EP0106371A2 - Variable Induktivität für Dreiphasenkreis - Google Patents
Variable Induktivität für Dreiphasenkreis Download PDFInfo
- Publication number
- EP0106371A2 EP0106371A2 EP83111087A EP83111087A EP0106371A2 EP 0106371 A2 EP0106371 A2 EP 0106371A2 EP 83111087 A EP83111087 A EP 83111087A EP 83111087 A EP83111087 A EP 83111087A EP 0106371 A2 EP0106371 A2 EP 0106371A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnetic
- phase
- control
- circuit
- alternating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F21/00—Variable inductances or transformers of the signal type
- H01F21/02—Variable inductances or transformers of the signal type continuously variable, e.g. variometers
- H01F21/08—Variable inductances or transformers of the signal type continuously variable, e.g. variometers by varying the permeability of the core, e.g. by varying magnetic bias
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F29/00—Variable transformers or inductances not covered by group H01F21/00
- H01F29/14—Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
- H01F29/146—Constructional details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F29/00—Variable transformers or inductances not covered by group H01F21/00
- H01F29/14—Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
- H01F2029/143—Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias with control winding for generating magnetic bias
Definitions
- the present invention relates to a variable inductance device and relates more particularly to a device, the effective permeability of which is controlled by a closed magnetic circuit through which a magnetic flux with constant and adjustable current flows.
- variable inductance device or “variable inductance” will be used interchangeably.
- the magnetic control circuit is mounted with respect to the alternating current circuits so as to form a common space between the magnetic control circuit and the magnetic alternating current circuit of each of the phases where the direct field is orthogonally superimposed on the alternating field of the corresponding phase in order to produce a variable inductance phenomenon by modifying the value of the direct current magnetic field flowing through the magnetic control circuit.
- a disadvantage of such a three-phase device lies in the fact that its three magnetic alternating current circuits have two common points, since, in certain three-phase applications, the alternating magnetic circuits of the three phases must be entirely independent of each other , that is to say have no common part and offer no pcssibility of return of the flow of a phase by the two other phases.
- One of the aims of the present invention is to avoid the drawbacks mentioned above, relating to known devices, and aims to provide an inductance with a low level of harmonics by appropriate control of its permeability or reluctance.
- the present invention relates to a variable inductance for a three-phase circuit comprising for each of its phases a first magnetic circuit formed of an anisotropic material through which an alternating magnetic field circulates, the variable inductance further comprising a closed magnetic control circuit, also formed of an anisotropic material, through which circulates an adjustable direct current magnetic field.
- the magnetic control circuit is arranged relative to each of the first magnetic circuits so as to define for each phase at least one common magnetic space in which the respective alternating and continuous magnetic fields are superposed orthogonally to orient the magnetic dipoles of these common spaces according to a direction predetermined by the intensity of the direct current magnetic field of the magnetic control circuit and thereby controlling the permeability of the first magnetic circuits to the alternating field.
- the first magnetic circuits are closed towards the outside of the magnetic control circuit so as to have no common point between them and are formed from respective ferromagnetic cores each coupled to a phase of a three-phase alternating current source.
- the magnetic control circuit being formed of a ferromagnetic control core, and each of the phase cores being arranged relative to the control core so as to define between them the common magnetic space.
- Figure 1 presents a three-phase model of the variable inductance.
- Each of the phases, PA, PB and PC are respectively connected to the cores MA, MB and MC of the same cross section through each of which circulates an alternating magnetic field of corresponding phase.
- Each core MA, MB and MC has a branch mounted orthogonally to the control core N, the winding El-E2 of which is excited by a source of constant but adjustable direct current.
- the intersections of the nuclei MA, MB and MC with the magnetic control nucleus N define three junction zones D3, D4 and D5 belonging to the magnetic nucleus N and named later "Common magnetic spaces".
