EP0106371B1 - Variable Induktivität für Dreiphasenkreis - Google Patents

Variable Induktivität für Dreiphasenkreis Download PDF

Info

Publication number
EP0106371B1
EP0106371B1 EP83111087A EP83111087A EP0106371B1 EP 0106371 B1 EP0106371 B1 EP 0106371B1 EP 83111087 A EP83111087 A EP 83111087A EP 83111087 A EP83111087 A EP 83111087A EP 0106371 B1 EP0106371 B1 EP 0106371B1
Authority
EP
European Patent Office
Prior art keywords
phase
control
magnetic
variable inductor
direct current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83111087A
Other languages
English (en)
French (fr)
Other versions
EP0106371A3 (en
EP0106371A2 (de
Inventor
Gérald Roberge
André Doyon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydro Quebec
Original Assignee
Hydro Quebec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydro Quebec filed Critical Hydro Quebec
Publication of EP0106371A2 publication Critical patent/EP0106371A2/de
Publication of EP0106371A3 publication Critical patent/EP0106371A3/fr
Application granted granted Critical
Publication of EP0106371B1 publication Critical patent/EP0106371B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F21/00Variable inductances or transformers of the signal type
    • H01F21/02Variable inductances or transformers of the signal type continuously variable, e.g. variometers
    • H01F21/08Variable inductances or transformers of the signal type continuously variable, e.g. variometers by varying the permeability of the core, e.g. by varying magnetic bias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/14Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
    • H01F29/146Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/14Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
    • H01F2029/143Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias with control winding for generating magnetic bias

Definitions

  • the present invention relates to a variable inductance device and relates more particularly to a device, the effective permeability of which is controlled by a closed magnetic circuit through which a magnetic flux with constant and adjustable current flows.
  • variable inductance device or variable inductance • will be used interchangeably.
  • the magnetic control circuit is mounted with respect to the alternating current circuits so as to form a common space between the magnetic control circuit and the magnetic alternating current circuit of each of the phases where the direct field is superposed orthogonally to the alternating field of the corresponding phase in order to produce a variable inductance phenomenon by modifying the value of the direct current magnetic field flowing through the magnetic control circuit.
  • a disadvantage of such a three-phase device lies in the fact that its three magnetic alternating current circuits have two common points, since, in certain three-phase applications, the alternating magnetic circuits of the three phases must be entirely independent of each other , that is to say have no common part and offer no possibility of return of the flow of one phase by the other two phases.
  • One of the aims of the present invention is to avoid the drawbacks mentioned above, relating to known devices, and further aims to provide an inductance with a low level of harmonics by appropriate control of its permeability or reluctance.
  • the present invention relates to a variable inductor for three-phase circuit comprising for each of its phases a first magnetic circuit formed of an anisotropic material through which an alternating magnetic field circulates, the variable inductor further comprising a magnetic circuit closed control, also formed of an anisotropic material, through which a magnetic field with adjustable direct current flows.
  • the magnetic control circuit is arranged with respect to each of the first magnetic circuits so as to define for each phase at least one common magnetic space in which the respective alternating and continuous magnetic fields are superposed orthogonally to orient the magnetic dipoles of these common spaces according to a direction predetermined by the intensity of the direct current magnetic field of the magnetic control circuit and thereby controlling the permeability of the first magnetic circuits to the alternating field.
  • the first magnetic circuits are closed towards the outside of the magnetic control circuit so as to have no common point between them and are formed from respective ferromagnetic phase cores each coupled to a phase of a current source.
  • the magnetic control circuit being formed of a ferromagnetic control core, and each of the ferromagnetic phase cores being arranged relative to the control core so as to define between them the common magnetic space.
  • Figure 1 presents a three-phase model of the variable inductance.
  • the alternating current phase windings, PA, PB and PC are carried respectively by the phase cores MA, MB and MC of the same cross section through each of which circulates an alternating magnetic field of corresponding phase.
  • Each phase core MA, MB and MC has a branch mounted orthogonally to the magnetic control core N, the winding E1-E2 of which is excited by a source of constant but adjustable direct current.
  • the intersections of the cores MA, MB and MC with the magnetic control core N define three junction zones D3, D4 and D5 belonging to the magnetic core N and subsequently called "common magnetic spaces".
  • the orthogonal arrangement of the three magnetic cores MA, MB and MC with respect to the core N has the effect of producing in the common magnetic spaces D3, D4 and D5 a magnetic torque proportional to the value, in the control core N, of the magnetic field direct current, which polarizes the dipoles of these common magnetic spaces. Because of this orthogonal arrangement, the alternating magnetic fluxes and the continuous magnetic flux cannot take the same path; the direct current magnetic field orients, by polarizing them, the magnetic dipoles of the common magnetic spaces so as to act on the permeability of the magnetic circuits excited by the alternating current windings PA-PA, PB-PB and PC-PC as it is longed for.
  • the cores MA, MB, MC and N are made of ferromagnetic materials with the same cross section, either ferrite or rolled iron, and therefore have an inherent anisotropic property.
  • the dipoles of the common spaces D3, D4 and D5 in the absence of a DC polarizing field N tend to orient in the direction of the alternating magnetic field produced by the corresponding phase, the permeability of each nucleus MA, MB and MC then being a measure of the ease with which the magnetic dipoles orient themselves in the direction of this exciting field.
  • the MA, MB and MC nuclei become saturated when their dipoles are completely oriented in the direction of the corresponding alternating magnetic field.
  • This three-phase variable inductance device therefore essentially consists in producing in common magnetic spaces a direct current magnetic field, which has the effect of opposing the rotation of the dipoles of these common spaces for adequate control of the effective permeability of alternating magnetic circuits. It is clear that the common magnetic spaces are established between the phase cores MA, MB and MC and the control core N, as described above and illustrated in FIG. 1.
  • the phases of the cores MA, MB and MC are not arranged symmetrically so that this circuit is not optimal as regards the length of the phase cores, their junctions and their geometric arrangement with respect to to the control nucleus N.
  • FIG. 2 illustrates a symmetrical arrangement of the three-phase variable inductance in which the phase cores MA, MB and MC form an angle of 120 ° relative to each other and are mechanically mounted on the control core N which is hexagonal in shape.
  • This arrangement of Figure 3 allows a range of variations of the impé dance in the same order of magnitude as in the previous case and a significant reduction in relative losses, therefore an increase in the quality factor of the inductance.
  • This type of construction does not show magnetic legs for the return of the flow in transient regime.
  • FIGS. 1 and 2 allows elimination of the third and ninth harmonic currents by means of a star connection of the three windings PA-PA, PB-PB and PC-PC, with floating neutral, not connected to ground, and the elimination of the third and ninth harmonic fluxes using a superposed secondary winding, PSA-PSA, PSB-PSB and PSC-PSC, connected in a triangle.
  • the losses in the control core N are considerably reduced due to the fact that no bidirectional reaction remains between the control core and the phase nuclei, since there is no alternating magnetic flux in the core of control N, the sum of the effects of the three phases being zero.
  • the neutral of the star connection being isolated from ground, it is not possible for the zero sequence components of the current to establish in transient state.
  • variable inductor of Figures 1 and 2 When used in three-phase, the arrangement of the variable inductor of Figures 1 and 2 has an increased advantage compared to the use of three single-phase inductors each comprising a separate control core due to the fact that the same quantity control energy is required for all three phases than that which would be required for a single phase if single-phase variable inductors were used, so that the control losses are less and distributed over the three phases.
  • control of the direct current magnetic flux can be carried out by self-control, using diode bridges R, as illustrated in FIG. 2, of the initial request, or by reverse control using a constant and adjustable direct current winding, superimposed on the self-checking winding, on the control core N.
  • This self-check using a rectified current, has the effect of modifying the slope of the front of the magnetization curve and of moving the operating point of the inductance on the different magnetization curves to levels which are a function of the voltage of the AC source.
  • the reluctance of the phase cores MA, MB and MC changes itself, and in the right direction, according to the applied alternating voltage levels, which proves to be excellent for cases of very large voltage variation , for example in the event of overvoltage and load shedding of an energy transmission line.
  • the number of turns of the direct current coil supplied by the diode bridges R could possibly be modified to using thyristors slaved to a voltage setpoint, which would have the effect of shifting the curve of the operating point of the inductor.
  • the response time of the variable inductance circuit when it is in self-control, is almost instantaneous, that is to say that the response time will be less than a period.
  • the regulation control time it may vary depending on the control mode used and reach one or two periods (based on 60 Hertz) depending on the needs of the user. r.
  • the resulting magnetic field in the control core will then be a function of the magnetic field generated by the rectified alternating current, which flows in the winding in self-control and, therefore, a function of the voltage level at the terminals PA- PA, PB-PB and PC-PC.
  • the operation of this control mode is simple and does not require any feedback loop to correct the desired magnetic torque on the dipoles of the common magnetic spaces D3, D4 and D5.
  • FIG. 3 shows the variations in impedance of the three-phase inductance as a function of the increase in ampere-turns injected into the control core N.
  • FIG. 3 we have plotted on the abscissa current 1 in the PA-PA, PB-PB and PC-PC windings and on the ordinate the phase-neutral voltage U o . N applied to the three windings PA-PA, PB-PB and PC-PC which are connected in star.
  • the V / I impedances of each phase vary in a ratio of up to 11/1 for a direct current magnetic field varying from 0 to 4848 ampere-turns.
  • phase "A only, designated by PA, of this three-phase inductance presents the results of phase "A only, designated by PA, of this three-phase inductance.
  • the dotted line 1 shows the behavior of the variable inductor for a voltage of 80 volts rms measured phase-neutral.
  • the dotted line 2 shows the behavior of the variable inductor when it is connected in series with a capacitor.
  • the value of the capacity used was 200 J.lF and the three-phase source was kept fixed at 120 volts rms across the circuit.
  • the increase in volts-amperes of the variable inductance for a displacement from A to B on the curves is 360 volts-amps three-phase for 4,848 ampere-turns. This increase in power is approximately 1.78 times greater than for the case of the inductor alone for the same voltage.
  • FIG. 4 presents a family of saturation curves of the variable inductance of FIG. 1.
  • the alternating current IcA has been plotted on the ordinate in effective value, on the abscissa the ampere-turns of the DC control, and in parameter of curves phase-neutral voltages, in effective value.
  • This figure 4 provides information on the behavior of dipoles in the magnetic space common to the two magnetic circuits. one notes on each of these curves an unsaturated region and a saturated region. In the unsaturated part, each curve has an increasingly steep slope as the flux density increases in the magnetic circuit excited by the alternating current winding.
  • Figures 5, 6, 7 and 8 respectively show the level of harmonics of the third, fifth, seventh and ninth harmonics as a function of the DC ampere-turns. These harmonic rates are calculated between the harmonic considered and the fundamental for a full load alternating current which corresponds to 5.0 (x 606) ampere-turns with direct current.
  • the harmonic rates calculated for only one phase of the three-phase inductance in Figure 1, are very low and even negligible for some harmonics.
  • curves 1, 2, 3 and 4 correspond to tests carried out under voltages, in effective values, of 80 volts, 160 volts, 200 volts and 280 volts, respectively.
  • the asymmetrical arrangement of the magnetic circuits in Figure 1 plays an important role in this phenomenon. Indeed, the control core N is oval and the phase cores are not arranged at 120 ° relative to each other on this control core. Improved results can be obtained with the three-phase inductor of Figure 3 where the phase cores are arranged at 120 ° to each other and where the control core is hexagonal in shape.
  • FIG. 9 presents curves of distortion of the phase-neutral voltage of 180 volts in rms value as a function of the harmonics generated by a phase of the three-phase inductor of FIG. 1.
  • Curve 1 gives results measured for the network alone then that curves 2 and 3 illustrate the results obtained when the variable inductor is connected to the network and where the control flow is respectively zero and equal to 1.212 ampere-turns dc. It can then be seen that the rate of distortion of the phase voltage is at all times below 1%.
  • FIG. 10 presents curves obtained by plotting on the abscissa a ratio of impedance Zo / Z, on the ordinate the voltage U oN phase-neutral at the terminals PA-PA, PB-PB and PC-PC of the inductor of FIG.
  • FIGS. 11 a to 11 e respectively give the three-phase power curves of the variable inductance of the figure for phase-neutral voltages respectively of 80, 160, 200, 240 and 280 volts in rms value.
  • the curve marked "V.A. gives the total power (active and reactive) supplied by the inductance expressed in volts-amperes
  • the curve marked" watts gives the losses of the inductance in the form of active power expressed in watts.
  • these losses decrease under the effect of the increase in the transverse direct current magnetic field.
  • the relatively higher losses are linked to an increase in the components of third and ninth harmonics, as indicated previously. This phenomenon of decreasing losses in the nucleus with the increase in the reactive energy of the variable inductor contributes to increasing the efficiency of the inductor around 96% when the direct current magnetic field reaches a value of 3030 amps- turns.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Ac-Ac Conversion (AREA)

Claims (8)

1. Variable Induktivität für einen Dreiphasenkreis, mit einem ersten magnetischen Kreis (MA, MB, MC) für jede Phase aus anisotropen Material, durch den ein magnetisches Wechselfeld zirkuliert, und mit einem geschlossenen magnetischen Steuerkreis (N), der ebenfalls aus anisotropen Material besteht und durch den ein von einem regelbaren Gleichstrom gespeistes Magnetfeld zirkuliert, wobei der magnetische Steuerkreis (N) gegenüber jedem der ersteren magnetischen Kreise (MA, MB, MC) so angeordnet ist, daß für jede Phase wenigstens ein gemeinsamer magnetischer Raum definiert ist, in dem sich die magnetischen Wechselfelder und das Gleichfeld rechtwinklig überlagern, um die magnetischen Dipole der gemeinsamen Räume nach einer Richtung zu orientieren, die vorgegeben ist durch die Stärke des magnetischen Gleichstromfeldes des magnetischen Steuerkreises (N), und um so die Permeabilität der ersten Wechselfeld-Magnetkreise (MA, MB, MC) zu steuern, dadurch gekennzeichnet, daß die ersten magnetischen Kreise (MA, MB, MC) zum Äußeren des magnetischen Steuerkreises (N) derart geschlossen sind, daß sie keinen gemeinsamen Punkt untereinander haben, und aus ferromagnetischen Phasenkernen (MA, MB, MC) gebildet sind, die jeweils an eine Phase (PA, PB, PC) einer dreiphasigen Wechselstromquelle angeschlossen sind, wobei der magnetische Steuerkreis einen ferromagnetischen Steuerkern (N) aufweist und jeder der ferromagnetischen Phasenkerne (MA, MB, MC) gegenüber dem Steuerkern (N) so angeordnet ist, daß zwischen ihnen der gemeinsame magnetische Raum gebildet ist.
2. Variable Induktivität nach Anspruch 1, dadurch gekennzeichnet, daß jeder der Phasenkerne (MA, MB, MC) eine erste Phasenwicklung (PA-PA, PB-PB, PC-PC) und eine zweite Phasenwicklung (PSA-PSA, PSB-PSB, PSC-PSC) aufweist, und daß die ersten Phasenwicklungen im Stern mit nicht-geerdeten Nulleiter und die zweiten Phasenwicklungen im Dreieck geschaltet sind.
3. Variable Induktivität nach Anspruch 1, dadurch gekennzeichnet, daß der Steuerkern (N) eine erste Steuerwicklung (E1, E2) aufweist, die von einem Strom durchflossen wird, dessen Stärke von dem dreiphasigen Strom der Stromquelle über Gleichrichterbrücken derart abhängig ist, daß die variable Induktivität selbstgeregelt ist.
4. Variable Induktivität nach Anspruch 3, dadurch gekennzeichnet, daß der Steuerkern (N), eine zweite Steuerwicklung aufweist, welche an eine konstante und regelbare Gleichstromquelle derart angeschlossen ist, daß sie in dem Steuerkern (N) ein magnetisches Gleichfeld induziert, das dem von der ersten Steuerwicklung (E1, E2) induzierten Feld entgegengerichtet ist.
5. Variable Induktivität nach Anspruch 1, dadurch gekennzeichnet, daß die Phasenkerne (MA, MB, MC) symmetrisch um den Steuerkern (N) angeordnet sind.
6. Variable Induktivität nach Anspruch 3, dadurch gekennzeichnet, daß sie Kommutatoren aufweist, durch die die Zahl der Windungen der ersten Steuerwicklung (E1, E2) erhöht oder herabgesetzt werden kann, um eine Verschiebung der Kennlinie der variablen Induktivität zu ermöglichen.
7. Variable Induktivität nach Anspruch 6, dadurch gekennzeichnet, daß die Kommutatoren Thyristoren aufweisen.
8. Variable Induktivität nach Anspruch 7, dadurch gekennzeichnet, daß die Thyristoren spannungsgesteuert sind.
EP83111087A 1978-10-20 1979-10-19 Variable Induktivität für Dreiphasenkreis Expired EP0106371B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA313821 1978-10-20
CA000313821A CA1118509A (fr) 1978-10-20 1978-10-20 Variable inductance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP79400766.6 Division 1979-10-19

Publications (3)

Publication Number Publication Date
EP0106371A2 EP0106371A2 (de) 1984-04-25
EP0106371A3 EP0106371A3 (en) 1984-05-30
EP0106371B1 true EP0106371B1 (de) 1986-03-26

Family

ID=4112642

Family Applications (3)

Application Number Title Priority Date Filing Date
EP79400766A Expired EP0010502B1 (de) 1978-10-20 1979-10-19 Variable Induktivität
EP83111087A Expired EP0106371B1 (de) 1978-10-20 1979-10-19 Variable Induktivität für Dreiphasenkreis
EP83111475A Expired EP0109096B1 (de) 1978-10-20 1979-10-19 Anordnung mit variabler Induktivität

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP79400766A Expired EP0010502B1 (de) 1978-10-20 1979-10-19 Variable Induktivität

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP83111475A Expired EP0109096B1 (de) 1978-10-20 1979-10-19 Anordnung mit variabler Induktivität

Country Status (6)

Country Link
US (1) US4393157A (de)
EP (3) EP0010502B1 (de)
JP (1) JPS6040171B2 (de)
BR (1) BR7906797A (de)
CA (1) CA1118509A (de)
DE (1) DE2967481D1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2685221C1 (ru) * 2018-07-24 2019-04-17 Илья Николаевич Джус Шунтирующий реактор со смешанным возбуждением (варианты)
RU2699017C1 (ru) * 2018-12-19 2019-09-03 Илья Николаевич Джус УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ ДВУМЯ ПОДМАГНИЧИВАЕМЫМИ РЕАКТОРАМИ (варианты)
RU2706719C1 (ru) * 2019-01-28 2019-11-20 Илья Николаевич Джус УСТРОЙСТВО УПРАВЛЕНИЯ ДВУМЯ РЕАКТОРАМИ (варианты)
RU2757149C1 (ru) * 2020-12-08 2021-10-11 Илья Николаевич Джус Трехфазный управляемый реактор (варианты)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102575A (ja) * 1986-10-20 1988-05-07 Sanyo Electric Co Ltd ビデオデイスクプレ−ヤ
US5523673A (en) * 1994-03-04 1996-06-04 Marelco Power Systems, Inc. Electrically controllable inductor
US5426409A (en) * 1994-05-24 1995-06-20 The United States Of America As Represented By The Secretary Of The Navy Current controlled variable inductor
WO1999031686A1 (fr) * 1997-04-02 1999-06-24 Tohoku Electric Power Company, Incorporated Transformateur variable a commande de flux
KR100510638B1 (ko) * 1999-02-04 2005-08-31 엘지전자 주식회사 반도체 인덕터 소자
KR100621186B1 (ko) * 1999-12-28 2006-09-06 삼성전자주식회사 영상표시기기의 수평 선형성 보정회로
GB2361107A (en) * 2000-04-03 2001-10-10 Abb Ab Magnetic bias of a magnetic core portion used to adjust a core's reluctance
NO317045B1 (no) * 2000-05-24 2004-07-26 Magtech As Magnetisk pavirkbar strom- eller spenningsregulerende anordning
US6933822B2 (en) * 2000-05-24 2005-08-23 Magtech As Magnetically influenced current or voltage regulator and a magnetically influenced converter
US7026905B2 (en) * 2000-05-24 2006-04-11 Magtech As Magnetically controlled inductive device
JP4789030B2 (ja) * 2001-04-27 2011-10-05 財団法人北九州産業学術推進機構 可変リアクトルを用いた誘導発電機の電圧制御方法
NO318397B1 (no) * 2001-11-21 2005-03-14 Magtech As System for styring av impedans i en arbeidskrets
NO319424B1 (no) * 2001-11-21 2005-08-08 Magtech As Fremgangsmate for styrbar omforming av en primaer vekselstrom/-spenning til en sekundaer vekselstrom/-spenning
NO319363B1 (no) * 2002-12-12 2005-07-18 Magtech As System for spenningsstabilisering av kraftforsyningslinjer
NO20033362D0 (no) * 2003-07-25 2003-07-25 Magtech As Mykstarter for asynkrone motorer
GB2407214A (en) * 2003-10-14 2005-04-20 Magtech A S Variable inductor
WO2005076293A1 (en) * 2004-02-03 2005-08-18 Magtech As Power supply control methods and devices
GB2419479A (en) * 2004-10-14 2006-04-26 Magtech A S Symetrization of a three-phase system with a single-phase load
US7378828B2 (en) * 2004-11-09 2008-05-27 The Boeing Company DC-DC converter having magnetic feedback
NO322286B1 (no) * 2004-12-23 2006-09-11 Magtech As Anordning og fremgangsmate for reduksjon av harmoniske i en trefaset spenningsforsyning
DE102006022438A1 (de) * 2006-05-13 2007-11-15 Robert Bosch Gmbh Luftspule als Koppelinduktivität
US7274574B1 (en) * 2006-05-15 2007-09-25 Biegel George E Magnetically controlled transformer apparatus for controlling power delivered to a load with current transformer feedback
US9019061B2 (en) * 2009-03-31 2015-04-28 Power Systems Technologies, Ltd. Magnetic device formed with U-shaped core pieces and power converter employing the same
US8120457B2 (en) 2010-04-09 2012-02-21 Delta Electronics, Inc. Current-controlled variable inductor
RU2451353C1 (ru) * 2010-10-21 2012-05-20 Александр Михайлович Брянцев Трехфазный управляемый подмагничиванием реактор
RU2473999C1 (ru) * 2011-07-15 2013-01-27 "Сиадор Энтерпрайзис Лимитед" Способ увеличения быстродействия управляемого подмагничиванием шунтирующего реактора
RU2486619C1 (ru) * 2012-02-07 2013-06-27 Александр Михайлович Брянцев Электрический трехфазный реактор с подмагничиванием
KR102032791B1 (ko) * 2013-06-03 2019-10-16 삼성전자주식회사 노이즈 필터 및 이를 포함하는 전자장치
JP6504766B2 (ja) * 2014-08-28 2019-04-24 株式会社日立製作所 静止誘導電器
US9997290B2 (en) * 2015-06-26 2018-06-12 Intel Corporation Variable inductor and wireless communication device including variable device for conversion of a baseband signal to a radio frequency (RF) range
US9979273B2 (en) * 2016-05-19 2018-05-22 Abb Schweiz Ag Resonant converters with variable inductor
RU2643787C1 (ru) * 2016-09-29 2018-02-06 Сергей Александрович Смирнов Способ управления шунтирующим реактором при отключении
RU2643789C1 (ru) * 2016-09-29 2018-02-06 Сергей Александрович Смирнов Способ подключения управляемого шунтирующего реактора ( варианты)
RU2658346C1 (ru) * 2017-06-07 2018-06-20 Илья Николаевич Джус Способ коммутации управляемого шунтирующего реактора
RU2659820C1 (ru) * 2017-07-13 2018-07-04 Илья Николаевич Джус Семистержневой трехфазный подмагничиваемый реактор
US10144035B1 (en) * 2017-08-23 2018-12-04 Teledyne Instruments, Inc. Low-frequency sound source for underwater sound propagation research and calibration
RU2658347C1 (ru) * 2017-10-03 2018-06-20 Илья Николаевич Джус Устройство для регулирования тока шунтирующего реактора
RU2686657C1 (ru) * 2018-07-23 2019-04-30 Илья Николаевич Джус Управляемый шунтирующий реактор (варианты)
RU2686301C1 (ru) * 2018-07-24 2019-04-25 Илья Николаевич Джус Шунтирующий реактор с комбинированным возбуждением (варианты)
RU2701144C1 (ru) * 2019-01-28 2019-09-25 Илья Николаевич Джус Управляемый шунтирующий реактор
RU2701150C1 (ru) * 2019-01-28 2019-09-25 Илья Николаевич Джус УПРАВЛЯЕМЫЙ РЕАКТОР-КОМПЕНСАТОР (варианты)
RU2701149C1 (ru) * 2019-03-26 2019-09-25 Илья Николаевич Джус УПРАВЛЯЕМЫЙ ШУНТИРУЮЩИЙ РЕАКТОР (варианты)
RU2700569C1 (ru) * 2019-03-26 2019-09-18 Илья Николаевич Джус Управляемый реактор с независимым подмагничиванием
RU2701147C1 (ru) * 2019-03-26 2019-09-25 Илья Николаевич Джус Шунтирующий управляемый реактор
CN112541154B (zh) * 2020-11-26 2021-10-08 东南大学 一种磁路功率的计算方法
FR3142851A1 (fr) * 2022-12-06 2024-06-07 Thales Module de variation d'une inductance et filtre radiofréquence comportant un tel module
CN116599162B (zh) * 2023-07-19 2023-09-15 昆明理工大学 一种n-1下新能源渗透率的确定方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1788152A (en) * 1928-06-20 1931-01-06 Union Switch & Signal Co Electrical translating apparatus
US1862204A (en) * 1930-11-01 1932-06-07 Union Switch & Signal Co Electrical translating apparatus
US2445857A (en) * 1944-11-23 1948-07-27 Automatic Elect Lab Magnetic frequency changer
US2844804A (en) * 1955-07-06 1958-07-22 Letourneau Westinghouse Compan Control transformer
DE1026416B (de) * 1955-10-08 1958-03-20 Siemens Ag Gleichstromvormagnetisierte Drehstromdrosselspule
US3087108A (en) * 1957-01-03 1963-04-23 Dominic S Toffolo Flux switching transformer
CH355210A (de) * 1958-01-25 1961-06-30 Bbc Brown Boveri & Cie Regulieranordnung für Schweissgleichrichter
US3188456A (en) * 1961-08-24 1965-06-08 Jr Raymond L King Magnetic modulator for computing divisions and multiplications
BE629601A (de) * 1962-03-16
US3403323A (en) * 1965-05-14 1968-09-24 Wanlass Electric Company Electrical energy translating devices and regulators using the same
US3582829A (en) * 1968-08-05 1971-06-01 Wanlass Electric Co Modulating systems incorporating an electrically variable inductance as a modulating element
US3622868A (en) * 1970-02-06 1971-11-23 Joachim H Todt Regulating power transformer with magnetic shunt
US3657678A (en) * 1970-06-08 1972-04-18 Carl A Schwenden Multi-purpose, multi-voltage transformer
US3757201A (en) * 1972-05-19 1973-09-04 L Cornwell Electric power controlling or regulating system
US3735305A (en) * 1972-09-20 1973-05-22 Us Air Force High power electrically variable inductor
GB1424986A (en) * 1974-02-11 1976-02-11 Rivas R V De Electromagnetic device
FR2324053A1 (fr) * 1975-09-12 1977-04-08 Inst Elektroswarki Patona Dispositif pour le traitement des metaux au plasma

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2685221C1 (ru) * 2018-07-24 2019-04-17 Илья Николаевич Джус Шунтирующий реактор со смешанным возбуждением (варианты)
RU2699017C1 (ru) * 2018-12-19 2019-09-03 Илья Николаевич Джус УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ ДВУМЯ ПОДМАГНИЧИВАЕМЫМИ РЕАКТОРАМИ (варианты)
RU2706719C1 (ru) * 2019-01-28 2019-11-20 Илья Николаевич Джус УСТРОЙСТВО УПРАВЛЕНИЯ ДВУМЯ РЕАКТОРАМИ (варианты)
RU2757149C1 (ru) * 2020-12-08 2021-10-11 Илья Николаевич Джус Трехфазный управляемый реактор (варианты)

Also Published As

Publication number Publication date
EP0010502B1 (de) 1985-07-10
EP0106371A3 (en) 1984-05-30
JPS6040171B2 (ja) 1985-09-10
EP0109096B1 (de) 1986-04-30
EP0010502A1 (de) 1980-04-30
DE2967481D1 (en) 1985-08-14
BR7906797A (pt) 1980-06-17
US4393157A (en) 1983-07-12
EP0106371A2 (de) 1984-04-25
EP0109096A1 (de) 1984-05-23
JPS5556608A (en) 1980-04-25
CA1118509A (fr) 1982-02-16

Similar Documents

Publication Publication Date Title
EP0106371B1 (de) Variable Induktivität für Dreiphasenkreis
EP0194163B1 (de) Selbstkontrollierte variable Induktivität mit Luftspalten und elektrische Anordnung mit solcher Induktivität
EP1555745B1 (de) 12 Halbwellen Konverter mit Filterinduktivität die in der Gleichrichter integriert ist.
EP0339164A1 (de) Selbstregulierter Transformator-Induktor mit Luftspalten
FR2514212A1 (fr) Onduleur a circuit oscillant
WO2006079744A1 (fr) Transformateur pour vehicule moteur multicourant
CH648708A5 (fr) Dispositif d'alimentation de courant continu a tension reglable comprenant un transformateur variable.
US3368141A (en) Transformer in combination with permanent magnet
CA1298881C (fr) Generateur de fluide chaud a thermo-induction
EP0026158B1 (de) Transformator mit variablem Transformationsverhältnis und statischem Kompensator mit Flipflop
BE1011254A3 (fr) Filtre homopolaire.
EP0186598A1 (de) Dreiphasige elektrische Versorgungsschaltung für einen Ozonerzeuger
BE520127A (de)
BE519791A (de)
BE495834A (de)
KR910002376B1 (ko) 변 압 기
SU1100692A1 (ru) Умножитель частоты
BE408336A (de)
BE666130A (fr) Ensemble d'alimentation en tension redressée à très faible taux d'ondulation
EP0072838A1 (de) Differentialflussmotorgenerator
BE495595A (de)
BE441290A (de)
FR2801736A1 (fr) Dispositif de filtrage d'harmoniques generees par une charge alimentee par un reseau a frequence variable
BE475379A (de)
BE567424A (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AC Divisional application: reference to earlier application

Ref document number: 10502

Country of ref document: EP

AK Designated contracting states

Designated state(s): BE DE FR GB SE

AK Designated contracting states

Designated state(s): BE DE FR GB SE

17P Request for examination filed

Effective date: 19840517

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 10502

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB SE

REF Corresponds to:

Ref document number: 2967589

Country of ref document: DE

Date of ref document: 19860430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 83111087.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961011

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19961028

Year of fee payment: 18

Ref country code: FR

Payment date: 19961028

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19961118

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961209

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971031

BERE Be: lapsed

Owner name: HYDRO-QUEBEC

Effective date: 19971031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980701

EUG Se: european patent has lapsed

Ref document number: 83111087.9

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST