EP0116340B1 - Verfahren zur Herstellung von C2- bis C4-Olefinen aus Methanol/Dimethylether - Google Patents

Verfahren zur Herstellung von C2- bis C4-Olefinen aus Methanol/Dimethylether Download PDF

Info

Publication number
EP0116340B1
EP0116340B1 EP84101040A EP84101040A EP0116340B1 EP 0116340 B1 EP0116340 B1 EP 0116340B1 EP 84101040 A EP84101040 A EP 84101040A EP 84101040 A EP84101040 A EP 84101040A EP 0116340 B1 EP0116340 B1 EP 0116340B1
Authority
EP
European Patent Office
Prior art keywords
methanol
dimethyl ether
catalyst
preparation
olefines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84101040A
Other languages
English (en)
French (fr)
Other versions
EP0116340A1 (de
Inventor
Wolfgang Dr. Hoelderich
Wolf Dieter Dr. Mross
Matthias Dr. Schwarzmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to DE8686109574T priority Critical patent/DE3470732D1/de
Publication of EP0116340A1 publication Critical patent/EP0116340A1/de
Application granted granted Critical
Publication of EP0116340B1 publication Critical patent/EP0116340B1/de
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/86Borosilicates; Aluminoborosilicates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/86Borosilicates; Aluminoborosilicates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Definitions

  • Methanol can be easily produced from coal, via coal gasification and production of synthesis gas, using proven technologies. If it is possible to convert methanol into lower olefins in an economical manner, the processing processes customary today in the chemical industry can also be retained when coal is used as a raw material. In recent years, processes have therefore been developed which involve the production of olefins from methanol and / or dimethyl ether.
  • Such a method is described for example in DE-OS 26 15 150.
  • An aluminosilicate zeolite ZSM-5 is used as the catalyst, which is actually an aromatization catalyst.
  • the implementation can be directed towards olefin formation by various measures, in particular by shortening the residence time. Further parameters which favor olefin formation are in particular the dilution of methanol or dimethyl ether with inert gases or water vapor. Experience shows that high olefin yields can only be achieved by a very strong dilution of methanol and / or dimethyl ether with inert gas or water vapor. Other known processes have the disadvantage of low load capacity and rapid coking of the catalyst. The dilution of the catalyst with binder is also said to be an advantageous measure for olefin formation, but side reactions and deactivation of the catalyst are caused by the binders used.
  • EP-A-22 640 A process for the production of ethylene and higher hydrocarbons by splitting off water from ethanol was known from EP-A-22 640. This produces ethylene and large quantities of higher hydrocarbons, the formation of which is to be prevented in the present case.
  • boehmite was added as a binder before the deformation.
  • C 2 - to C 4 -olefins can be obtained in high yield from methanol and / or dimethyl ether by catalytic reaction at elevated temperature in the presence of borosilicate catalysts if borosilicate zeolites are used as catalysts which are tableted or extruded without binders and were treated with hydrogen fluoride and then with hydrochloric acid.
  • catalysts which are treated with hydrofluoric acid, preferably 0.1N HF, and then with hydrochloric acid, preferably with 15% HCl, washed thoroughly, dried at 100 ° C. and calcined at 500 ° C. It is essential to the invention that both successive measures (hydrofluoric acid and hydrochloric acid treatment) have a more advantageous effect on the catalytic properties of the catalyst than the individual measures.
  • a preferred method for producing the catalysts used according to the invention is to convert the borosilicate zeolites present in the ammonium form after synthesis into the acidic H form by calcination at 5400C / 16 h, and this calcined product for 1 to 3 hours between 60 ° and 80 ° C with a 0.001 n-1 n hydrofluoric acid, preferably 0.05-0.2n HF, to treat. After filtering off and washing out, the treated zeolite is dried at 100 ° C. to 140 ° C. and calcined at 500 ° C. to 600 ° C. for 5 hours.
  • hydrochloric acid treatment which is expediently carried out with 3 to 25%, in particular with 10-18% hydrochloric acid between 60 and 80 ° C. for 1 to 3 hours.
  • the product obtained is filtered off, washed out until no more C ions can be detected in the wash water, dried at 100 ° C. to 140 ° C. and calcined at 500 ° C. to 600 ° C. for 5 hours.
  • the acid treatments are essential for the reactivity of the catalyst; the pure untreated borosilicate zeolite only reacts at temperatures above 550 ° C. or when olefins are fed in or recycled or when pure dimethyl ether is used. However, the olefin yields achieved here are worse than in the case of catalysts with binders under the same conditions.
  • the acid treatments enable the chemisorption of the methanol on the pure borosilicate zeolite and the dehydration to dimethyl ether, the formation of which is a prerequisite for the reaction.
  • methanol which is in equilibrium with dimethyl ether is at a pressure between atmospheric pressure and about 30 bar, preferably at 0 to 1 bar and at temperatures between 300 ° C. and 650 ° C., preferably at 400 ° C. to 550 ° C, implemented on the catalysts described above.
  • the methanol can have a water content of up to 90% by weight; it is advantageous to use raw methanol, which contains about 20% water, as the starting material.
  • WHSV h- 1 - g methanol and / or dimethyl ether per g catalyst and hour -.
  • the WHSV should therefore be in the range from 0.5 to 50 h- 1 , preferably in the range from 2 to 15 h- 1 .
  • the inventive method significantly increases the olefin selectivity in the C 2 to C 4 range in the conversion of methanol to hydrocarbons, in particular in the temperature range from 400 ° C. to 600 ° C.
  • the undesired by-products methane and aromatics, the formation of which is partly caused by the binder, are greatly reduced by using the catalyst according to the invention. This fact is advantageous; there is an increase in the runtime of the catalyst used.
  • Running time is the time between regenerations.
  • the overall life of the catalyst is also extended.
  • the effect of improving the transit time according to the invention is particularly effective in the implementation at high temperatures, e.g. B. in the range of 450 ° C to 550 ° C.
  • the borosilicate zeolite is not extruded or tableted with a binder. It is a further advantage of the invention that the conversion to C 2 -C 4 -olefins with crude methanol can be carried out without further addition of inert diluents such as N 2 , He or H 2 O.
  • the boron zeolite is in a hydrothermal synthesis from highly disperse 64 g Si0 2 12.2 g H 3 B0 3 , 800 g of an aqueous 1,6-hexanediamine solution (mixture 50:50) at 170 ° C under autogenous pressure in one Stirred autoclaves manufactured. After filtering off and washing out, the crystalline reaction product is dried at 110 ° C./24 h and calcined at 5000 ° C./24 h.
  • This borosilicate zeolite is composed of 94.2% by weight Si0 2 and 2.32% by weight B 2 0 3 .
  • borosilicate zeolite - in tableted or extruded form - are treated with 250 ml of 18% hydrochloric acid for 1 hour at 80 ° C, then filtered off and washed with water until free of chloride. This product is dried at 110 ° C. for 16 hours and calcined at 500 ° C. for 5 hours.
  • catalyst C the measures described for catalyst A and B are combined, i. H. the borosilicate zeolite is subjected to hydrofluoric acid and subsequent hydrochloric acid treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Description

  • In neuerer Zeit gewinnen Bemühungen, Methanol zur Herstellung von Olefinen zu verwenden, zunehmendes Interesse. Methanol läßt sich aus Kohle, über Kohlevergasung und Herstellung von Synthesegas, mit Hilfe bewährter Technologien leicht herstellen. Gelingt es, Methanol in wirtschaftlicher Weise in niedere Olefine umzuwandeln, können die heute üblichen Weiterverarbeitungsverfahren der chemischen Industrie auch bei der Verwendung von Kohle als Rohstoff beibehalten werden. In den vergangenen Jahren sind daher Verfahren entwickelt worden, die die Herstellung von Olefinen aus Methanol und/oder Dimethylether zum Gegenstand haben.
  • Ein solches Verfahren ist beispielsweise in der DE-OS 26 15 150 beschrieben. Als Katalysator wird ein Aluminosilikatzeolith ZSM-5 verwendet, der eigentlich ein Aromatisierungskatalysator ist. Die Umsetzung kann aber durch verschiedene Maßnahmen, insbesondere durch die Verkürzung der Verweilzeit, in Richtung Olefinbildung gelenkt werden. Weitere die Olefinbildung begünstigende Parameter sind insbesondere die Verdünnung von Methanol bzw. Dimethylether mit Inertgasen bzw. Wasserdampf. Die Erfahrung zeigt, daß hohe Olefinausbeuten nur durch eine sehr starke Verdünnung von Methanol und/oder Dimethylether mit Inertgas oder Wasserdampf zu erzielen sind. Andere bekannte Verfahren haben als Nachteil eine geringe Belastbarkeit und eine schnelle Verkokung des Katalysators. Die Verdünnung des Katalysators mit Bindemittel soll ebenfalls eine für die Olefinbildung vorteilhafte Maßnahme sein, doch werden durch die verwendeten Binder Nebenreaktionen und auch Desaktivierung des Katalysators verursacht.
  • Aus EP-A-22 640 war ein Verfahren zur Herstellung von Äthylen und höheren Kohlenwasserstoffen durch Abpaltung von Wasser aus Äthanol bekannt. Dabei entsteht allein Äthylen und daneben größere Mengen von höheren Kohlenwasserstoffen, deren Bildung im vorliegenden Falle verhindert werden soll. In den älteren Anmeldungen EP-A-72 920 und EP-A-110 255 wird jeweils Böhmit als Bindemittel vor der Verformung zugegeben.
  • Es wurde nun gefunden, daß man C2- bis C4-Olefine in hoher Ausbeute aus Methanol und/oder Dimethylether durch katalytische Umsetzung bei erhöhter Temperatur in Gegenwart von Borosilikatkatalysatoren erhält, wenn man als Katalysatoren Borosilikatzeolithe verwendet, die ohne Bindemittel tablettiert oder verstrangt und mit Fluorwasserstoff und anschließend mit Salzsäure behandelt wurden.
  • Vorteilhaft wendet man Katalysatoren an, die man mit Flußsäure, bevorzugt 0,1 n HF, und anschließend mit Salzsäure, vorzugsweise mit 15%iger HCI, behandelt, gründlich auswäscht, bei 100 °C trocknet und bei 500 °C calciniert. Erfindungswesentlich ist, daß beide nacheinander durchgeführten Maßnahmen (Flußsäure- und Salzsäurebehandlung) sich vorteilhafter auf die katalytischen Eigenschaften des Katalysators auswirken als die Einzelmaßnahmen.
  • Ein bevorzugtes Verfahren zur Herstellung der erfindungsgemäß verwendeten Katalysatoren besteht darin, die nach der Synthese in der Ammonium-Form vorliegenden Borosilikatzeolithe durch Calcination bei 5400C/16 h in die acide H-Form überzuführen, und dieses calcinierte Produkt 1 bis 3 Stunden zwischen 60° und 80 °C mit einer 0,001 n-1 n Flußsäure, bevorzugt 0,05-0,2n HF, zu behandeln. Nach Abfiltrieren und Auswaschen wird der behandelte Zeolith bei 100 °C bis 140 °C getrocknet und bei 500 °C bis 600 °C/5 h calciniert. Dieser maßnahme schließt sich die Salzsäurebehandlung an, die zweckmäßig mit 3 bis 25 %iger, insbesondere mit 10-18 %iger Salzsäure zwischen 60 und 80 °C während 1 bis 3 Stunden durchgeführt wird. Das hierbei erhaltene Produkt wird abfiltriert, ausgewaschen, bis keine C-Ionen mehr im Waschwasser nachweisbar sind, getrocknet bei 100 °C bis 140 °C und bei 500 °C bis 600 °C/5 h calciniert..
  • Die Säurebehandlungen sind wesentlich für die Reaktionsfähigkeit des Katalysators; der reine unbehandelte Borosilikatzeolith reagiert erst bei Temperaturen oberhalb 550 °C bzw. wenn Olefine zu-oder zurückgeführt werden bzw. reiner Dimethylether eingesetzt wird. Die hierbei erzielten Olefinausbeuten sind jedoch schlechter als bei den Katalysatoren mit Bindemittel unter gleichen Bedingungen. Die Säurebehandlungen ermöglichen die Chemiesorption des Methanols am reinen Borosilikatzeolith und die Dehydratation zu Dimethylether, dessen Bildung eine Voraussetzung für die Reaktion ist.
  • Bei der Durchführung des Verfahrens wird Methanol, das mit Dimethylether im Gleichgewicht steht, bei einem Druck zwischen Normaldruck und etwa 30 bar, vorzugsweise bei 0 bis 1 bar und bei Temperaturen zwischen 300 °C und 650 °C, vorzugsweise bei 400 °C bis 550 °C, an den oben beschriebenen Katalysatoren umgesetzt. Das Methanol kann einen Wassergehalt bis zu 90 Gew.-% haben, zweckmäßig verwendet man als Ausgangsstoff Rohmethanol, das etwa 20 % Wasser enthält.
  • Dem Methanol können auch noch andere niedere Alkohole beigemischt sein. Die Belastung des Katalysators, ausgedrückt in WHSV = h-1 - g Methanol und/oder Dimethylether pro g Katalysator und Stunde -. wird zweckmäßig so gewählt, daß die Ausgangsstoffe möglichst quantitativ umgesetzt werden. so daß keine Abtrenn- und Rückführprobleme für nicht umgesetzten Dimethylether entstehen. Im allgemeinen soll daher die WHSV im Bereich von 0,5 bis 50 h-1, vorzugsweise im Bereich von 2 bis 15 h-1 liegen.
  • Durch das erfindungsgemäße Verfahren wird die Olefinselektivität im C2-bis C4-Bereich bei der Methanolumwandlung zu Kohlenwasserstoffen, insbesondere im Temperaturbereich von 400 °C bis 600 °C wesentlich erhöht.
  • Die unerwünschten Nebenprodukte Methan und Aromaten, deren Bildung teilweise vom Bindemittel verursacht werden, werden sich durch Verwendung des erfindungsgemäßen Katalysators stark zurückgegrängt. Diese Tatsache äußert sich vorteilhaft; es wird eine Erhöhung der Laufzeit des eingesetzten Katalysators bewirkt.
  • Unter Laufzeit versteht man die Zeit zwischen Regenerierungen. Auch die Lebensdauer des Katalysators wird insgesamt verlängert. Der erfindungsgemäße Effekt der Laufzeitverbesserung wirkt sich besonders bei der Umsetzung bei hohen Temperaturen, z. B. im Bereich von 450 °C bis 550 °C, aus.
  • Auch ist es von wirtschaftlicher Bedeutung, daß eine Verstrangung oder Tablettierung des Borosilikatzeolithen mit Bindemittel unterbleibt. Es ist ein weiterer Vorteil der Erfindung, daß man die Umsetzung zu C2- bis C4-Olefinen mit Rohmethanol ohne weiteren Zusatz von inerten Verdünnungsmittel wie N2, He oder H20 ausführen kann.
  • Die Durchführung des erfindungsgemäßen Verfahrens wird anhand der nachstehenden Beispiele näher erläutert.
  • Beispiele
  • Der Bor-Zeolith wird in einer hydrothermalen Synthese aus hochdispersen 64 g Si02 12,2 g H3B03, 800 g einer wäßrigen 1,6-Hexandiamin-Lösung (Mischung 50 : 50) bei 170 °C unter autogenem Druck in einem Rührautoklaven hergestellt. Nach Abfiltrieren und Auswaschen wird das kristalline Reaktionsprodukt bei 110 °C/24 h getrocknet und bei 5000C/24 h calciniert. Dieser Borosilikatzeolith setzt sich zusammen aus 94,2 Gew.-% Si02 und 2,32 Gew.-% B203.
  • Katalysator A
  • 50 g dieses Borosilikatzeolithen werden mit 140 ml 0,1 n HF unter Rückfluß 1 h behandelt. Nach der Filtration und Auswaschen mit Wasser wird bei 110 °C/16 h getrocknet und bei 500 °C/5 h calciniert, danach zu 3 mm-Pillen tablettiert oder zu 2 mm-Strängen verpreßt.
  • Katalysator B
  • 50 g Borosilikatzeolith - in tablettierter oder verstrangter Form - werden mit 250 ml 18 %iger Salzsäure 1 h bei 80 °C behandelt, danach abfiltriert und mit Wasser chloridfrei gewaschen. Dieses Produkt wird bei 110 °C 16 h getrocknet und bei 500 °C 5 h calciniert.
  • Katalysator C (erfindungsgemäß)
  • Bei Katalysator C werden die beim Katalysator A und B beschriebenen Maßnahmen kombiniert, d. h. der Borosilikatzeolith wird einer Flußsäure- und anschließenden Salzsäurebehandlung unterworfen.
  • An diesen Katalysatoren A, B, C werden unter isothermen Bedingungen in einem Rohrreaktor Rohmethanol mit 20 Gew.-% Wasser bei 550 °C und WHSV = 7,8 h-1 bez. auf eingesetztes CH30H, quantitativ umgesetzt. Die Ausbeuten, bezogen auf eingesetztes CH2, sind in der Tabelle, Spalte A, B, C angegeben.
  • Zum Ausbeutevergleich wurde noch der folgende Katalysator D herangezogen, der unter denselben Reaktionsbedingungen wie die Katalysatoren A, B, C getestet wurde.
  • Katalysator D
  • wird erhalten durch Verstrangen des oben beschriebenen Borosilikatzeolithen mit Böhmit im Verhältnis 60 : 40. Die Trocknung erfolgt bei 110 °C h und die Calcinierung bei 500 °C/16 h.
    Figure imgb0001

Claims (2)

1. Verfahren zur Herstellung von C2- bis C4-Olefinen durch katalytische Umsetzung von Methanol und/oder Dimethylether in Gegenwart von Borosilikatzeolithen bei erhöhter Temperatur, dadurch gekennzeichnet, daß man Borosilikatzeolithe verwendet, die ohne Bindemittel tablettiert oder verstrangt und mit Fluorwasserstoff und anschließend mit Salzsäure, behandelt wurden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man für die Fluorwasserstoffbehandlung der Katalysatoren 0,001 n-1 n HF und für die anschließende Salzsäurebehandlung 3 bis 25 %ige Säure einsetzt.
EP84101040A 1983-02-10 1984-02-02 Verfahren zur Herstellung von C2- bis C4-Olefinen aus Methanol/Dimethylether Expired EP0116340B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE8686109574T DE3470732D1 (en) 1983-02-10 1984-02-02 Process for the preparation of c2-c4 olefins from methanol and/or dimethyl ether

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3304479 1983-02-10
DE19833304479 DE3304479A1 (de) 1983-02-10 1983-02-10 Verfahren zur herstellung von c(pfeil abwaerts)2(pfeil abwaerts)- bis c(pfeil abwaerts)4(pfeil abwaerts)-olefinen aus methanol/dimethylether

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP86109574.3 Division-Into 1984-02-02

Publications (2)

Publication Number Publication Date
EP0116340A1 EP0116340A1 (de) 1984-08-22
EP0116340B1 true EP0116340B1 (de) 1987-05-06

Family

ID=6190436

Family Applications (2)

Application Number Title Priority Date Filing Date
EP86109574A Expired EP0206360B1 (de) 1983-02-10 1984-02-02 Verfahren zur Herstellung von C2- bis C4-Olefinen aus Methanol/Dimethylether
EP84101040A Expired EP0116340B1 (de) 1983-02-10 1984-02-02 Verfahren zur Herstellung von C2- bis C4-Olefinen aus Methanol/Dimethylether

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP86109574A Expired EP0206360B1 (de) 1983-02-10 1984-02-02 Verfahren zur Herstellung von C2- bis C4-Olefinen aus Methanol/Dimethylether

Country Status (3)

Country Link
US (1) US4503281A (de)
EP (2) EP0206360B1 (de)
DE (3) DE3304479A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ219600A (en) * 1986-04-11 1989-02-24 Mobil Oil Corp Process for incorporating boron into silicates or zeolites
US4691073A (en) * 1986-07-14 1987-09-01 Exxon Chemical Patents Inc. Production of tertiary olefins
AU667114B2 (en) * 1992-05-27 1996-03-07 Exxon Chemical Patents Inc. Use of acid extracted molecular sieve catalysts in oxygenate conversion
US7238846B2 (en) * 2002-08-14 2007-07-03 Exxonmobil Chemical Patents Inc. Conversion process
WO2004016574A1 (en) * 2002-08-14 2004-02-26 Exxonmobil Chemical Patents Inc. Process for preparing olefins from oxygenates
AU2003282813A1 (en) * 2002-11-26 2004-06-18 Exxonmobil Chemical Patents Inc. Treatment of oxygenate containing feedstreams for the conversion of oxygenates to olefins
US6899046B2 (en) * 2002-11-26 2005-05-31 Exxonmobil Chemical Patents Inc. Shipping methanol for a methanol to olefin unit in non-methanol carriers
US6846966B2 (en) * 2002-11-26 2005-01-25 Exxonmobil Chemical Patents Inc. Method and apparatus for treating oxygenate-containing feeds and their use in conversion of oxygenates to olefins
US7414166B2 (en) 2004-10-05 2008-08-19 Exxonmobil Chemical Patents Inc. Minimizing catalyst backflow in fluidized bed reactors
CN104193569B (zh) * 2014-08-07 2016-06-01 清华大学 醇醚制烯烃反应-再生装置的开车方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0110255A1 (de) * 1982-11-25 1984-06-13 BASF Aktiengesellschaft Verfahren zur Herstellung von C2- bis C4-Olefinen aus Methanol/Dimethylether

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292458A (en) * 1978-04-18 1981-09-29 Standard Oil Company (Indiana) Production of hydrocarbons from alcohols
NL7811732A (nl) * 1978-11-30 1980-06-03 Stamicarbon Werkwijze voor de omzetting van dimethylether.
JPS56500877A (de) * 1979-07-09 1981-07-02
DE3132024C2 (de) * 1981-08-13 1983-12-08 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von Olefinen aus Methanol und/oder Dimethylether
DE3135618A1 (de) * 1981-09-09 1983-03-17 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von olefinen aus methanol und/oder dimethylether
DE3136984A1 (de) * 1981-09-17 1983-03-31 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von olefinen aus methanol/dimethylether

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0110255A1 (de) * 1982-11-25 1984-06-13 BASF Aktiengesellschaft Verfahren zur Herstellung von C2- bis C4-Olefinen aus Methanol/Dimethylether

Also Published As

Publication number Publication date
DE3463492D1 (en) 1987-06-11
DE3470732D1 (en) 1988-06-01
EP0206360B1 (de) 1988-04-27
EP0206360A1 (de) 1986-12-30
EP0116340A1 (de) 1984-08-22
US4503281A (en) 1985-03-05
DE3304479A1 (de) 1984-08-23

Similar Documents

Publication Publication Date Title
DE2560442C2 (de) Verfahren zur Herstellung von Olefinen aus Olefinen mit kleinerer Anzahl an Kohlenstoffatomen
DE2624097C2 (de)
DE2756221C2 (de)
DE2438251A1 (de) Verfahren zur umwandlung von synthesegas in benzin
DE3132024C2 (de) Verfahren zur Herstellung von Olefinen aus Methanol und/oder Dimethylether
DE2058478C3 (de) Verfahren zur Herstellung von Isoalkenen
EP0116340B1 (de) Verfahren zur Herstellung von C2- bis C4-Olefinen aus Methanol/Dimethylether
DE2826865C2 (de)
DE2321399C2 (de) Verfahren zur Alkylierung von aromatischen Kohlenwasserstoffen
EP0090283B1 (de) Verfahren zur Herstellung von Olefinen aus Methanol/Dimethylether
EP0016406B1 (de) Verfahren zur Herstellung von Olefinen aus Rohmethanol
EP0162385B2 (de) Verfahren zur Herstellung von Dienen durch Dehydratisierung von Aldehyden
EP0110316A2 (de) Verfahren zur Herstellung von Pyridin
EP0006501B1 (de) Herstellung von Olefinen aus Methanol bzw. Dimethyläther
EP0110255B1 (de) Verfahren zur Herstellung von C2- bis C4-Olefinen aus Methanol/Dimethylether
EP0016405B1 (de) Herstellung von Olefinen aus Rohmethanol
EP0075203A1 (de) Verfahren zur Herstellung von Olefinen aus Methanol/Dimethylether
DE2626424C3 (de) Verfahren zur Herstellung von aromatischen Kohlenwasserstoffen durch die Dehydrocyclodimerisierung
EP0081683B1 (de) Verfahren zur Herstellung von Olefinen durch Umsetzung von Methanol und/oder Dimethylether
DE3211399C1 (de) Verfahren zur Herstellung von Olefinen aus Methanol/Dimethylether
DE3228668A1 (de) Verfahren zur herstellung von c(pfeil abwaerts)2(pfeil abwaerts)- bis c(pfeil abwaerts)4(pfeil abwaerts)-olefinen aus methanol/dimethylether
EP0088965A1 (de) Verfahren zur Herstellung von Olefinen aus Methanol und/oder Dimethylether
DE3419378A1 (de) Verfahren zur herstellung von ketonen durch isomerisierung von aldehyden
EP0116339A1 (de) Verfahren zur Herstellung von C2- bis C4-Olefinen aus Methanol/Dimethylether
DE3300982A1 (de) Verfahren zur herstellung von c(pfeil abwaerts)2(pfeil abwaerts)- bis c(pfeil abwaerts)4(pfeil abwaerts)-olefinen aus methanol/dimethylether

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840606

AK Designated contracting states

Designated state(s): BE DE FR GB NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL

REF Corresponds to:

Ref document number: 3463492

Country of ref document: DE

Date of ref document: 19870611

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930120

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930201

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930219

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930228

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19940228

BERE Be: lapsed

Owner name: BASF A.G.

Effective date: 19940228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940202

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19941031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST