EP0115042B1 - Periodic permanent-magnet focusing system for a travelling-wave tube - Google Patents

Periodic permanent-magnet focusing system for a travelling-wave tube Download PDF

Info

Publication number
EP0115042B1
EP0115042B1 EP83112932A EP83112932A EP0115042B1 EP 0115042 B1 EP0115042 B1 EP 0115042B1 EP 83112932 A EP83112932 A EP 83112932A EP 83112932 A EP83112932 A EP 83112932A EP 0115042 B1 EP0115042 B1 EP 0115042B1
Authority
EP
European Patent Office
Prior art keywords
magnetic metal
tubes
magnetic
wave tube
pole shoes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83112932A
Other languages
German (de)
French (fr)
Other versions
EP0115042A1 (en
Inventor
Roland Dipl.-Phys. Dr.-Techn. Wolfram
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0115042A1 publication Critical patent/EP0115042A1/en
Application granted granted Critical
Publication of EP0115042B1 publication Critical patent/EP0115042B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/08Focusing arrangements, e.g. for concentrating stream of electrons, for preventing spreading of stream
    • H01J23/087Magnetic focusing arrangements
    • H01J23/0873Magnetic focusing arrangements with at least one axial-field reversal along the interaction space, e.g. P.P.M. focusing

Definitions

  • the invention relates to a traveling wave tube according to the preamble of claim 1.
  • Such focusing systems generally consist of permanent magnet rings and interposed pole pieces made of ferromagnetic material.
  • pole shoe arrangement is known from EP-A-0 037 309. This also serves as a vacuum envelope.
  • the pole pieces are precisely aligned to the axis by simultaneous mechanical processing of all pole piece inner holes.
  • the magnetic rings are centered on the inside diameter.
  • the robust, so-called coupled cavity line is used in traveling wave tubes of very high power.
  • the outside diameter is large.
  • the field strength of a deferred ring magnet system would therefore be too small to be able to focus electron beams with a high perveance, as are required for high power. That is why the pole shoes are inserted into the tube, which means that the line washers are designed as pole shoes (“integrated pole shoes”).
  • the so-called coupled-cavity line with “cones” is particularly suitable for this (ie the parts of the line disks adjacent to the axis are designed as tubes).
  • Fig. 1 shows schematically a conventional system of this kind.
  • Fig. 2 shows schematically the magnetic field generated by such a system.
  • every second line disc is designed as an active pole piece coupled to the magnet. Firstly, this compensates for the magnetic asymmetry caused by the coupling slots and secondly suppresses the first-order ripple by means of the harmonics of the magnetic field.
  • the 1st order ripple is almost completely suppressed by a field profile according to FIG. 2.
  • the ratio h / i (gap / cell length) is predetermined by the dimensioning of the delay line, which largely defines the magnetic construction parameters.
  • the thickness t of the line washers should be as thin as possible, because otherwise the coupling resistance in the beam area is reduced due to an unfavorable displacement of the electric field.
  • the limitation of this magnet system is therefore the iron load Bei in the disk, which reaches its highest value in point B. There are several reasons to avoid that the iron load gets into the magnetic saturation, in particular in order to eliminate inadmissible production variations. Since the dimensions of the magnet system also give B ei / B eff , the limitation of the iron load has an effect such that there is a limit for the effective field strength B eff . From the equilibrium relationship and the relationship for the frequency it then follows that the beam period P o and frequency f are capped. (Units: 10 -4 T, V, A, cm, GHz. U o is the beam voltage, y is the mean radius, ⁇ a is the phase parameter and K eff is the cathode field parameter).
  • conventional magnet systems of this type as are known, for example, from US Pat. No. 3,324,339 and shown in FIG. 1, the parts of the conductor disks adjacent to the axis are designed as tubes and consist entirely of magnetic iron.
  • the invention has for its object to enable focusing for higher powers and frequencies in a traveling wave tube.
  • the traveling wave tube according to the invention has the advantage that the line dimensioning is retained due to the separation of the magnetic iron contours from the non-magnetic metal contours in the tubes, while the iron load on the disk is reduced and thus a higher magnetic field strength in the beam region can be achieved and permitted. This makes it possible to focus on higher powers and frequencies.
  • the active pole shoe which is coupled to the magnet, is only a disk and the intermediate pole shoe is only a tube.
  • the iron load in point B is then reduced by about 15%.
  • the special dimension of the tube length b enables the 1st order ripple be made to disappear entirely.
  • the ratio of tube length b to magnetic field period L should be from 0.065 to 0.15.
  • the periodically permanent magnetic focusing system for a traveling wave tube shown in FIG. 1 essentially consists of a cylindrical vacuum envelope 3, which consists of a permanent magnet system made of pole pieces 1 and interposed magnetic rings alternately polarized in opposite directions in the axial direction . 2 is surrounded.
  • the pole pieces 1 are inserted into the vacuum envelope 3 and their parts surrounding the beam axis 7 are designed as tubes 4. Every second pole piece is coupled to the magnetic rings 2 as an active pole piece 1.
  • the pole shoes 5 arranged between them are connected to the vacuum envelope 3 and, apart from their tubes 6 surrounding the beam axis 7, are made of a non-magnetic metal. In this known arrangement, there are the active pole shoes 1 and their.
  • Tubes 4 consistently of magnetic iron.
  • the ratio h / I (gap length / cell length) is specified by the dimensioning of the delay line.
  • the thickness t of the pole shoe discs 1 should be as thin as possible.
  • L / 2 indicates half a magnetic field period L. The highest value of the iron load is reached at the point marked with the letter B.
  • Fig. 2 shows schematically the magnetic field B (z) generated in such a system.
  • the periodic permanent magnetic focusing system shown in FIGS. 3, 4 and 5 in turn essentially consists of a cylindrical vacuum envelope 3 made of a non-magnetic metal.
  • the permanent magnet system surrounding the vacuum envelope 3 is formed from active pole pieces 1 and each interposed magnetic rings 2 polarized alternately in opposite directions in the axial direction.
  • the active pole shoes 1 are inserted into the vacuum envelope 3 and their parts surrounding the beam axis 7 are designed as tubes 4.
  • pole shoes 5 are arranged, which are connected on the inside to the vacuum envelope 3.
  • the active pole shoes 1 coupled to the magnetic rings 2 are made of magnetic metal, preferably magnetic iron.
  • the tubes 4 of these pole shoes 1 are made of non-magnetic metal on the end faces 8.
  • these parts 8 made of non-magnetic metal extend as far as the part of the pole shoes 1 forming the tube 4.
  • the pole shoes 5 arranged between the active pole pieces 1, like the vacuum envelope 3, are made of a non-magnetic metal, preferably of copper.
  • the tubes 6 of these pole pieces 5 consist of magnetic metal, preferably magnetic iron in their inner part and 9 of non-magnetic metal, preferably copper, on their end faces 9.
  • the tubes 6 of the pole shoes 5 are made entirely of magnetic metal, preferably magnetic iron. 2 to 4, the letter h is again the gap length and the letter 1 is the cell length. L / 2 is half the magnetic field period L and B is the point with the highest iron load. The thickness t of the pole shoe discs 1 should in turn be as small as possible.
  • the letter b denotes the tube length.
  • the coupling slots in the pole pieces 1, 5 are provided with the reference number 10 in the figures.

Landscapes

  • Microwave Tubes (AREA)
  • Particle Accelerators (AREA)

Description

Die Erfindung betrifft eine Wanderfeldröhre nach dem Oberbegriff des Anspruchs 1.The invention relates to a traveling wave tube according to the preamble of claim 1.

Es ist bekannt, den Elektronenstrahl von Wanderfeldröhren mittels sogenannter periodisch permanentmagnetischer Fokussiersysteme zu bündeln, die außen auf der Vakuumhülle der Röhre angeordnet sind. Solche Fokussiersysteme bestehen im allgemeinen aus Dauermagnetringen und zwischengefügten Polschuhen aus ferromagnetischem Material.It is known to bundle the electron beam from traveling wave tubes by means of so-called periodically permanent magnetic focusing systems, which are arranged on the outside of the vacuum envelope of the tube. Such focusing systems generally consist of permanent magnet rings and interposed pole pieces made of ferromagnetic material.

Aus der EP-A-0 037 309 ist eine derartige Polschuh-Anordnung bekannt. Diese dient gleichzeitig als Vakuumhülle. Die Polschuhe sind durch eine gleichzeitige mechanische Bearbeitung aller Polschuh-Innenbohrungen exakt zur Achse ausgerichtet. Die Magnetringe werden am Innendurchmesser zentriert.Such a pole shoe arrangement is known from EP-A-0 037 309. This also serves as a vacuum envelope. The pole pieces are precisely aligned to the axis by simultaneous mechanical processing of all pole piece inner holes. The magnetic rings are centered on the inside diameter.

In Wanderfeldröhren sehr hoher Leistung verwendet man die robuste, sogenannte Coupled-Cavity-Leitung. Deren Außendurchmesser ist groß. Die Feldstärke eines aufgeschobenen Ringmagnetsystems wäre deshalb zu klein, um Elektronenstrahlen mit hoher Perveanz, wie sie für hohe Leistung benötigt werden, fokussieren zu können. Deshalb führt man die Polschuhe in die Röhre hinein, das heißt man bildet die Leitungsscheiben als Polschuh aus (« integrierte Polschuhe »). Insbesondere eignet sich hierfür die sog. Coupled-Cavity-Leitung mit « Hütchen » (d. h. die der Achse benachbarten Teile der Leitungsscheiben sind als Röhrchen ausgebildet). Die Fig. 1 zeigt schematisch ein herkömmliches System dieser Art. Fig. 2 zeigt schematisch das von einem solchen System erzeugte magnetische Feld. Aus guten Gründen wird jede zweite Leitungsscheibe als aktiver, an den Magneten angekoppelter Polschuh ausgebildet. Erstens wird damit ein Ausgleich der von den Koppelschlitzen verursachten magnetischen Unsymmetrie und zweitens eine Unterdrückung des Rippels 1. Ordnung vermittels der Harmonischen des Magnetfeldes erreicht. Der Rippel 1. Ordnung wird durch einen Feldverlauf nach Fig. 2 nahezu bis völlig unterdrückt. Durch die Bemessung der Verzögerungsleitung ist das Verhältnis h/i (Spalt-/Zellenlänge) vorgegeben, wodurch die magnetischen Konstruktionsparameter weitgehend festgelegt sind. Die Dicke t der Leitungsscheiben soll möglichst dünn sein, weil sonst durch ungünstige Verlagerung des elektrischen Feldes der Koppelwiderstand im Strahlbereich vermindert wird.The robust, so-called coupled cavity line is used in traveling wave tubes of very high power. The outside diameter is large. The field strength of a deferred ring magnet system would therefore be too small to be able to focus electron beams with a high perveance, as are required for high power. That is why the pole shoes are inserted into the tube, which means that the line washers are designed as pole shoes (“integrated pole shoes”). The so-called coupled-cavity line with “cones” is particularly suitable for this (ie the parts of the line disks adjacent to the axis are designed as tubes). Fig. 1 shows schematically a conventional system of this kind. Fig. 2 shows schematically the magnetic field generated by such a system. For good reasons, every second line disc is designed as an active pole piece coupled to the magnet. Firstly, this compensates for the magnetic asymmetry caused by the coupling slots and secondly suppresses the first-order ripple by means of the harmonics of the magnetic field. The 1st order ripple is almost completely suppressed by a field profile according to FIG. 2. The ratio h / i (gap / cell length) is predetermined by the dimensioning of the delay line, which largely defines the magnetic construction parameters. The thickness t of the line washers should be as thin as possible, because otherwise the coupling resistance in the beam area is reduced due to an unfavorable displacement of the electric field.

Die Begrenzung dieses Magnetsystems ist daher die Eisenbelastung Bei in der Scheibe, die in Punkt B ihren höchsten Wert erreicht. Man muß aus mehreren Gründen vermeiden, daß die Eisenbelastung in die magnetische Sättigung gerät, insbesondere um unzulässige Fertigungsstreuungen auszuschalten. Da mit den Abmessungen des Magnetsystems auch Bei/Beff gegeben ist, wirkt sich die Begrenzung der Eisenbelastung so aus, daß eine Grenze für die Effektivfeldstärke Beff gegeben ist. Aus der Gleichgewichtsbeziehung

Figure imgb0001
und der Beziehung
für die Frequenz
Figure imgb0002
folgt dann, daß Strahlperveanz Po und Frequenz f nach oben eingeschränkt sind. (Einheiten : 10-4 T, V, A, cm, GHz. Uo ist die Strahlspannung, y ist der mittlere Radius, γ a ist der Phasenparameter und Keff ist der Kathodenfeldparameter). Nach dem gegenwärtigen Stand der Technik gibt es Wanderfeldröhren dieser Art mit etwa Po = 2 · 10-6 A/V3/2 für f = 9 bis 10 GHz. Zu herkömmlichen Magnetsystemen dieser Art, wie sie beispielsweise aus der US-A-3 324 339 als bekannt hervorgehen und in Fig. 1 dargestellt sind, sind die der Achse benachbarten Teile der Leitungsscheiben als Röhrchen ausgebildet und bestehen durchwegs aus magnetischem Eisen.The limitation of this magnet system is therefore the iron load Bei in the disk, which reaches its highest value in point B. There are several reasons to avoid that the iron load gets into the magnetic saturation, in particular in order to eliminate inadmissible production variations. Since the dimensions of the magnet system also give B ei / B eff , the limitation of the iron load has an effect such that there is a limit for the effective field strength B eff . From the equilibrium relationship
Figure imgb0001
and the relationship
for the frequency
Figure imgb0002
it then follows that the beam period P o and frequency f are capped. (Units: 10 -4 T, V, A, cm, GHz. U o is the beam voltage, y is the mean radius, γ a is the phase parameter and K eff is the cathode field parameter). In the present state of the art, there are traveling-wave tubes of this type with about P o = 2 x 10- 6 A / V 3/2 for f = 9 to 10 GHz. In conventional magnet systems of this type, as are known, for example, from US Pat. No. 3,324,339 and shown in FIG. 1, the parts of the conductor disks adjacent to the axis are designed as tubes and consist entirely of magnetic iron.

Der Erfindung liegt die Aufgabe zugrunde, bei einer Wanderfeldröhre die Fokussierung für höhere Leistungen und Frequenzen zu ermöglichen.The invention has for its object to enable focusing for higher powers and frequencies in a traveling wave tube.

Diese Aufgabe wird erfindungsgemäß durch eine Wanderfeldröhre mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst. Weitere vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand zusätzlicher Ansprüche.This object is achieved by a traveling wave tube with the characterizing features of claim 1. Further advantageous embodiments of the invention are the subject of additional claims.

Die erfindungsgemäße Wanderfeldröhre hat den Vorteil, daß durch die bei den Röhrchen vorgenommene Trennung der magnetischen Eisenkonturen von den unmagnetischen Metallkonturen die Leitungsbemessung erhalten bleibt, während die Eisenbelastung der Scheibe verkleinert wird und somit eine höhere magnetische Feldstärke im Strahlbereich erzielt und erlaubt werden kann. Dadurch ist die Fokussierung für höhere Leistungen und Frequenzen möglich.The traveling wave tube according to the invention has the advantage that the line dimensioning is retained due to the separation of the magnetic iron contours from the non-magnetic metal contours in the tubes, while the iron load on the disk is reduced and thus a higher magnetic field strength in the beam region can be achieved and permitted. This makes it possible to focus on higher powers and frequencies.

Am günstigsten ist, wenn der aktive, an den Magneten angekoppelte Polschuh nur eine Scheibe, der Zwischenpolschuh nurmehr ein Röhrchen ist. Die Eisenbelastung im Punkt B wird dann um etwa 15 % vermindert. Darüberhinaus kann durch spezielle Bemessung der Röhrchenlänge b der Rippel 1. Ordnung ganz zum Verschwinden gebracht werden.It is most favorable if the active pole shoe, which is coupled to the magnet, is only a disk and the intermediate pole shoe is only a tube. The iron load in point B is then reduced by about 15%. In addition, the special dimension of the tube length b enables the 1st order ripple be made to disappear entirely.

Je nach Polschuhdurchmesser und Wanddicke t soll das Verhältnis von Röhrchenlänge b zur Magnetfeldperiode L von 0,065 bis 0,15 betragen.Depending on the pole shoe diameter and wall thickness t, the ratio of tube length b to magnetic field period L should be from 0.065 to 0.15.

Die Erfindung wird anhand von in den Figuren der Zeichnung dargestellten Ausführungsbeispielen weiter erläutert. Einander entsprechende Teile sind in den Figuren mit den gleichen Bezugszeichen versehen. Es zeigen :

  • Figur 1 einen Ausschnitt des periodisch-permanentmagnetischen Fokussiersystems einer bekannten Wanderfeldröhre schematisch teilweise im Schnitt,
  • Figur 2 schematisch das von einem solchen System erzeugte magnetische Feld,
  • Figur 3 einen Ausschnitt eines erfindungsgemäßen periodischpermanentmagnetischen Fokussiersystems der Wanderfeldröhre schematisch teilweise im Schnitt,
  • Figur4 einen Ausschnitt eines weiteren erfindungsgemäßen periodisch-permanentmagnetischen Fokussiersystems der Wanderfeldröhre schematisch teilweise im Schnitt und
  • Figur 5 einen Ausschnitt eines anderen erfindungsgemäßen periodisch-permanentmagnetischen Fokussiersystems der Wanderfeldröhre schematisch teilweise im Schnitt.
The invention is further explained on the basis of exemplary embodiments shown in the figures of the drawing. Corresponding parts are provided with the same reference symbols in the figures. Show it :
  • 1 shows a section of the periodic permanent magnetic focusing system of a known traveling wave tube, partly in section,
  • FIG. 2 shows schematically the magnetic field generated by such a system,
  • 3 shows a section of a periodically permanent magnetic focusing system of the traveling wave tube according to the invention, partly in section,
  • 4 shows a section of a further periodic-permanent magnetic focusing system according to the invention of the traveling wave tube, partly in section and schematically
  • Figure 5 shows a section of another periodic-permanent magnetic focusing system according to the invention of the traveling wave tube schematically partially in section.

Das in Fig. dargestellte periodisch permanentmagnetische Fokussiersystem für eine Wanderfeldröhre besteht im wesentlichen aus einer zylinderförmigen Vakuumhülle 3, die von einem Permanentmagnetsystem aus Polschuhen 1 und jeweils zwischengeordneten, in axialer Richtung abwechselnd gegensinnig polarisierten Magnetringen. 2 umgeben ist. Die Polschuhe 1 sind in die Vakuumhülle 3 hineingeführt und deren die Strahlachse 7 umgebende Teile sind als Röhrchen 4 ausgebildet. Jeder zweite Polschuh ist als aktiver Polschuh 1 an die Magnetringe 2 angekoppelt. Die dazwischen angeordneten Polschuhe 5 sind mit der Vakuumhülle 3 verbunden und bestehen bis auf ihre die Strahlachse 7 umgebenden Röhrchen 6 aus einem unmagnetischem Metall. Bei dieser bekannten Anordnung bestehen die aktiven Polschuhe 1 sowie deren. Röhrchen 4 durchwegs aus magnetischem Eisen. Das Verhältnis h/I (Spaltlänge/Zellenlänge) ist durch die Bemessung der Verzögerungsleitung vorgegeben. Die Dicke t der Polschuhscheiben 1 sollte möglichst dünn sein. Mit L/2 ist eine halbe Magnetfeldperiode L angedeutet. Der höchste Wert der Eisenbelastung wird in dem mit den Buchstaben B bezeichneten Punkt erreicht. Fig. 2 zeigt schematisch das in einem solchen System erzeugte magnetische Feld B (z).The periodically permanent magnetic focusing system for a traveling wave tube shown in FIG. 1 essentially consists of a cylindrical vacuum envelope 3, which consists of a permanent magnet system made of pole pieces 1 and interposed magnetic rings alternately polarized in opposite directions in the axial direction . 2 is surrounded. The pole pieces 1 are inserted into the vacuum envelope 3 and their parts surrounding the beam axis 7 are designed as tubes 4. Every second pole piece is coupled to the magnetic rings 2 as an active pole piece 1. The pole shoes 5 arranged between them are connected to the vacuum envelope 3 and, apart from their tubes 6 surrounding the beam axis 7, are made of a non-magnetic metal. In this known arrangement, there are the active pole shoes 1 and their. Tubes 4 consistently of magnetic iron. The ratio h / I (gap length / cell length) is specified by the dimensioning of the delay line. The thickness t of the pole shoe discs 1 should be as thin as possible. L / 2 indicates half a magnetic field period L. The highest value of the iron load is reached at the point marked with the letter B. Fig. 2 shows schematically the magnetic field B (z) generated in such a system.

Das in Fig. 3, 4 und 5 dargestellte periodisch-permanentmagnetische Fokussiersystem besteht wiederum im wesentlichen aus einer zylinderförmigen Vakuumhülle 3 aus einem unmagnetischen Metall. Das die Vakuumhülle 3 umgebende Permanentmagnetsystem ist aus aktiven Polschuhen 1 und jeweils zwischengeordneten, in axialer Richtung abwechselnd gegensinnig polarisierten Magnetringen 2 gebildet. Die aktiven Polschuhe 1 sind in die Vakuumhülle 3 hineingeführt und ihre die Strahlachse 7 umgebenden Teile sind als Röhrchen 4 ausgebildet.The periodic permanent magnetic focusing system shown in FIGS. 3, 4 and 5 in turn essentially consists of a cylindrical vacuum envelope 3 made of a non-magnetic metal. The permanent magnet system surrounding the vacuum envelope 3 is formed from active pole pieces 1 and each interposed magnetic rings 2 polarized alternately in opposite directions in the axial direction. The active pole shoes 1 are inserted into the vacuum envelope 3 and their parts surrounding the beam axis 7 are designed as tubes 4.

Zwischen den aktiven, an die Magnetringe 2 angekoppelten Polschuhen 1 sind Polschuhe 5 angeordnet, die innen mit der Vakuumhülle 3 verbunden sind. Die aktiven, an die Magnetringe 2. angekoppelten Polschuhe 1 bestehen aus magnetischem Metall, vorzugsweise aus magnetischem Eisen. Die Röhrchen 4 dieser Polschuhe 1 bestehen in dem Ausführungsbeispiel nach Fig. 3 an den Stirnflächen 8 aus unmagnetischem Metall. In dem Ausführungsbeispiel nach Fig. 4 reichen diese Teile 8 aus unmagnetischem Metall bis an den das Röhrchen 4 bildenden Teil der Polschuhe 1 heran. Die zwischen den aktiven Polschuhen 1 angeordneten Polschuhe 5 bestehen wie die Vakuumhülle 3 aus einem unmagnetischem Metall, vorzugsweise aus Kupfer. Die Röhrchen 6 dieser Polschuhe 5 bestehen in ihrem Innenteil aus magnetischem Metall, vorzugsweise magnetischem Eisen und an ihren Stirnseiten 9 aus unmagnetischem Metall, vorzugsweise Kupfer. In dem Ausführungsbeispiel nach Fig. bestehen die Röhrchen 6 der Polschuhe 5 gänzlich aus magnetischem Metall, vorzugsweise aus magnetischem Eisen. In den Fig. 2 bis 4 ist mit dem Buchstaben h wiederum die Spaltlänge und mit dem Buchstaben 1 die Zellenlänge bezeichnet. L/2 ist die halbe Magnetfeldperiode L und B der Punkt mit der höchsten Eisenbelastung. Die Dicke t der Polschuhscheiben 1 sollte wiederum möglichst gering sein. Mit dem Buchstaben b ist die Röhrchenlänge bezeichnet. Die Koppelschlitze in den Polschuhen 1, 5 sind in den Figuren mit dem Bezugszeichen 10 versehen.Between the active pole shoes 1 coupled to the magnet rings 2, pole shoes 5 are arranged, which are connected on the inside to the vacuum envelope 3. The active pole shoes 1 coupled to the magnetic rings 2 are made of magnetic metal, preferably magnetic iron. In the exemplary embodiment according to FIG. 3, the tubes 4 of these pole shoes 1 are made of non-magnetic metal on the end faces 8. In the exemplary embodiment according to FIG. 4, these parts 8 made of non-magnetic metal extend as far as the part of the pole shoes 1 forming the tube 4. The pole shoes 5 arranged between the active pole pieces 1, like the vacuum envelope 3, are made of a non-magnetic metal, preferably of copper. The tubes 6 of these pole pieces 5 consist of magnetic metal, preferably magnetic iron in their inner part and 9 of non-magnetic metal, preferably copper, on their end faces 9. In the embodiment shown in FIG. The tubes 6 of the pole shoes 5 are made entirely of magnetic metal, preferably magnetic iron. 2 to 4, the letter h is again the gap length and the letter 1 is the cell length. L / 2 is half the magnetic field period L and B is the point with the highest iron load. The thickness t of the pole shoe discs 1 should in turn be as small as possible. The letter b denotes the tube length. The coupling slots in the pole pieces 1, 5 are provided with the reference number 10 in the figures.

Claims (6)

1. A travelling wave tube comprising a cylindrical vacuum-tight envelope (3) surrounded by a focussing system comprising magnetic rings (2) which surround the envelope and are permanently polarised alternately in opposing fashion, intervening pole shoes (1) of magnetic metal extending through the wall of the envelope (3) into the vacuum where tubular components (4) surround the beam axis (7), and comprising partition walls (5) of non-magnetic metal arranged between the pole shoes connected to the inner wall of the vacuum-tight envelope (3) for tubular components (6) which surround the beam axis (7), characterised in that the tubes (4) of the pole shoes (1), which are coupled to the magnetic rings (2), consist at their centre of magnetic metal and have ends (8) of non-magnetic metal, and at least the central portion of the tubes (6) of the intervening partition walls (5) consist of magnetic metal.
2. A travelling wave tube as claimed in Claim 1, characterised in that the pole shoes (1) are disc- shaped, and that the ends (8) of the tubes (4) extend from the side walls of the pole shoes (1).
3. A travelling wave tube as claimed in Claim 1 or 2, characterised in that the tubes (6) of the partition walls (5) consist of central magnetic metal portions and non-magnetic metal ends (9).
4. A travelling wave tube as claimed in one of Claims 1 to 3, characterized in that the ratio of the tube length b of the magnetic metal portion of the tube (6) to the magnetic field period L has a value between 0.065 and 0.15.
5. A travelling wave tube as claimed in one of Claims 1 to 4, characterised in that the magnetic metal of the pole shoes (1) and the tubes (6) of the partition walls (5) is iron.
6. A travelling wave tube as claimed in one of Claims 1 to 5, characterised in that the non-magnetic metal of the tube ends (8) of the pole shoes (1), of the intervening partition walls (5), and of the ends (9) of the tubes (6) is copper.
EP83112932A 1982-12-30 1983-12-21 Periodic permanent-magnet focusing system for a travelling-wave tube Expired EP0115042B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3248693 1982-12-30
DE19823248693 DE3248693A1 (en) 1982-12-30 1982-12-30 HIKING FIELD TUBES WITH PERIODIC-PERMANENT-MAGNETIC FOCUSING SYSTEM

Publications (2)

Publication Number Publication Date
EP0115042A1 EP0115042A1 (en) 1984-08-08
EP0115042B1 true EP0115042B1 (en) 1987-08-19

Family

ID=6182198

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83112932A Expired EP0115042B1 (en) 1982-12-30 1983-12-21 Periodic permanent-magnet focusing system for a travelling-wave tube

Country Status (3)

Country Link
US (1) US4560904A (en)
EP (1) EP0115042B1 (en)
DE (2) DE3248693A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742271A (en) * 1985-03-25 1988-05-03 Raytheon Company Radial-gain/axial-gain crossed-field amplifier (radaxtron)
US5332947A (en) * 1992-05-13 1994-07-26 Litton Systems, Inc. Integral polepiece RF amplification tube for millimeter wave frequencies

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1981002221A1 (en) * 1980-01-28 1981-08-06 V Pasmannik Reversible periodical magneto-focusing system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1054462A (en) * 1963-02-06
US3324339A (en) * 1964-02-27 1967-06-06 Hughes Aircraft Co Periodic permanent magnet electron beam focusing arrangement for traveling-wave tubes having plural interaction cavities in bore of each annular magnet
US3324439A (en) * 1964-02-27 1967-06-06 Beckman Instruments Inc Electrical terminations for cermet resistance elements
DE1491426A1 (en) * 1964-08-12 1969-05-22 Siemens Ag Permanent magnet system for the bundled guidance of an electrode beam over a longer distance, especially for traveling field tubes
US3617802A (en) * 1970-05-06 1971-11-02 Us Navy Traveling wave tube
US4041349A (en) * 1973-02-16 1977-08-09 English Electric Valve Company Limited Travelling wave tubes
GB1451956A (en) * 1973-02-16 1976-10-06 English Electric Valve Co Ltd Travelling wave tubes
US3958147A (en) * 1975-06-06 1976-05-18 Hughes Aircraft Company Traveling-wave tube with improved periodic permanent magnet focusing arrangement integrated with coupled cavity slow-wave structure
DE2556464C2 (en) * 1975-12-15 1977-10-13 Siemens AG, 1000 Berlin und 8000 München Lauffeld tube with a cylindrical vacuum envelope
US4072877A (en) * 1976-07-30 1978-02-07 English Electric Valve Co., Ltd. Travelling wave tubes
US4137482A (en) * 1977-05-12 1979-01-30 Varian Associates, Inc. Periodic permanent magnet focused TWT
FR2479558A1 (en) * 1980-04-01 1981-10-02 Thomson Csf PROGRESSIVE WAVE TUBE WITH COUPLED CAVITIES AND FOCUSING BY ALTERNATE PERMANENT MAGNETS, AND AMPLIFIER ASSEMBLY COMPRISING SUCH A TUBE

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1981002221A1 (en) * 1980-01-28 1981-08-06 V Pasmannik Reversible periodical magneto-focusing system

Also Published As

Publication number Publication date
US4560904A (en) 1985-12-24
DE3373161D1 (en) 1987-09-24
EP0115042A1 (en) 1984-08-08
DE3248693A1 (en) 1984-07-05

Similar Documents

Publication Publication Date Title
CH231586A (en) Device for generating electrical oscillations of very high frequency.
DE60315216T2 (en) Magnetic field generator for a magnetron plasma
DE3011415A1 (en) X-RAY TUBES WITH MAGNETICALLY BEARED ROTARY ANODE
DE1109272B (en) Arrangement with a low-noise traveling-field helical tube for amplifying very short electrical waves
DE3414549A1 (en) ELECTRONIC CANNON WITH IMPROVED CONSTRUCTION OF CATHODE AND SHADOW GRID
EP0115042B1 (en) Periodic permanent-magnet focusing system for a travelling-wave tube
DE2901554C2 (en)
DE3050257C1 (en) Alternating periodic magnetic focusing system
DE2608718C3 (en) Magnetron with axial decoupling and axial cathode feeds
DE60122537T2 (en) Rejuvenated traveling wave tube
DE2453845C3 (en) Traveling wave tube
DE3105310A1 (en) CATHODE RAY TUBE
DE3302205C2 (en)
DE3610584C2 (en)
DE69825218T2 (en) Optimally designed traveling wave tube for operation below saturation
DE3126119A1 (en) MICROWAVE AMPLIFIER TUBES WITH TWO RING RESONATORS
DE2528351C3 (en) Traveling wave tube
DE2532989C3 (en) Traveling wave tube
DE1057244B (en) Focussing device for the bundled guidance of an electron beam over a larger distance through a periodically alternating magnetic field, especially for traveling wave tubes
DE4033101C2 (en) Electron collector for a high frequency electron beam tube
EP0164771B1 (en) Image tube
DE672510C (en) Magnetron tubes with cathode, several axially parallel anode segments and auxiliary electrodes
DE963378C (en) Ionization manometer tube
DE3027756C2 (en) Electron tube with a coaxial structure of the cylinder or cylinder jacket-shaped cathode, grid and anode with a device for eliminating disruptive braking field oscillations
DE1162491B (en) Cathode ray tubes with magnetic beam deflection devices and with a device that shields the cathode area against the beam deflection devices

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19841026

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 3373161

Country of ref document: DE

Date of ref document: 19870924

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881221

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890901