- the orthogonal arrangement of the three magnetic cores M A, MB and MC with respect to the core N has the effect of producing in the common magnetic spaces D3, D4 and D5 a magnetic torque proportional to the value, in the core N , of the magnetic field at direct current, which polarizes the dipoles of these common magnetic spaces. Because of this orthogonal arrangement, the alternating magnetic fluxes and the continuous magnetic flux cannot take the same path; the direct current magnetic field orients, by polarizing them, the magnetic dipoles of the common magnetic spaces so as to act on the permeability of the magnetic circuits excited by the alternating current windings PA-PA, PB-PB and PC-PC as it is longed for.
- the cores MA, MB, MC and N are made of ferromagnetic materials with the same cross section, either ferrite or rolled iron, and therefore have an inherent anisotropic property.
- the dipoles of the common spaces D3, D4 and D5 in the absence of a DC polarizing field N tend to orient in the direction of the alternating magnetic field produced by the corresponding phase, the permeability of each nucleus MA, MB and MC then being a measure of the ease with which the magnetic dipoles orient themselves in the direction of this exciting field.
- the MA, MB and MC nuclei become saturated when their dipoles are completely oriented in the direction of the corresponding alternating magnetic field.
- This three-phase variable inductance device therefore essentially consists in producing in common magnetic spaces a direct current magnetic field, which has the effect of opposing the rotation of the dipoles of these common spaces for adequate control. effective permeability of alternating magnetic circuits. It is clear that the common magnetic spaces can be established both in the phase nuclei MA, MB and MC as in the control nucleus N, as described above and illustrated in FIG. 1.
- the phases of the cores MA, MB and MC are not arranged symmetrically so that this circuit is not optimal as regards the length of the phase cores, their junctions and their geometric arrangement with respect to to the control nucleus N.
- Figure 3 illustrates a symmetrical arrangement of the in three-phase variable ductance in which the phase cores MA, MB and MC form an angle of 120 ° relative to each other and are mechanically mounted on the control core N which is hexagonal in shape.
- This arrangement of FIG. 3 allows a range of variations in the impedance in the same order of magnitude as in the previous case and an appreciable reduction in the relative losses, therefore an increase in the quality factor of the inductance.
- This type of construction does not show magnetic legs for the return of the flow in transient regime.
- FIGS. 1 and 3 allows elimination of the third and ninth harmonic currents by means of a star connection of the three windings PA-PA, PB-PB and PC-PC, with floating neutral, not connected to ground, and the elimination of the third and ninth harmonic fluxes using a superposed secondary winding, PSA-PSA, PSB-PSB and PSC-PSC, connected in a triangle.
- the losses in the control core N are considerably reduced due to the fact that no bidirectional reaction remains between the control core and the phase nuclei, since there is no alternating magnetic flux in the core of control N, the sum of the effects of the three phases being zero.
- the neutral of the star connection being isolated from ground, it is not possible for the zero sequence components of the current to establish in transient state.
- variable inductor of Figures 1 and 3 When used in three-phase, the arrangement of the variable inductor of Figures 1 and 3 has an increased advantage compared to the use of three single-phase inductors each comprising a separate control core due to the fact that the same quantity control energy is required for all three phases than that which would be required for a single phase if single-phase variable inductors were used, so that the control losses are less and distributed over the three phases.
- control of the direct current magnetic flux can be carried out by self-control, using diode bridges R , as illustrated in FIG. 2, or even by reverse control at using a constant and adjustable direct current winding, superimposed on the self-checking winding, on the control core N.
- FIG. 2 therefore illustrates a self-checking connection of the device of FIG. 1 by insertion of diode bridges R between the alternative windings PA-PA, PB-PB and PC-PC and the continuous winding E1-E2 had the device.
- This arrangement makes it possible to continuously vary the permeability of the MA, MB and MC cores as a function of sudden variations in the alternating magnetic fluxes.
- the number of turns of the direct current coil supplied by the diode bridges R could possibly be modified to using thyristors slaved to a voltage setpoint, which would have the effect of shifting the curve of the operating point of the inductor.
- the response time of the variable inductance circuit when it is in self-control, is almost instantaneous, that is to say that the response time will be less than a period.
- the regulation control time it may vary depending on the control mode used and reach one or two periods (based on 60 Hertz) depending on the needs of the user.
- FIG. 4 shows the variations in impedance of the three-phase inductance as a function of the increase in ampere-turns injected into the control core N.
- this FIG. 4 we have plotted on the abscissa the current I in the PA-PA, PB-PB and PC - PC windings and on the ordinate the phase-neutral voltage U 0-N applied to the three PA-PA, PB-PB and PC-PC windings which are connected in star.
- the V / I impedances of each phase vary in a ratio of up to 11/1 for a direct current magnetic field varying from 0 to 4,848 amps- turns.
- phase "A" only designated by PA
- the dotted line 1 shows the behavior of the variable inductor for a voltage of 80 volts rms measured phase-neutral.
- the dotted line 2 shows the behavior of the variable inductance when it is connected in series with a capacitor and the result of which is inductive.
- the value of the capacity used was 200 ⁇ F and the three-phase source was kept fixed at 120 volts rms across the circuit.
- the increase in volts-amperes of the variable inductance for a displacement from A to B on the curves is 360 volts-amps three-phase for 4,848 amperes-turns. This increase in power is approximately 1.78 times greater than for the case of the inductor alone for the same voltage.
- FIG. 5 presents a family of saturation curves of the variable inductance of FIG. 1.
- the alternating current IcA has been plotted on the ordinate in rms value, in abscissa the ampere-turns of the DC control, and in curve parameter phase-neutral voltages, in effective value.
- This figure 5 provides information on the behavior of dipoles in the magnetic space common to the two magnetic circuits. We note on each of these curves an unsaturated region and a saturated region. In the unsaturated part, each curve has an increasingly steep slope as the flux density increases in the magnetic circuit excited by the alternating current winding.
- Figures 6, 7, 8 and 9 respectively show the level of harmonics of the third, fifth, seventh and ninth harmonics current as a function of the ampere-turns with direct current. These harmonic rates are calculated between the harmonic considered and the fundamental for a full load alternating current which corresponds to 5.0 (x 606) ampere-turns with direct current.
- FIG. 10 presents curves of distortion of the phase-neutral voltage of 180 volts in rms value function of the harmonics generated by a phase of the three-phase inductor in Figure 1.
- Curve 1 gives results measured for the network alone while curves 2 and 3 illustrate the results obtained when the variable inductor is connected to the network and where the control flow is respectively zero and equal to 1.212 ampere-turns cc. It can then be seen that the rate of distortion of the phase voltage is at all times below 1%.
- FIG. 11 presents curves obtained by plotting on the abscissa a ratio of irpedance Zo / Z, on the ordinate the voltage U ⁇ N phase-neutral at the terminals PA-PA, PB-PB and PC-PC of the inductance of the figure 1 and in curve parameter the number of ampere-turns of the direct current magnetic circuit, Zo corresponding to the impedance of a phase, when the direct current magnetic field is zero, and Z to the impedance of this phase for the indicated values of direct current ampere-turns.
- the impedance ratios decrease with increasing saturation of the alternating current nuclei and that when there is complete saturation the impedance ratio is equal to unity, because then the space dipoles magnetic field make a zero angle with the vector of the alternating magnetic field.
- saturation occurs at a higher level the higher the transverse direct current magnetic field, as in the case of control currents of 4848 ampere-turns dc.
- FIGS. 12a to 12e respectively give the three-phase power curves of the variable inductance of FIG. 1 for phase-neutral voltages respectively of 80, 160, 200, 240 and 280 volts in rms value.
- the curve marked "VA” gives the total power (active and reactive) provided by the inductance expressed in volts-amperes
- the curve marked "watts” gives the losses of the inductance in the form of active power expressed in watts.
- the increase in watts is related to an increase in the components of third and ninth harmonics, as indicated previously. This phenomenon of decreasing losses in the core with the increase in the reactive energy of the variable inductor contributes to increasing the efficiency of the inductor around 96% when the direct current magnetic field reaches a value of 3030 amperes- turns.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Coils Or Transformers For Communication (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Control Of Electrical Variables (AREA)
- Ac-Ac Conversion (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA313821 | 1978-10-20 | ||
CA000313821A CA1118509A (fr) | 1978-10-20 | 1978-10-20 | Variable inductance |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP79400766.6 Division | 1979-10-19 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0106371A2 true EP0106371A2 (de) | 1984-04-25 |
EP0106371A3 EP0106371A3 (en) | 1984-05-30 |
EP0106371B1 EP0106371B1 (de) | 1986-03-26 |
Family
ID=4112642
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83111087A Expired EP0106371B1 (de) | 1978-10-20 | 1979-10-19 | Variable Induktivität für Dreiphasenkreis |
EP83111475A Expired EP0109096B1 (de) | 1978-10-20 | 1979-10-19 | Anordnung mit variabler Induktivität |
EP79400766A Expired EP0010502B1 (de) | 1978-10-20 | 1979-10-19 | Variable Induktivität |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83111475A Expired EP0109096B1 (de) | 1978-10-20 | 1979-10-19 | Anordnung mit variabler Induktivität |
EP79400766A Expired EP0010502B1 (de) | 1978-10-20 | 1979-10-19 | Variable Induktivität |
Country Status (6)
Country | Link |
---|---|
US (1) | US4393157A (de) |
EP (3) | EP0106371B1 (de) |
JP (1) | JPS6040171B2 (de) |
BR (1) | BR7906797A (de) |
CA (1) | CA1118509A (de) |
DE (1) | DE2967481D1 (de) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2451353C1 (ru) * | 2010-10-21 | 2012-05-20 | Александр Михайлович Брянцев | Трехфазный управляемый подмагничиванием реактор |
RU2473999C1 (ru) * | 2011-07-15 | 2013-01-27 | "Сиадор Энтерпрайзис Лимитед" | Способ увеличения быстродействия управляемого подмагничиванием шунтирующего реактора |
RU2486619C1 (ru) * | 2012-02-07 | 2013-06-27 | Александр Михайлович Брянцев | Электрический трехфазный реактор с подмагничиванием |
RU2643787C1 (ru) * | 2016-09-29 | 2018-02-06 | Сергей Александрович Смирнов | Способ управления шунтирующим реактором при отключении |
RU2643789C1 (ru) * | 2016-09-29 | 2018-02-06 | Сергей Александрович Смирнов | Способ подключения управляемого шунтирующего реактора ( варианты) |
RU2658346C1 (ru) * | 2017-06-07 | 2018-06-20 | Илья Николаевич Джус | Способ коммутации управляемого шунтирующего реактора |
RU2658347C1 (ru) * | 2017-10-03 | 2018-06-20 | Илья Николаевич Джус | Устройство для регулирования тока шунтирующего реактора |
RU2659820C1 (ru) * | 2017-07-13 | 2018-07-04 | Илья Николаевич Джус | Семистержневой трехфазный подмагничиваемый реактор |
RU2686301C1 (ru) * | 2018-07-24 | 2019-04-25 | Илья Николаевич Джус | Шунтирующий реактор с комбинированным возбуждением (варианты) |
RU2686657C1 (ru) * | 2018-07-23 | 2019-04-30 | Илья Николаевич Джус | Управляемый шунтирующий реактор (варианты) |
RU2700569C1 (ru) * | 2019-03-26 | 2019-09-18 | Илья Николаевич Джус | Управляемый реактор с независимым подмагничиванием |
RU2701144C1 (ru) * | 2019-01-28 | 2019-09-25 | Илья Николаевич Джус | Управляемый шунтирующий реактор |
RU2701150C1 (ru) * | 2019-01-28 | 2019-09-25 | Илья Николаевич Джус | УПРАВЛЯЕМЫЙ РЕАКТОР-КОМПЕНСАТОР (варианты) |
RU2701147C1 (ru) * | 2019-03-26 | 2019-09-25 | Илья Николаевич Джус | Шунтирующий управляемый реактор |
RU2701149C1 (ru) * | 2019-03-26 | 2019-09-25 | Илья Николаевич Джус | УПРАВЛЯЕМЫЙ ШУНТИРУЮЩИЙ РЕАКТОР (варианты) |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63102575A (ja) * | 1986-10-20 | 1988-05-07 | Sanyo Electric Co Ltd | ビデオデイスクプレ−ヤ |
US5523673A (en) * | 1994-03-04 | 1996-06-04 | Marelco Power Systems, Inc. | Electrically controllable inductor |
US5426409A (en) * | 1994-05-24 | 1995-06-20 | The United States Of America As Represented By The Secretary Of The Navy | Current controlled variable inductor |
US6137391A (en) * | 1997-12-17 | 2000-10-24 | Tohoku Electric Power Company, Incorporated | Flux-controlled type variable transformer |
KR100510638B1 (ko) * | 1999-02-04 | 2005-08-31 | 엘지전자 주식회사 | 반도체 인덕터 소자 |
KR100621186B1 (ko) * | 1999-12-28 | 2006-09-06 | 삼성전자주식회사 | 영상표시기기의 수평 선형성 보정회로 |
GB2361107A (en) * | 2000-04-03 | 2001-10-10 | Abb Ab | Magnetic bias of a magnetic core portion used to adjust a core's reluctance |
NO317045B1 (no) * | 2000-05-24 | 2004-07-26 | Magtech As | Magnetisk pavirkbar strom- eller spenningsregulerende anordning |
US6933822B2 (en) * | 2000-05-24 | 2005-08-23 | Magtech As | Magnetically influenced current or voltage regulator and a magnetically influenced converter |
US7026905B2 (en) * | 2000-05-24 | 2006-04-11 | Magtech As | Magnetically controlled inductive device |
JP4789030B2 (ja) * | 2001-04-27 | 2011-10-05 | 財団法人北九州産業学術推進機構 | 可変リアクトルを用いた誘導発電機の電圧制御方法 |
NO318397B1 (no) * | 2001-11-21 | 2005-03-14 | Magtech As | System for styring av impedans i en arbeidskrets |
NO319424B1 (no) * | 2001-11-21 | 2005-08-08 | Magtech As | Fremgangsmate for styrbar omforming av en primaer vekselstrom/-spenning til en sekundaer vekselstrom/-spenning |
NO319363B1 (no) * | 2002-12-12 | 2005-07-18 | Magtech As | System for spenningsstabilisering av kraftforsyningslinjer |
NO20033362D0 (no) * | 2003-07-25 | 2003-07-25 | Magtech As | Mykstarter for asynkrone motorer |
GB2407214A (en) * | 2003-10-14 | 2005-04-20 | Magtech A S | Variable inductor |
WO2005076293A1 (en) * | 2004-02-03 | 2005-08-18 | Magtech As | Power supply control methods and devices |
GB2419479A (en) * | 2004-10-14 | 2006-04-26 | Magtech A S | Symetrization of a three-phase system with a single-phase load |
US7378828B2 (en) * | 2004-11-09 | 2008-05-27 | The Boeing Company | DC-DC converter having magnetic feedback |
NO322286B1 (no) * | 2004-12-23 | 2006-09-11 | Magtech As | Anordning og fremgangsmate for reduksjon av harmoniske i en trefaset spenningsforsyning |
DE102006022438A1 (de) * | 2006-05-13 | 2007-11-15 | Robert Bosch Gmbh | Luftspule als Koppelinduktivität |
US7274574B1 (en) * | 2006-05-15 | 2007-09-25 | Biegel George E | Magnetically controlled transformer apparatus for controlling power delivered to a load with current transformer feedback |
CN102356438B (zh) * | 2009-03-31 | 2014-08-27 | 伟创力国际美国公司 | 使用u形芯件形成的磁器件以及运用该器件的功率转换器 |
US8120457B2 (en) | 2010-04-09 | 2012-02-21 | Delta Electronics, Inc. | Current-controlled variable inductor |
KR102032791B1 (ko) * | 2013-06-03 | 2019-10-16 | 삼성전자주식회사 | 노이즈 필터 및 이를 포함하는 전자장치 |
JP6504766B2 (ja) * | 2014-08-28 | 2019-04-24 | 株式会社日立製作所 | 静止誘導電器 |
US9997290B2 (en) * | 2015-06-26 | 2018-06-12 | Intel Corporation | Variable inductor and wireless communication device including variable device for conversion of a baseband signal to a radio frequency (RF) range |
US9979273B2 (en) * | 2016-05-19 | 2018-05-22 | Abb Schweiz Ag | Resonant converters with variable inductor |
US10144035B1 (en) * | 2017-08-23 | 2018-12-04 | Teledyne Instruments, Inc. | Low-frequency sound source for underwater sound propagation research and calibration |
RU2685221C1 (ru) * | 2018-07-24 | 2019-04-17 | Илья Николаевич Джус | Шунтирующий реактор со смешанным возбуждением (варианты) |
RU2699017C1 (ru) * | 2018-12-19 | 2019-09-03 | Илья Николаевич Джус | УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ ДВУМЯ ПОДМАГНИЧИВАЕМЫМИ РЕАКТОРАМИ (варианты) |
RU2706719C1 (ru) * | 2019-01-28 | 2019-11-20 | Илья Николаевич Джус | УСТРОЙСТВО УПРАВЛЕНИЯ ДВУМЯ РЕАКТОРАМИ (варианты) |
CN112541154B (zh) * | 2020-11-26 | 2021-10-08 | 东南大学 | 一种磁路功率的计算方法 |
RU2757149C1 (ru) * | 2020-12-08 | 2021-10-11 | Илья Николаевич Джус | Трехфазный управляемый реактор (варианты) |
FR3142851A1 (fr) * | 2022-12-06 | 2024-06-07 | Thales | Module de variation d'une inductance et filtre radiofréquence comportant un tel module |
CN116599162B (zh) * | 2023-07-19 | 2023-09-15 | 昆明理工大学 | 一种n-1下新能源渗透率的确定方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH391921A (de) * | 1962-03-16 | 1965-05-15 | Bbc Brown Boveri & Cie | Einphasen-Transformator für Schweisszwecke |
US3757201A (en) * | 1972-05-19 | 1973-09-04 | L Cornwell | Electric power controlling or regulating system |
FR2324053A1 (fr) * | 1975-09-12 | 1977-04-08 | Inst Elektroswarki Patona | Dispositif pour le traitement des metaux au plasma |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1788152A (en) * | 1928-06-20 | 1931-01-06 | Union Switch & Signal Co | Electrical translating apparatus |
US1862204A (en) * | 1930-11-01 | 1932-06-07 | Union Switch & Signal Co | Electrical translating apparatus |
US2445857A (en) * | 1944-11-23 | 1948-07-27 | Automatic Elect Lab | Magnetic frequency changer |
US2844804A (en) * | 1955-07-06 | 1958-07-22 | Letourneau Westinghouse Compan | Control transformer |
DE1026416B (de) * | 1955-10-08 | 1958-03-20 | Siemens Ag | Gleichstromvormagnetisierte Drehstromdrosselspule |
US3087108A (en) * | 1957-01-03 | 1963-04-23 | Dominic S Toffolo | Flux switching transformer |
CH355210A (de) * | 1958-01-25 | 1961-06-30 | Bbc Brown Boveri & Cie | Regulieranordnung für Schweissgleichrichter |
US3188456A (en) * | 1961-08-24 | 1965-06-08 | Jr Raymond L King | Magnetic modulator for computing divisions and multiplications |
US3403323A (en) * | 1965-05-14 | 1968-09-24 | Wanlass Electric Company | Electrical energy translating devices and regulators using the same |
US3582829A (en) * | 1968-08-05 | 1971-06-01 | Wanlass Electric Co | Modulating systems incorporating an electrically variable inductance as a modulating element |
US3622868A (en) * | 1970-02-06 | 1971-11-23 | Joachim H Todt | Regulating power transformer with magnetic shunt |
US3657678A (en) * | 1970-06-08 | 1972-04-18 | Carl A Schwenden | Multi-purpose, multi-voltage transformer |
US3735305A (en) * | 1972-09-20 | 1973-05-22 | Us Air Force | High power electrically variable inductor |
GB1424986A (en) * | 1974-02-11 | 1976-02-11 | Rivas R V De | Electromagnetic device |
-
1978
- 1978-10-20 CA CA000313821A patent/CA1118509A/fr not_active Expired
- 1978-12-05 US US05/966,555 patent/US4393157A/en not_active Expired - Lifetime
-
1979
- 1979-01-29 JP JP54008308A patent/JPS6040171B2/ja not_active Expired
- 1979-10-19 EP EP83111087A patent/EP0106371B1/de not_active Expired
- 1979-10-19 EP EP83111475A patent/EP0109096B1/de not_active Expired
- 1979-10-19 DE DE7979400766T patent/DE2967481D1/de not_active Expired
- 1979-10-19 EP EP79400766A patent/EP0010502B1/de not_active Expired
- 1979-10-22 BR BR7906797A patent/BR7906797A/pt unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH391921A (de) * | 1962-03-16 | 1965-05-15 | Bbc Brown Boveri & Cie | Einphasen-Transformator für Schweisszwecke |
US3757201A (en) * | 1972-05-19 | 1973-09-04 | L Cornwell | Electric power controlling or regulating system |
FR2324053A1 (fr) * | 1975-09-12 | 1977-04-08 | Inst Elektroswarki Patona | Dispositif pour le traitement des metaux au plasma |
Non-Patent Citations (1)
Title |
---|
BROWN BOVERI MITTEILUNGEN, juillet 1965, pages 489-494 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2451353C1 (ru) * | 2010-10-21 | 2012-05-20 | Александр Михайлович Брянцев | Трехфазный управляемый подмагничиванием реактор |
RU2473999C1 (ru) * | 2011-07-15 | 2013-01-27 | "Сиадор Энтерпрайзис Лимитед" | Способ увеличения быстродействия управляемого подмагничиванием шунтирующего реактора |
RU2486619C1 (ru) * | 2012-02-07 | 2013-06-27 | Александр Михайлович Брянцев | Электрический трехфазный реактор с подмагничиванием |
RU2643787C1 (ru) * | 2016-09-29 | 2018-02-06 | Сергей Александрович Смирнов | Способ управления шунтирующим реактором при отключении |
RU2643789C1 (ru) * | 2016-09-29 | 2018-02-06 | Сергей Александрович Смирнов | Способ подключения управляемого шунтирующего реактора ( варианты) |
RU2658346C1 (ru) * | 2017-06-07 | 2018-06-20 | Илья Николаевич Джус | Способ коммутации управляемого шунтирующего реактора |
RU2659820C1 (ru) * | 2017-07-13 | 2018-07-04 | Илья Николаевич Джус | Семистержневой трехфазный подмагничиваемый реактор |
RU2658347C1 (ru) * | 2017-10-03 | 2018-06-20 | Илья Николаевич Джус | Устройство для регулирования тока шунтирующего реактора |
RU2686657C1 (ru) * | 2018-07-23 | 2019-04-30 | Илья Николаевич Джус | Управляемый шунтирующий реактор (варианты) |
RU2686301C1 (ru) * | 2018-07-24 | 2019-04-25 | Илья Николаевич Джус | Шунтирующий реактор с комбинированным возбуждением (варианты) |
RU2701144C1 (ru) * | 2019-01-28 | 2019-09-25 | Илья Николаевич Джус | Управляемый шунтирующий реактор |
RU2701150C1 (ru) * | 2019-01-28 | 2019-09-25 | Илья Николаевич Джус | УПРАВЛЯЕМЫЙ РЕАКТОР-КОМПЕНСАТОР (варианты) |
RU2700569C1 (ru) * | 2019-03-26 | 2019-09-18 | Илья Николаевич Джус | Управляемый реактор с независимым подмагничиванием |
RU2701147C1 (ru) * | 2019-03-26 | 2019-09-25 | Илья Николаевич Джус | Шунтирующий управляемый реактор |
RU2701149C1 (ru) * | 2019-03-26 | 2019-09-25 | Илья Николаевич Джус | УПРАВЛЯЕМЫЙ ШУНТИРУЮЩИЙ РЕАКТОР (варианты) |
Also Published As
Publication number | Publication date |
---|---|
DE2967481D1 (en) | 1985-08-14 |
EP0010502B1 (de) | 1985-07-10 |
US4393157A (en) | 1983-07-12 |
EP0106371B1 (de) | 1986-03-26 |
EP0106371A3 (en) | 1984-05-30 |
EP0109096A1 (de) | 1984-05-23 |
BR7906797A (pt) | 1980-06-17 |
EP0109096B1 (de) | 1986-04-30 |
EP0010502A1 (de) | 1980-04-30 |
JPS5556608A (en) | 1980-04-25 |
JPS6040171B2 (ja) | 1985-09-10 |
CA1118509A (fr) | 1982-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0106371B1 (de) | Variable Induktivität für Dreiphasenkreis | |
EP0194163B1 (de) | Selbstkontrollierte variable Induktivität mit Luftspalten und elektrische Anordnung mit solcher Induktivität | |
CA1258881A (fr) | Transformateur-inducteur auto-regule a entrefers | |
FR2532511A1 (de) | ||
EP1841616B1 (de) | Transformator für mehrfachstromfahrzeug | |
FR2514212A1 (fr) | Onduleur a circuit oscillant | |
FR2709891A1 (fr) | Convertisseur auto-oscillant du type à ajustement. | |
CA1298881C (fr) | Generateur de fluide chaud a thermo-induction | |
BE1011254A3 (fr) | Filtre homopolaire. | |
EP0443342A1 (de) | Verfahren zur Regelung der Energieübertragung in einem statischen Wandler, statischer Wandler zur Durchführung des Verfahrens und Stromversorgung mit einem solchen Wandler | |
FR2494520A1 (fr) | Onduleur statique perfectionne, notamment pour des lampes a decharge | |
BE495834A (de) | ||
BE519791A (de) | ||
BE475379A (de) | ||
BE408336A (de) | ||
BE485412A (de) | ||
BE483325A (de) | ||
BE387750A (de) | ||
BE486084A (de) | ||
FR2801736A1 (fr) | Dispositif de filtrage d'harmoniques generees par une charge alimentee par un reseau a frequence variable | |
FR2503504A1 (fr) | Source d'alimentation en courant regule a haute frequence pour televiseur ayant un transformateur ferroresonnant basse tension couple a un transformateur-elevateur haute tension | |
BE351530A (de) | ||
BE495595A (de) | ||
BE441290A (de) | ||
BE558421A (de) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 10502 Country of ref document: EP |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB SE |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB SE |
|
17P | Request for examination filed |
Effective date: 19840517 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 10502 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB SE |
|
REF | Corresponds to: |
Ref document number: 2967589 Country of ref document: DE Date of ref document: 19860430 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 83111087.9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19961011 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19961028 Year of fee payment: 18 Ref country code: FR Payment date: 19961028 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19961118 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19961209 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19971031 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971031 |
|
BERE | Be: lapsed |
Owner name: HYDRO-QUEBEC Effective date: 19971031 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19971019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980701 |
|
EUG | Se: european patent has lapsed |
Ref document number: 83111087.9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |