EP0115042B1 - Système de focalisation avec des aimants permanents alternés pour un tube à ondes progressives - Google Patents

Système de focalisation avec des aimants permanents alternés pour un tube à ondes progressives Download PDF

Info

Publication number
EP0115042B1
EP0115042B1 EP83112932A EP83112932A EP0115042B1 EP 0115042 B1 EP0115042 B1 EP 0115042B1 EP 83112932 A EP83112932 A EP 83112932A EP 83112932 A EP83112932 A EP 83112932A EP 0115042 B1 EP0115042 B1 EP 0115042B1
Authority
EP
European Patent Office
Prior art keywords
magnetic metal
tubes
magnetic
wave tube
pole shoes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83112932A
Other languages
German (de)
English (en)
Other versions
EP0115042A1 (fr
Inventor
Roland Dipl.-Phys. Dr.-Techn. Wolfram
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0115042A1 publication Critical patent/EP0115042A1/fr
Application granted granted Critical
Publication of EP0115042B1 publication Critical patent/EP0115042B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/08Focusing arrangements, e.g. for concentrating stream of electrons, for preventing spreading of stream
    • H01J23/087Magnetic focusing arrangements
    • H01J23/0873Magnetic focusing arrangements with at least one axial-field reversal along the interaction space, e.g. P.P.M. focusing

Definitions

  • the invention relates to a traveling wave tube according to the preamble of claim 1.
  • Such focusing systems generally consist of permanent magnet rings and interposed pole pieces made of ferromagnetic material.
  • pole shoe arrangement is known from EP-A-0 037 309. This also serves as a vacuum envelope.
  • the pole pieces are precisely aligned to the axis by simultaneous mechanical processing of all pole piece inner holes.
  • the magnetic rings are centered on the inside diameter.
  • the robust, so-called coupled cavity line is used in traveling wave tubes of very high power.
  • the outside diameter is large.
  • the field strength of a deferred ring magnet system would therefore be too small to be able to focus electron beams with a high perveance, as are required for high power. That is why the pole shoes are inserted into the tube, which means that the line washers are designed as pole shoes (“integrated pole shoes”).
  • the so-called coupled-cavity line with “cones” is particularly suitable for this (ie the parts of the line disks adjacent to the axis are designed as tubes).
  • Fig. 1 shows schematically a conventional system of this kind.
  • Fig. 2 shows schematically the magnetic field generated by such a system.
  • every second line disc is designed as an active pole piece coupled to the magnet. Firstly, this compensates for the magnetic asymmetry caused by the coupling slots and secondly suppresses the first-order ripple by means of the harmonics of the magnetic field.
  • the 1st order ripple is almost completely suppressed by a field profile according to FIG. 2.
  • the ratio h / i (gap / cell length) is predetermined by the dimensioning of the delay line, which largely defines the magnetic construction parameters.
  • the thickness t of the line washers should be as thin as possible, because otherwise the coupling resistance in the beam area is reduced due to an unfavorable displacement of the electric field.
  • the limitation of this magnet system is therefore the iron load Bei in the disk, which reaches its highest value in point B. There are several reasons to avoid that the iron load gets into the magnetic saturation, in particular in order to eliminate inadmissible production variations. Since the dimensions of the magnet system also give B ei / B eff , the limitation of the iron load has an effect such that there is a limit for the effective field strength B eff . From the equilibrium relationship and the relationship for the frequency it then follows that the beam period P o and frequency f are capped. (Units: 10 -4 T, V, A, cm, GHz. U o is the beam voltage, y is the mean radius, ⁇ a is the phase parameter and K eff is the cathode field parameter).
  • conventional magnet systems of this type as are known, for example, from US Pat. No. 3,324,339 and shown in FIG. 1, the parts of the conductor disks adjacent to the axis are designed as tubes and consist entirely of magnetic iron.
  • the invention has for its object to enable focusing for higher powers and frequencies in a traveling wave tube.
  • the traveling wave tube according to the invention has the advantage that the line dimensioning is retained due to the separation of the magnetic iron contours from the non-magnetic metal contours in the tubes, while the iron load on the disk is reduced and thus a higher magnetic field strength in the beam region can be achieved and permitted. This makes it possible to focus on higher powers and frequencies.
  • the active pole shoe which is coupled to the magnet, is only a disk and the intermediate pole shoe is only a tube.
  • the iron load in point B is then reduced by about 15%.
  • the special dimension of the tube length b enables the 1st order ripple be made to disappear entirely.
  • the ratio of tube length b to magnetic field period L should be from 0.065 to 0.15.
  • the periodically permanent magnetic focusing system for a traveling wave tube shown in FIG. 1 essentially consists of a cylindrical vacuum envelope 3, which consists of a permanent magnet system made of pole pieces 1 and interposed magnetic rings alternately polarized in opposite directions in the axial direction . 2 is surrounded.
  • the pole pieces 1 are inserted into the vacuum envelope 3 and their parts surrounding the beam axis 7 are designed as tubes 4. Every second pole piece is coupled to the magnetic rings 2 as an active pole piece 1.
  • the pole shoes 5 arranged between them are connected to the vacuum envelope 3 and, apart from their tubes 6 surrounding the beam axis 7, are made of a non-magnetic metal. In this known arrangement, there are the active pole shoes 1 and their.
  • Tubes 4 consistently of magnetic iron.
  • the ratio h / I (gap length / cell length) is specified by the dimensioning of the delay line.
  • the thickness t of the pole shoe discs 1 should be as thin as possible.
  • L / 2 indicates half a magnetic field period L. The highest value of the iron load is reached at the point marked with the letter B.
  • Fig. 2 shows schematically the magnetic field B (z) generated in such a system.
  • the periodic permanent magnetic focusing system shown in FIGS. 3, 4 and 5 in turn essentially consists of a cylindrical vacuum envelope 3 made of a non-magnetic metal.
  • the permanent magnet system surrounding the vacuum envelope 3 is formed from active pole pieces 1 and each interposed magnetic rings 2 polarized alternately in opposite directions in the axial direction.
  • the active pole shoes 1 are inserted into the vacuum envelope 3 and their parts surrounding the beam axis 7 are designed as tubes 4.
  • pole shoes 5 are arranged, which are connected on the inside to the vacuum envelope 3.
  • the active pole shoes 1 coupled to the magnetic rings 2 are made of magnetic metal, preferably magnetic iron.
  • the tubes 4 of these pole shoes 1 are made of non-magnetic metal on the end faces 8.
  • these parts 8 made of non-magnetic metal extend as far as the part of the pole shoes 1 forming the tube 4.
  • the pole shoes 5 arranged between the active pole pieces 1, like the vacuum envelope 3, are made of a non-magnetic metal, preferably of copper.
  • the tubes 6 of these pole pieces 5 consist of magnetic metal, preferably magnetic iron in their inner part and 9 of non-magnetic metal, preferably copper, on their end faces 9.
  • the tubes 6 of the pole shoes 5 are made entirely of magnetic metal, preferably magnetic iron. 2 to 4, the letter h is again the gap length and the letter 1 is the cell length. L / 2 is half the magnetic field period L and B is the point with the highest iron load. The thickness t of the pole shoe discs 1 should in turn be as small as possible.
  • the letter b denotes the tube length.
  • the coupling slots in the pole pieces 1, 5 are provided with the reference number 10 in the figures.

Landscapes

  • Microwave Tubes (AREA)
  • Particle Accelerators (AREA)

Claims (6)

1. Tube à ondes progressives comportant une enveloppe à vide cylindrique (3) qui est entourée par un système de focalisation comprenant des anneaux magnétiques (2) à polarisation permanente alternée entourant l'enveloppe à vide et des pièces polaires intermédiaires (1) faites avec un métal magnétique, qui s'étendent à travers la paroi de l'enveloppe à vide (3) dans celle-ci et dont les parties qui entourent l'axe du faisceau (7) sont réalisées sous la forme de petits tubes (4), ainsi que des parois intermédiaires (5) disposées entre les pièces polaires, faites avec un matériau non magnétique, reliées à la paroi intérieure de l'enveloppe à vide (3) et dont les parties qui entourent l'axe du faisceau (7) sont également réalisées sous la forme de petits tubes (6), caractérisé par le fait que les petits tubes (4) des pièces polaires (1), couplées aux anneaux magnétiques (2), sont constitués, dans leur partie centrale, par un métal magnétique, et, dans leurs côtés frontaux (8), par un métal non magnétique et que les petits tubes (6) des parois intermédiaires (5) situées entre elles, sont constitués, dans leur partie centrale, par un métal magnétique.
2. Tube à ondes progressives selon la revendication 1, caractérisé par le fait que les pièces polaires (1) sont réalisées sous la forme de disques, et que les côtés frontaux (8) des petits tubes (4) s'étendent jusqu'aux parois latérales des pièces polaires (1).
3. Tube à ondes progressives selon la revendication 1 ou 2, caractérisé par le fait que les petits tubes (6) des parois intermédiaires (5) sont constitués par un métal magnétique, et, sur leurs côtés frontaux (9), par un métal non magnétique.
4. Tube à ondes progressives selon l'une des revendications 1 à 3, caractérisé par le fait que le rapport entre la longueur b des petits tubes de la partie faite avec un métal magnétique du petit tube (6), et la période L du champ magnétique est de 0,065 à 0,15.
5. Tube à ondes progressives selon l'une des revendications 1 à 4, caractérisé par le fait que le métal magnétique des pièces polaires (1) et des petits tubes (6) des parois intermédiaires (5) est le fer.
6. Tube à ondes progressives selon l'une des revendications 1 à 5, caractérisé par le fait que le métal non magnétique des parties (8) des petits tubes des pièces polaires (1) et des parois intermédiaires (5) situées entre celles-ci, de même que des côtés frontaux (9) des petits tubes (6), est le cuivre.
EP83112932A 1982-12-30 1983-12-21 Système de focalisation avec des aimants permanents alternés pour un tube à ondes progressives Expired EP0115042B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3248693 1982-12-30
DE19823248693 DE3248693A1 (de) 1982-12-30 1982-12-30 Wanderfeldroehre mit periodisch-permanentmagnetischem fokussiersystem

Publications (2)

Publication Number Publication Date
EP0115042A1 EP0115042A1 (fr) 1984-08-08
EP0115042B1 true EP0115042B1 (fr) 1987-08-19

Family

ID=6182198

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83112932A Expired EP0115042B1 (fr) 1982-12-30 1983-12-21 Système de focalisation avec des aimants permanents alternés pour un tube à ondes progressives

Country Status (3)

Country Link
US (1) US4560904A (fr)
EP (1) EP0115042B1 (fr)
DE (2) DE3248693A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742271A (en) * 1985-03-25 1988-05-03 Raytheon Company Radial-gain/axial-gain crossed-field amplifier (radaxtron)
US5332947A (en) * 1992-05-13 1994-07-26 Litton Systems, Inc. Integral polepiece RF amplification tube for millimeter wave frequencies

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1981002221A1 (fr) * 1980-01-28 1981-08-06 V Pasmannik Systeme de focalisation magnetique periodique reversible

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1054461A (fr) * 1963-02-06
US3324339A (en) * 1964-02-27 1967-06-06 Hughes Aircraft Co Periodic permanent magnet electron beam focusing arrangement for traveling-wave tubes having plural interaction cavities in bore of each annular magnet
US3324439A (en) * 1964-02-27 1967-06-06 Beckman Instruments Inc Electrical terminations for cermet resistance elements
DE1491426A1 (de) * 1964-08-12 1969-05-22 Siemens Ag Permanentmagnetsystem zur gebuendelten Fuehrung eines Elektrodenstrahls ueber eine lengere Wegstrecke,insbesondere fuer Wanderfeldroehren
US3617802A (en) * 1970-05-06 1971-11-02 Us Navy Traveling wave tube
US4041349A (en) * 1973-02-16 1977-08-09 English Electric Valve Company Limited Travelling wave tubes
GB1451956A (en) * 1973-02-16 1976-10-06 English Electric Valve Co Ltd Travelling wave tubes
US3958147A (en) * 1975-06-06 1976-05-18 Hughes Aircraft Company Traveling-wave tube with improved periodic permanent magnet focusing arrangement integrated with coupled cavity slow-wave structure
DE2556464C2 (de) * 1975-12-15 1977-10-13 Siemens AG, 1000 Berlin und 8000 München Lauffeldröhre mit einer zylinderförmigen Vakuumhülle
US4072877A (en) * 1976-07-30 1978-02-07 English Electric Valve Co., Ltd. Travelling wave tubes
US4137482A (en) * 1977-05-12 1979-01-30 Varian Associates, Inc. Periodic permanent magnet focused TWT
FR2479558A1 (fr) * 1980-04-01 1981-10-02 Thomson Csf Tube a ondes progressives a cavites couplees et focalisation par aimants permanents alternes, et ensemble amplificateur comprenant un tel tube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1981002221A1 (fr) * 1980-01-28 1981-08-06 V Pasmannik Systeme de focalisation magnetique periodique reversible

Also Published As

Publication number Publication date
DE3248693A1 (de) 1984-07-05
US4560904A (en) 1985-12-24
EP0115042A1 (fr) 1984-08-08
DE3373161D1 (en) 1987-09-24

Similar Documents

Publication Publication Date Title
CH231586A (de) Vorrichtung zur Erzeugung elektrischer Schwingungen sehr hoher Frequenz.
DE60315216T2 (de) Magnetfeldgenerator für ein Magnetronplasma
DE3787145T2 (de) Magnetron für einen Mikrowellenherd.
DE3011415A1 (de) Roentgenroehre mit magnetisch gelagerter drehanode
DE1109272B (de) Anordnung mit einer rauscharmen Wanderfeldwendelroehre zur Verstaerkung sehr kurzer elektrischer Wellen
DE1068311B (fr)
DE3414549A1 (de) Elektronenkanone mit verbessertem aufbau von kathode und abschattungsgitter
EP0115042B1 (fr) Système de focalisation avec des aimants permanents alternés pour un tube à ondes progressives
DE2901554C2 (fr)
DE3050257C1 (de) Alternierendes periodisches magnetisches Fokussiersystem
DE60122537T2 (de) Verjüngte Wanderfeldröhre
DE2608718C3 (de) Magnetron mit axialer Auskopplung und axialen Kathodenzuführungen
DE2453845C3 (de) Wanderfeldröhre
DE3105310A1 (de) Kathodenstrahlroehre
DE3302205C2 (fr)
DE3610584C2 (fr)
DE69509189T2 (de) Mehrkammer-Klystron
DE3126119A1 (de) Mikrowellen-verstaerkerroehre mit zwei ringresonatoren
DE69021339T2 (de) Konvergenzeinrichtung für geladene Teilchen.
DE2532989C3 (de) Wanderfeldröhre
DE1057244B (de) Fokussierungseinrichtung zur gebuendelten Fuehrung eines Elektronenstrahls ueber eine groessere Wegstrecke durch ein periodisch in der Richtung alternierendes Magnetfeld, insbesondere fuer Wanderfeldroehren
DE4033101C2 (de) Elektronenkollektor für eine Hochfrequenz-Elektronenstrahlröhre
EP0164771B1 (fr) Tube-image
DE672510C (de) Magnetronroehre mit Kathode, mehreren dazu achsparallelen Anodensegmenten und Hilfselektroden
DE963378C (de) Ionisationsmanometerroehre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19841026

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 3373161

Country of ref document: DE

Date of ref document: 19870924

ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881221

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890901