiner Herstellung
DE102017121826A1 (de) 2017-09-20 2017-11-16 FEV Europe GmbH Zylinderkopf für eine Brennkraftmaschine und Verfahren zur Herstellung eines Zylinderkopfes
DE102021201476A1 (de) 2021-02-17 2022-08-18 Volkswagen Aktiengesellschaft Gehäuse umfassend mindestens einen Kanal zum Führen eines Kältemittels sowie Verfahren zum Herstellen eines entsprechenden Gehäuses

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3718172A (en) * 1971-07-16 1973-02-27 Gen Motors Corp Method of forming a thermally insulated composite article
FR2365705A1 (fr) * 1976-09-22 1978-04-21 Audi Ag Procede de fabrication d'un carter de moteur a combustion interne
FR2408557A1 (fr) * 1977-11-10 1979-06-08 Rosenthal Technik Ag Article refractaire et corps composite metal-ceramique en titanate d'aluminium silicate
US4346556A (en) * 1980-05-12 1982-08-31 General Motors Corporation Insulating engine exhaust port liner
EP0075844A2 (de) * 1981-09-24 1983-04-06 Toyota Jidosha Kabushiki Kaisha Wärmebeständige und -dämmende Gegenstände aus Leichtmetallegierungen und Verfahren zu ihrer Herstellung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008109A (en) * 1975-07-01 1977-02-15 Chemincon Incorporated Shaped heat insulating articles
DE2549256C2 (de) * 1975-11-04 1983-12-29 Volkswagenwerk Ag, 3180 Wolfsburg Wärmeisolierte Anordnung zur Durchleitung von unter hohen Temperaturen stehenden Gasen
US4104426A (en) * 1975-11-28 1978-08-01 Mcdonnell Douglas Corporation Production of muffler material
US4341826A (en) * 1980-02-13 1982-07-27 United Technologies Corporation Internal combustion engine and composite parts formed from silicon carbide fiber-reinforced ceramic or glass matrices
DE3108816A1 (de) * 1981-03-09 1982-09-30 Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen Waermedaemmender pressstoff auf der basis von aus der flammenhydrolyse gewonnenem mikroporoesem oxidaerogel, sowie verfahren zu seiner herstellung, eine daraus hergestellte folie und ein damit hergestelltes kaschiertes waermedaemmelement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3718172A (en) * 1971-07-16 1973-02-27 Gen Motors Corp Method of forming a thermally insulated composite article
FR2365705A1 (fr) * 1976-09-22 1978-04-21 Audi Ag Procede de fabrication d'un carter de moteur a combustion interne
FR2408557A1 (fr) * 1977-11-10 1979-06-08 Rosenthal Technik Ag Article refractaire et corps composite metal-ceramique en titanate d'aluminium silicate
US4346556A (en) * 1980-05-12 1982-08-31 General Motors Corporation Insulating engine exhaust port liner
EP0075844A2 (de) * 1981-09-24 1983-04-06 Toyota Jidosha Kabushiki Kaisha Wärmebeständige und -dämmende Gegenstände aus Leichtmetallegierungen und Verfahren zu ihrer Herstellung

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0146731A2 (de) * 1983-12-22 1985-07-03 Dr.Ing.h.c. F. Porsche Aktiengesellschaft Hohler, rohrartiger Keramikkörper
EP0146731B1 (de) * 1983-12-22 1989-01-11 Dr.Ing.h.c. F. Porsche Aktiengesellschaft Hohler, rohrartiger Keramikkörper
EP0285312A2 (de) * 1987-03-24 1988-10-05 Ngk Insulators, Ltd. Zu umgiessendes keramisches Material und keramische Kanalauskleidungen
EP0285312A3 (en) * 1987-03-24 1989-03-22 Ngk Insulators, Ltd. Ceramic materials to be insert-cast and ceramic port liners
EP0437303A2 (de) * 1987-03-24 1991-07-17 Ngk Insulators, Ltd. Auskleidungen für Kanäle
EP0437303A3 (en) * 1987-03-24 1991-07-31 Ngk Insulators, Ltd. Ceramic materials to be insert-cast and ceramic port liners
US5055435A (en) * 1987-03-24 1991-10-08 Ngk Insulators, Ltd. Ceramic materials to be insert-cast
US5260116A (en) * 1987-03-24 1993-11-09 Ngk Insulators, Ltd. Ceramicm port liners
DE3711433A1 (de) * 1987-04-04 1988-10-20 Mahle Gmbh Luftgekuehlter leichtmetallzylinder fuer zweitaktmotoren
DE10029508B4 (de) * 2000-06-21 2008-11-20 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Kanaleinheit für den Ladungswechsel von Kolbenmaschinen und Verfahren zu ihrer Herstellung
DE102007026123A1 (de) * 2007-06-05 2008-12-11 Volkswagen Ag Zylinderkopf einer Brennkraftmaschine
DE102007026123B4 (de) * 2007-06-05 2017-12-21 Volkswagen Ag Zylinderkopf einer Brennkraftmaschine

Also Published As

Publication number Publication date
EP0119499B1 (de) 1987-06-24
DE3309699C2 (de) 1990-01-04
JPS59175693A (ja) 1984-10-04
ES8600488A1 (es) 1985-10-01
US4526824A (en) 1985-07-02
DE3309699A1 (de) 1984-09-27
ES530679A0 (es) 1985-10-01
DE3464402D1 (en) 1987-07-30

Similar Documents

Publication Publication Date Title
EP0119499B1 (de) Zylinderkopf und Verfahren zur Herstellung
DE3852513T2 (de) Zu umgiessendes keramisches Material und keramische Kanalauskleidungen.
DE2049054C3 (de)
DE3881828T2 (de) Nachgiebige Schicht für Kompositkörper.
DE2354254A1 (de) Verfahren zur herstellung eines waermeisolierenden gusserzeugnisses
DE2750290B2 (de) Feuerfestartikel und Metall-Keramikverbundkörper aus silikathaltigem Aluminiumtitanat
DE2738926C2 (de) Schutzrohr für ein Thermoelement
DE2549256C2 (de) Wärmeisolierte Anordnung zur Durchleitung von unter hohen Temperaturen stehenden Gasen
DE1758532A1 (de) Keramikhohlkern,Metall-Keramik-Verbundhohlkoerper und Verfahren zu seiner Herstellung
DE3129391C1 (de) Verfahren zur Herstellung von Gusskoerpern mit eingegossenen Rohren aus Stahl
DE3444407A1 (de) Keramisches formteil mit gradientenfoermiger porositaet und dessen verwendung zur herstellung von verbundwerkstoff-formteilen
EP0292777B1 (de) Verfahren zur Herstellung eines keramikbeschichteten metallischen Bauteils
EP0047728B1 (de) Feuerfeste, asbestfreie, isolierende Spritzmasse
DE69204309T2 (de) Isolierendes monolithisches Feuerfest-Material.
DE2433698A1 (de) Hochfestes keramisches material fuer gussauskleidungen sowie verfahren zu dessen herstellung
DE3307193A1 (de) Feuerfeste platte, insbesondere fuer schieber- oder drehverschluesse an metallurgischen gefaessen
EP0060460B1 (de) Verfahren und Form für das Metallgiessen
DE19605149A1 (de) Verfahren zur Herstellung poröser keramischer Strukturen
EP0101911A2 (de) Temperaturschockbeständige keramische Auskleidungen
DE2205694A1 (de) Verfahren zur Wärmebehandlung von metallischem Flachmaterial sowie Stützwalze hierfür
DE678262C (de) Auskleidungsmasse fuer Schleudergussformen
DE959423C (de) Vorrichtung zur Verbrennung von fluessigen und festen Brennstoffen, insbesondere in Strahltriebwerken od. dgl.
DE2635799A1 (de) Verbrennungsmotorbestandteil auf siliziumnitridbasis
AT319494B (de) Brechkern für den Sandformguß, insbesondere für Eisen- und Stahlguß, und Verfahren zu seiner Herstellung
AT215608B (de) Kokillenauskleidung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19850305

ITF It: translation for a ep patent filed

Owner name: STUDIO INGG. FISCHETTI & WEBER

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL SE

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3464402

Country of ref document: DE

Date of ref document: 19870730

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ALCAN DEUTSCHLAND GMBH

Effective date: 19880321

NLR1 Nl: opposition has been filed with the epo

Opponent name: ALCAN DEUTSCHLAND GMBH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900110

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900118

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900119

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900131

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900227

Year of fee payment: 7

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19900228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900228

Year of fee payment: 7

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19901221

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
NLR2 Nl: decision of opposition
EUG Se: european patent has lapsed

Ref document number: 84101767.6

Effective date: 19910508