EP0106371A2 - Variable inductance for a three-phase circuit - Google Patents
Variable inductance for a three-phase circuit Download PDFInfo
- Publication number
- EP0106371A2 EP0106371A2 EP83111087A EP83111087A EP0106371A2 EP 0106371 A2 EP0106371 A2 EP 0106371A2 EP 83111087 A EP83111087 A EP 83111087A EP 83111087 A EP83111087 A EP 83111087A EP 0106371 A2 EP0106371 A2 EP 0106371A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnetic
- phase
- control
- circuit
- alternating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F21/00—Variable inductances or transformers of the signal type
- H01F21/02—Variable inductances or transformers of the signal type continuously variable, e.g. variometers
- H01F21/08—Variable inductances or transformers of the signal type continuously variable, e.g. variometers by varying the permeability of the core, e.g. by varying magnetic bias
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F29/00—Variable transformers or inductances not covered by group H01F21/00
- H01F29/14—Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
- H01F29/146—Constructional details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F29/00—Variable transformers or inductances not covered by group H01F21/00
- H01F29/14—Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
- H01F2029/143—Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias with control winding for generating magnetic bias
Definitions
- the present invention relates to a variable inductance device and relates more particularly to a device, the effective permeability of which is controlled by a closed magnetic circuit through which a magnetic flux with constant and adjustable current flows.
- variable inductance device or “variable inductance” will be used interchangeably.
- the magnetic control circuit is mounted with respect to the alternating current circuits so as to form a common space between the magnetic control circuit and the magnetic alternating current circuit of each of the phases where the direct field is orthogonally superimposed on the alternating field of the corresponding phase in order to produce a variable inductance phenomenon by modifying the value of the direct current magnetic field flowing through the magnetic control circuit.
- a disadvantage of such a three-phase device lies in the fact that its three magnetic alternating current circuits have two common points, since, in certain three-phase applications, the alternating magnetic circuits of the three phases must be entirely independent of each other , that is to say have no common part and offer no pcssibility of return of the flow of a phase by the two other phases.
- One of the aims of the present invention is to avoid the drawbacks mentioned above, relating to known devices, and aims to provide an inductance with a low level of harmonics by appropriate control of its permeability or reluctance.
- the present invention relates to a variable inductance for a three-phase circuit comprising for each of its phases a first magnetic circuit formed of an anisotropic material through which an alternating magnetic field circulates, the variable inductance further comprising a closed magnetic control circuit, also formed of an anisotropic material, through which circulates an adjustable direct current magnetic field.
- the magnetic control circuit is arranged relative to each of the first magnetic circuits so as to define for each phase at least one common magnetic space in which the respective alternating and continuous magnetic fields are superposed orthogonally to orient the magnetic dipoles of these common spaces according to a direction predetermined by the intensity of the direct current magnetic field of the magnetic control circuit and thereby controlling the permeability of the first magnetic circuits to the alternating field.
- the first magnetic circuits are closed towards the outside of the magnetic control circuit so as to have no common point between them and are formed from respective ferromagnetic cores each coupled to a phase of a three-phase alternating current source.
- the magnetic control circuit being formed of a ferromagnetic control core, and each of the phase cores being arranged relative to the control core so as to define between them the common magnetic space.
- Figure 1 presents a three-phase model of the variable inductance.
- Each of the phases, PA, PB and PC are respectively connected to the cores MA, MB and MC of the same cross section through each of which circulates an alternating magnetic field of corresponding phase.
- Each core MA, MB and MC has a branch mounted orthogonally to the control core N, the winding El-E2 of which is excited by a source of constant but adjustable direct current.
- the intersections of the nuclei MA, MB and MC with the magnetic control nucleus N define three junction zones D3, D4 and D5 belonging to the magnetic nucleus N and named later "Common magnetic spaces".
- the orthogonal arrangement of the three magnetic cores M A, MB and MC with respect to the core N has the effect of producing in the common magnetic spaces D3, D4 and D5 a magnetic torque proportional to the value, in the core N , of the magnetic field at direct current, which polarizes the dipoles of these common magnetic spaces. Because of this orthogonal arrangement, the alternating magnetic fluxes and the continuous magnetic flux cannot take the same path; the direct current magnetic field orients, by polarizing them, the magnetic dipoles of the common magnetic spaces so as to act on the permeability of the magnetic circuits excited by the alternating current windings PA-PA, PB-PB and PC-PC as it is longed for.
- the cores MA, MB, MC and N are made of ferromagnetic materials with the same cross section, either ferrite or rolled iron, and therefore have an inherent anisotropic property.
- the dipoles of the common spaces D3, D4 and D5 in the absence of a DC polarizing field N tend to orient in the direction of the alternating magnetic field produced by the corresponding phase, the permeability of each nucleus MA, MB and MC then being a measure of the ease with which the magnetic dipoles orient themselves in the direction of this exciting field.
- the MA, MB and MC nuclei become saturated when their dipoles are completely oriented in the direction of the corresponding alternating magnetic field.
- This three-phase variable inductance device therefore essentially consists in producing in common magnetic spaces a direct current magnetic field, which has the effect of opposing the rotation of the dipoles of these common spaces for adequate control. effective permeability of alternating magnetic circuits. It is clear that the common magnetic spaces can be established both in the phase nuclei MA, MB and MC as in the control nucleus N, as described above and illustrated in FIG. 1.
- the phases of the cores MA, MB and MC are not arranged symmetrically so that this circuit is not optimal as regards the length of the phase cores, their junctions and their geometric arrangement with respect to to the control nucleus N.
- Figure 3 illustrates a symmetrical arrangement of the in three-phase variable ductance in which the phase cores MA, MB and MC form an angle of 120 ° relative to each other and are mechanically mounted on the control core N which is hexagonal in shape.
- This arrangement of FIG. 3 allows a range of variations in the impedance in the same order of magnitude as in the previous case and an appreciable reduction in the relative losses, therefore an increase in the quality factor of the inductance.
- This type of construction does not show magnetic legs for the return of the flow in transient regime.
- FIGS. 1 and 3 allows elimination of the third and ninth harmonic currents by means of a star connection of the three windings PA-PA, PB-PB and PC-PC, with floating neutral, not connected to ground, and the elimination of the third and ninth harmonic fluxes using a superposed secondary winding, PSA-PSA, PSB-PSB and PSC-PSC, connected in a triangle.
- the losses in the control core N are considerably reduced due to the fact that no bidirectional reaction remains between the control core and the phase nuclei, since there is no alternating magnetic flux in the core of control N, the sum of the effects of the three phases being zero.
- the neutral of the star connection being isolated from ground, it is not possible for the zero sequence components of the current to establish in transient state.
- variable inductor of Figures 1 and 3 When used in three-phase, the arrangement of the variable inductor of Figures 1 and 3 has an increased advantage compared to the use of three single-phase inductors each comprising a separate control core due to the fact that the same quantity control energy is required for all three phases than that which would be required for a single phase if single-phase variable inductors were used, so that the control losses are less and distributed over the three phases.
- control of the direct current magnetic flux can be carried out by self-control, using diode bridges R , as illustrated in FIG. 2, or even by reverse control at using a constant and adjustable direct current winding, superimposed on the self-checking winding, on the control core N.
- FIG. 2 therefore illustrates a self-checking connection of the device of FIG. 1 by insertion of diode bridges R between the alternative windings PA-PA, PB-PB and PC-PC and the continuous winding E1-E2 had the device.
- This arrangement makes it possible to continuously vary the permeability of the MA, MB and MC cores as a function of sudden variations in the alternating magnetic fluxes.
- the number of turns of the direct current coil supplied by the diode bridges R could possibly be modified to using thyristors slaved to a voltage setpoint, which would have the effect of shifting the curve of the operating point of the inductor.
- the response time of the variable inductance circuit when it is in self-control, is almost instantaneous, that is to say that the response time will be less than a period.
- the regulation control time it may vary depending on the control mode used and reach one or two periods (based on 60 Hertz) depending on the needs of the user.
- FIG. 4 shows the variations in impedance of the three-phase inductance as a function of the increase in ampere-turns injected into the control core N.
- this FIG. 4 we have plotted on the abscissa the current I in the PA-PA, PB-PB and PC - PC windings and on the ordinate the phase-neutral voltage U 0-N applied to the three PA-PA, PB-PB and PC-PC windings which are connected in star.
- the V / I impedances of each phase vary in a ratio of up to 11/1 for a direct current magnetic field varying from 0 to 4,848 amps- turns.
- phase "A" only designated by PA
- the dotted line 1 shows the behavior of the variable inductor for a voltage of 80 volts rms measured phase-neutral.
- the dotted line 2 shows the behavior of the variable inductance when it is connected in series with a capacitor and the result of which is inductive.
- the value of the capacity used was 200 ⁇ F and the three-phase source was kept fixed at 120 volts rms across the circuit.
- the increase in volts-amperes of the variable inductance for a displacement from A to B on the curves is 360 volts-amps three-phase for 4,848 amperes-turns. This increase in power is approximately 1.78 times greater than for the case of the inductor alone for the same voltage.
- FIG. 5 presents a family of saturation curves of the variable inductance of FIG. 1.
- the alternating current IcA has been plotted on the ordinate in rms value, in abscissa the ampere-turns of the DC control, and in curve parameter phase-neutral voltages, in effective value.
- This figure 5 provides information on the behavior of dipoles in the magnetic space common to the two magnetic circuits. We note on each of these curves an unsaturated region and a saturated region. In the unsaturated part, each curve has an increasingly steep slope as the flux density increases in the magnetic circuit excited by the alternating current winding.
- Figures 6, 7, 8 and 9 respectively show the level of harmonics of the third, fifth, seventh and ninth harmonics current as a function of the ampere-turns with direct current. These harmonic rates are calculated between the harmonic considered and the fundamental for a full load alternating current which corresponds to 5.0 (x 606) ampere-turns with direct current.
- FIG. 10 presents curves of distortion of the phase-neutral voltage of 180 volts in rms value function of the harmonics generated by a phase of the three-phase inductor in Figure 1.
- Curve 1 gives results measured for the network alone while curves 2 and 3 illustrate the results obtained when the variable inductor is connected to the network and where the control flow is respectively zero and equal to 1.212 ampere-turns cc. It can then be seen that the rate of distortion of the phase voltage is at all times below 1%.
- FIG. 11 presents curves obtained by plotting on the abscissa a ratio of irpedance Zo / Z, on the ordinate the voltage U ⁇ N phase-neutral at the terminals PA-PA, PB-PB and PC-PC of the inductance of the figure 1 and in curve parameter the number of ampere-turns of the direct current magnetic circuit, Zo corresponding to the impedance of a phase, when the direct current magnetic field is zero, and Z to the impedance of this phase for the indicated values of direct current ampere-turns.
- the impedance ratios decrease with increasing saturation of the alternating current nuclei and that when there is complete saturation the impedance ratio is equal to unity, because then the space dipoles magnetic field make a zero angle with the vector of the alternating magnetic field.
- saturation occurs at a higher level the higher the transverse direct current magnetic field, as in the case of control currents of 4848 ampere-turns dc.
- FIGS. 12a to 12e respectively give the three-phase power curves of the variable inductance of FIG. 1 for phase-neutral voltages respectively of 80, 160, 200, 240 and 280 volts in rms value.
- the curve marked "VA” gives the total power (active and reactive) provided by the inductance expressed in volts-amperes
- the curve marked "watts” gives the losses of the inductance in the form of active power expressed in watts.
- the increase in watts is related to an increase in the components of third and ninth harmonics, as indicated previously. This phenomenon of decreasing losses in the core with the increase in the reactive energy of the variable inductor contributes to increasing the efficiency of the inductor around 96% when the direct current magnetic field reaches a value of 3030 amperes- turns.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Coils Or Transformers For Communication (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Control Of Electrical Variables (AREA)
- Ac-Ac Conversion (AREA)
Abstract
L'inductance variable pour circuit triphasé comporte un premier circuit magnétique pour chacune de ses phases, chaque premier circuit magnétique étant formé d'un matériau anisotrope à travers lequel circule un champ magnétique alternatif. L'inductance comprend en outre un circuit magnétique de contrôle fermé, également formé d'un matériau anistrope, à travers lequel circule un champ magnétique à courant continu réglable. Ce circurt magnétique de contrôle est disposé par rapport à chacun des premiers circuits magnétiques de façon à définir pour chaque phase au moins un espace magnétique (D3, D4, D5) dans lequel les champs magnétiques alternatif et continu respectifs se superposent orthoganalement. Les premiers circuits magnétiques sont fermés vers l'extérieur du circuit magnétique de contrôle de sorte à ne présenter aucun point commun entre eux et sont formés de noyaux ferromagnétiques respectifs (MA, MB, MC) couplés chacun à une phase (PA, PB, PC) d'une source à courant alternatif triphasé. Le circuit magnétique de contrôle est également formé d'un noyau de contrôle ferromagnétique (N), et chaque noyau de phase est disposé par rapport au noyau de contrôle de façon à définir entre eux l'espace magnétique commun.The variable inductor for three-phase circuit comprises a first magnetic circuit for each of its phases, each first magnetic circuit being formed of an anisotropic material through which an alternating magnetic field circulates. The inductor further comprises a closed magnetic control circuit, also formed of an anistrope material, through which a magnetic field with adjustable direct current flows. This magnetic control circuit is arranged with respect to each of the first magnetic circuits so as to define for each phase at least one magnetic space (D3, D4, D5) in which the respective alternating and continuous magnetic fields are orthogonally superimposed. The first magnetic circuits are closed towards the outside of the magnetic control circuit so as to have no common point between them and are formed by respective ferromagnetic cores (MA, MB, MC) each coupled to a phase (PA, PB, PC ) from a three-phase alternating current source. The magnetic control circuit is also formed of a ferromagnetic control core (N), and each phase core is arranged relative to the control core so as to define between them the common magnetic space.
Description
La présente invention est relative à un dispositif à inductance variable et vise plus particulièrement un dispositif, dont la perméabilité efficace est commandée par un circuit magnétique fermé à travers lequel circule un flux magnétique à courant constant et réglable.The present invention relates to a variable inductance device and relates more particularly to a device, the effective permeability of which is controlled by a closed magnetic circuit through which a magnetic flux with constant and adjustable current flows.
Dans cette demande de brevet, on utilisera indifféremment les termes «dispositif à inductance variable» ou «inductance variable».In this patent application, the terms “variable inductance device” or “variable inductance” will be used interchangeably.
Présentement, il existe plusieurs dispositifs à configurations diverses susceptibles d'être utilisés comme inductance variable en préconisant un contrôle de la perméabilité ou de la réluctance du matériau formant l'inductance par superposition longitudinale d'un flux magnétique soit alternatif, soit constant, comme par exemple dans le brevet U.S. N° 1,788,152 de Dowling émis en 1931; le brevet U.S. N° 2,844,804 de Roe, du 22 juillet 1958; le brevet U.S. N° 2,976,478 de Aske, du 21 mars 1961; et le brevet U.S. N° 3,735,305 du Sinnott et al, du 22 mai 1973. On connait également le brevet U.S. N° 3,757,201 de Cornwell, émis le 4 septembre 1973 qui décrit un appareil destiné à régulariser une tension, un courant ou une charge, côté secondaire, au moyen d'un couplage magnétique variable qui affecte considérablement le facteur de puissance du dispositif à inductance variable. Dans ce brevet, la perméabilité du circuit magnétique est affectée au moyen d'un flux à courant continu, contrôlable dans un plan normal à celui d'un flux alternatif, mais il en résulte une augmentation considérable du courant d'excitation et du flux de fuite du circuit magnétique. Ces dispositifs connus possèdent toutefois des inconvénients majeurs dûs au fait que plusieurs de ceux-ci fonctionnent à saturation, présentent une distorsion très appréciable de l'onde courant dû aux harmoniques générées dans les circuits magnétiques, et possèdent un faible facteur de puissance.At present, there are several devices with various configurations capable of being used as variable inductance by recommending a control of the permeability or of the reluctance of the material forming the inductance by longitudinal superposition of a magnetic flux either alternating or constant, as by example in the U.S. patent No. 1,788,152 to Dowling issued in 1931; US Patent No. 2,844,804 to Roe, 22 July 1958 US Patent No. 2,976,478 to Aske, March 21, 1961; and US Patent No. 3,735,305 of Sinnott et al, May 22, 1973. We also know US Patent No. 3,757,201 of Cornwell, issued September 4, 1973 which describes an apparatus for regulating a voltage, current or charge, secondary side, by means of a variable magnetic coupling which considerably affects the power factor of the device with variable inductance. In this patent, the permeability of the magnetic circuit is affected by means of a direct current flow, controllable in a plane normal to that of an alternating flux, but this results in a considerable increase in the excitation current and the flux of magnetic circuit leak. These known devices however have major drawbacks due to the fact that several of them operate at saturation, have a very appreciable distortion of the current wave due to the harmonics generated in the magnetic circuits, and have a low power factor.
On connaît de plus l'article du Brown Boveri Mitteilungen paru en juillet 1965 aux pages 489-494 et intitulé «NEUARTIGE SCHWEISSGLEICHRICHTER». Cet article décrit un transformateur triphasé comprenant un circuit magnétique à courant alternatif pour chacune des trois phases et un circuit magnétique de contrôle fermé à travers lequel circule un champ magnétique à courant continu qui peut être réglable. Les circuits magnétiques des trois phases sont disposés de telle sorte que le retour du flux magnétique produit par le courant alternatif de l'une des phases à l'intérieur du circuit magnétique de cette phase se fasse à travers les circuits magnétiques des deux autres phases. Le circuit magnétique de contrôle est monté par rapport aux circuits à courant alternatif de façon à former un espace commun entre le circuit magnétique de contrôle et le circuit magnétique à courant alternatif de chacune des phases où le champ continu se superpose orthogonalement au champ alternatif de la phase correspondante afin de produire un phénomère d'inductance variable en modifiant la valeur du champ magnétique à courant continu circulant à travers le circuit magnétique de contrôle. Un désavantage d'un tel dispositif triphasé réside dans le fait que ses trois circuits magnétiques à courant alternatif possèdent deux points communs, puisque, dans certaines applications triphasées, les circuits magnétiques alternatifs des trois phases doivent être entièrement indépendants l'un de l'autre, c'est-à-dire n'avoir aucune partie commune et n'offrir aucune pcssibilité de retour du flux d'une phase par les deux autres phases.We also know the Brown Boveri article Mitteilungen published in July 1965 in the pages 489-494, entitled "N E PSU ROD SCHWEISSGLEICHRICHTER". This article describes a three-phase transformer comprising an alternating current magnetic circuit for each of the three phases and a closed control magnetic circuit through which a DC magnetic field which can be adjustable flows. The magnetic circuits of the three phases are arranged so that the return of the magnetic flux produced by the alternating current of one of the phases inside the magnetic circuit of this phase takes place through the magnetic circuits of the other two phases. The magnetic control circuit is mounted with respect to the alternating current circuits so as to form a common space between the magnetic control circuit and the magnetic alternating current circuit of each of the phases where the direct field is orthogonally superimposed on the alternating field of the corresponding phase in order to produce a variable inductance phenomenon by modifying the value of the direct current magnetic field flowing through the magnetic control circuit. A disadvantage of such a three-phase device lies in the fact that its three magnetic alternating current circuits have two common points, since, in certain three-phase applications, the alternating magnetic circuits of the three phases must be entirely independent of each other , that is to say have no common part and offer no pcssibility of return of the flow of a phase by the two other phases.
Un des buts de la présente invention est d'éviter les inconvénients mentionnés ci-dessus, relatifs aux dispositifs connus, et vise à proposer une inductance à faible taux d'harmoniques par un contrôle approprié de sa perméabilité ou réluctance.One of the aims of the present invention is to avoid the drawbacks mentioned above, relating to known devices, and aims to provide an inductance with a low level of harmonics by appropriate control of its permeability or reluctance.
Plus spécifiquement, la présente invention a trait a une inductance variable pour circuit triphasé comprenant pour chacune de ses phases un premier circuit magnétique formé d'un matériau anisotrope à travers lequel circule un champ magnétique alternatif, l'inductance variable comprenant en outre un circuit magnétique de contrôle fermé, également formé d'un matériau anisotrope, à travers lequel circule un champ magnétique à courant continu réglable. Le circuit magnétique de contrôle est disposé par rapport à chacun des premiers circuits magnétiques de façon à définir pour chaque phase au moins un espace magnétique commun dans lequel les champs magnétiques alternatif et continu respectifs se superposent orthogonalement pour orienter les dipôles magnétiques de ces espaces communs suivant une direction prédéterminée par l'intensité du champ magnétique à courant continu du circuit magnétique de contrôle et pour contrôler ainsi la perméabilité des premiers circuits magnétiques au champ alternatif. Selon l'invention, les premiers circuits magnétiques sont fermés vers l'extérieur du circuit magnétique de contrôle de sorte à ne présenter aucun point commun entre eux et sont formés de noyaux ferromagnétiques respectifs couplés chacun à une phase d'une source à courant alternatif triphasé, le circuit magnétique de contrôle étant formé d'un noyau de contrôle ferromagnétique, et chacun des noyaux de phase étant disposé par rapport au noyau de contrôle de façon à définir entre eux l'espace magnétique commun.More specifically, the present invention relates to a variable inductance for a three-phase circuit comprising for each of its phases a first magnetic circuit formed of an anisotropic material through which an alternating magnetic field circulates, the variable inductance further comprising a closed magnetic control circuit, also formed of an anisotropic material, through which circulates an adjustable direct current magnetic field. The magnetic control circuit is arranged relative to each of the first magnetic circuits so as to define for each phase at least one common magnetic space in which the respective alternating and continuous magnetic fields are superposed orthogonally to orient the magnetic dipoles of these common spaces according to a direction predetermined by the intensity of the direct current magnetic field of the magnetic control circuit and thereby controlling the permeability of the first magnetic circuits to the alternating field. According to the invention, the first magnetic circuits are closed towards the outside of the magnetic control circuit so as to have no common point between them and are formed from respective ferromagnetic cores each coupled to a phase of a three-phase alternating current source. , the magnetic control circuit being formed of a ferromagnetic control core, and each of the phase cores being arranged relative to the control core so as to define between them the common magnetic space.
Les formes de réalisation préférées de la présente invention seront décrites ci-après avec référence aux dessins, dans lesquels:
- la figure 1 présente une forme de réalisation de l'inductance variable selon l'invention, pour circuits triphasés;
- la figure 2 illustre une variante de l'inductance variable pour circuits triphasés de la figure 1 incorporant un circuit de contrôle autorégularisé;
- la figure 3 est une variante de l'inductance variable pour circuits triphasés de la figure 1, avec un noyau de contrôle hexagonal;
- la figure 4 présente des courbes de variation d'une phase de l'inductance triphasée de la figure 1;
- la figure 5 présente des courbes de saturation en fonction du courant de contrôle de l'inductance variable triphasée de la figure 1;
- les figures 6, 7, 8 et 9, présentent respectivement des courbes du taux d'harmoniques du courant de troisième, cinquième, septième et neuvième harmoniques en fonction des ampères-tours du champ à courant continu de contrôle, pour l'inductance de la figure 1;
- la figure 10 présente une courbe de distorsion de la tension en fonction des harmoniques, pour l'inductance triphasée de la figure 1;
- la figure 11 montre des courbes de rapport d'impédance en fonction des ampères-cours du circuit de contrôle de l'inductance triphasée de la figure 1; et
- les figures 12a à 12e présentent des courbes de puissance active et réactive pour l'inductance triphasée de la figure 1.
- FIG. 1 shows an embodiment of the variable inductor according to the invention, for three-phase circuits;
- FIG. 2 illustrates a variant of the variable inductor for three-phase circuits of FIG. 1 incorporating a self-regulated control circuit;
- Figure 3 is a variant of the inductance variable for three-phase circuits of Figure 1, with a hexagonal control core;
- FIG. 4 presents curves of variation of a phase of the three-phase inductance of FIG. 1;
- FIG. 5 shows saturation curves as a function of the control current of the three-phase variable inductance of FIG. 1;
- FIGS. 6, 7, 8 and 9 respectively present curves of the rate of harmonics of the current of the third, fifth, seventh and ninth harmonics as a function of the ampere-turns of the DC control field, for the inductance of the figure 1;
- FIG. 10 presents a curve of distortion of the voltage as a function of the harmonics, for the three-phase inductor of FIG. 1;
- FIG. 11 shows curves of impedance ratio as a function of the amperes-course of the three-phase inductance control circuit of FIG. 1; and
- Figures 12a to 12e show active and reactive power curves for the three-phase inductor of Figure 1.
Tel que déjà mentionné, la figure 1 présente un modèle triphasé de l'inductance variable. Chacune des phases, PA, PB et PC sont reliées respectivement aux noyaux MA, MB et MC de même section droite à travers chacun desquels circule un champ magnétique alternatif de phase correspondante. Chaque noyau MA, MB et MC possède une branche montée orthogonalement au noyau de contrôle N dont l'enroulement El-E2 est excité par une source à courant continu constant, mais réglable.As already mentioned, Figure 1 presents a three-phase model of the variable inductance. Each of the phases, PA, PB and PC are respectively connected to the cores MA, MB and MC of the same cross section through each of which circulates an alternating magnetic field of corresponding phase. Each core MA, MB and MC has a branch mounted orthogonally to the control core N, the winding El-E2 of which is excited by a source of constant but adjustable direct current.
Comme on. peut le voir sur la figure 1, les intersections des noyaux MA, MB et MC avec le noyau magnétique de contrôle N définissent trois zones de jonction D3, D4 et D5 appartenant au noyau magnétique N et dénommées ultérieurement «espaces magnétiques communs».As we. As can be seen in FIG. 1, the intersections of the nuclei MA, MB and MC with the magnetic control nucleus N define three junction zones D3, D4 and D5 belonging to the magnetic nucleus N and named later "Common magnetic spaces".
La disposition orthogonale des trois noyaux magnétiques MA, MB et MC par rapport au noyau N a pour effet de produire dans les espaces magnétiques communs D3, D4 et D5 un couple magnétique proportionnel à la valeur, dans le noyau N, du champ magnétique à courant continu, qui polarise les dipôles de ces espaces magnétiques communs. En raison de cette disposition orthogonale, les flux magnétiques alternatifs et le flux magnétique continu ne peuvent emprunter le même chemin; le champ magnétique à courant continu oriente, en les polarisant, les dipôles magnétiques des espaces magnétiques communs de façon à agir sur la perméabilité des circuits magnétiques excités par les enroulements à courant alternatif PA-PA, PB-PB et PC-PC comme on le désire.The orthogonal arrangement of the three magnetic cores M A, MB and MC with respect to the core N has the effect of producing in the common magnetic spaces D3, D4 and D5 a magnetic torque proportional to the value, in the core N , of the magnetic field at direct current, which polarizes the dipoles of these common magnetic spaces. Because of this orthogonal arrangement, the alternating magnetic fluxes and the continuous magnetic flux cannot take the same path; the direct current magnetic field orients, by polarizing them, the magnetic dipoles of the common magnetic spaces so as to act on the permeability of the magnetic circuits excited by the alternating current windings PA-PA, PB-PB and PC-PC as it is longed for.
Dans ce montage, les noyaux MA, MB, MC et N sont en matériaux ferromagnétiques de même section droite, soit en ferrite, soit en fer laminé, et présentent donc une propriété anisotropique inhérente. Aussi, les dipôles des espaces communs D3, D4 et D5 en l'absence de champ polarisant à courant continu N, tendent à s'orienter dans la direction du champ magnétique alternatif produit par la phase correspondante, la perméabilité de chaque noyau MA, MB et MC étant alors une mesure de la facilité avec laquelle les dipôles magnétiques s'orientent dans la direction de ce champ excitant. Les noyaux MA, MB et MC deviennent saturés au moment où leurs dipôles sont complètement orientés dans la direction du champ magnétique alternatif correspondant. En conséquence, l'application d'un champ magnétique à courant continu dans le noyau N dans une direction transverse aux champs magnétiques alternatifs des noyaux MA, MB et MC a pour effet d'agir sur les dipôles des espaces magnétiques communs D3, D4 et D5, en les polarisant, pour les éloigner de leur position d'équilibre, de sorte que les champs magnétiques alternatifs des noyaux MA, MB et MC doivent grandir en module pour que chaque dipôle maintienne sa même position d'équilibre dans les espaces magnétiques communs D3, D4 et D5. Ce processus n'affecte aucunement l'inductance de fuite, mais seulement l'inductance de magnétisation des noyaux à inductance variable. Il en résulte que l'induction magnétique de saturation se trouve augmentée et que les courbes de magnétisation deviennent plus linéaires avec l'augmentation du champ magnétique à courant continu dans les espaces communs D3, D4 et D5. En conséquence, l'application d'un champ magnétique à courant continu perpendiculairement à un champ magnétique alternatif produit un effet d'entrefer variable pour le circuit magnétique alternatif.In this arrangement, the cores MA, MB, MC and N are made of ferromagnetic materials with the same cross section, either ferrite or rolled iron, and therefore have an inherent anisotropic property. Also, the dipoles of the common spaces D3, D4 and D5 in the absence of a DC polarizing field N, tend to orient in the direction of the alternating magnetic field produced by the corresponding phase, the permeability of each nucleus MA, MB and MC then being a measure of the ease with which the magnetic dipoles orient themselves in the direction of this exciting field. The MA, MB and MC nuclei become saturated when their dipoles are completely oriented in the direction of the corresponding alternating magnetic field. Consequently, the application of a direct current magnetic field in the core N in a direction transverse to the alternating magnetic fields of the cores MA, MB and MC has the effect of acting on the dipoles of the common magnetic spaces D3, D4 and D5, by polarizing them, to move them away from their equilibrium position, so that the alternating magnetic fields of the nuclei MA, MB and MC must grow in module so that each dipole maintains its same equilibrium position in the common magnetic spaces D3, D4 and D5. This process does not affect the leakage inductance in any way, but only the magnetization inductance of the variable inductance cores. As a result, the magnetic saturation induction is increased and the magnetization curves become more linear with the increase in the direct current magnetic field in the common spaces D3, D4 and D5. Consequently, the application of a direct current magnetic field perpendicular to an alternating magnetic field produces a variable gap effect for the alternating magnetic circuit.
La principe de fonctionnement de ce dispositif à inductance variable triphasé consiste donc essentiellement à produire dans des espaces'magnétiques communs un champ magnétique à courant continu, qui a pour effet de s'opposer à la rotation des dipôles de ces espaces communs pour un contrôle adéquat de la perméabilité efficace des circuits magnétiques alternatifs. Il est clair que les espaces magnétiques communs peuvent être établis aussi bien dans les noyaux de phase MA, MB et MC que dans le noyau de contrôle N, comme ci-dessus décrit et illustré sur la figure 1.The operating principle of this three-phase variable inductance device therefore essentially consists in producing in common magnetic spaces a direct current magnetic field, which has the effect of opposing the rotation of the dipoles of these common spaces for adequate control. effective permeability of alternating magnetic circuits. It is clear that the common magnetic spaces can be established both in the phase nuclei MA, MB and MC as in the control nucleus N, as described above and illustrated in FIG. 1.
Dans le montage de la figure 1, le circuit de contrôle étant commun aux trois phases, on note qu'il y a annulation des tensions induites à 120 Hz dans la bobine de contrôle à courant continu N, et qu'il n'existe aucun flux alternatif dans ce noyau à flux continu, sauf dans les régions des espaces communs D3, D4 et D5.In the assembly of FIG. 1, the control circuit being common to the three phases, it is noted that there is cancellation of the voltages induced at 120 Hz in the DC control coil N, and that there is no alternative flow in this core with continuous flow, except in the regions of the common spaces D3, D4 and D5.
Dans ce modèle triphasé, les phases des noyaux MA, MB et MC ne sont pas disposées de façon symétrique de sorte que ce circuit n'est pas optimal quant à la longueur des noyaux de phase, à leurs jonctions et à leur disposition géométrique par rapport au noyau de contrôle N.In this three-phase model, the phases of the cores MA, MB and MC are not arranged symmetrically so that this circuit is not optimal as regards the length of the phase cores, their junctions and their geometric arrangement with respect to to the control nucleus N.
La figure 3 illustre un montage symétrique de l'inductance variable triphasée dans laquelle les noyaux de phase MA, MB et MC forment un angle de 120° l'un par rapport à l'autre et sont montés mécaniquement sur le noyau de contrôle N qui est de forme hexagonale. Cet arrangement de la figure 3 permet une plage de variations de l'impédance dans le même ordre de grandeur que dans le cas précédent et une réduction appréciable des pertes relatives, donc un accroissement du facteur de qualité de l'inductance. Ce type de construction ne montre pas de jambes magnétiques pour le retour du flux en régime transitoire.Figure 3 illustrates a symmetrical arrangement of the in three-phase variable ductance in which the phase cores MA, MB and MC form an angle of 120 ° relative to each other and are mechanically mounted on the control core N which is hexagonal in shape. This arrangement of FIG. 3 allows a range of variations in the impedance in the same order of magnitude as in the previous case and an appreciable reduction in the relative losses, therefore an increase in the quality factor of the inductance. This type of construction does not show magnetic legs for the return of the flow in transient regime.
Le montage des figures 1 et 3 permet une élimination des courants de troisième et neuvième harmoniques au moyen d'un raccordement en étoile des trois enroulements PA-PA, PB-PB et PC-PC, avec neutre flottant, non raccordé à la masse, et l'élimination des flux de troisième et neuvième harmoniques à l'aide d'un enroulement secondaire superposé, PSA-PSA, PSB-PSB et PSC-PSC, raccordé en triangle. De plus, les pertes dans le noyau de contrôle N sont considérablement réduites en raison du fait qu'aucune réaction bidirectionnelle ne subsiste entre le noyau de contrôle et les noyaux de phase, puisqu'il n'existe aucun flux magnétique alternatif dans le noyau de contrôle N, la somme des effets des trois phases étant nulle. En outre, le neutre du raccordement en étoile étant isolé de la masse, il n'est pas possible aux composantes homopolaires du courant de s'établir en régime transitoire.The assembly of FIGS. 1 and 3 allows elimination of the third and ninth harmonic currents by means of a star connection of the three windings PA-PA, PB-PB and PC-PC, with floating neutral, not connected to ground, and the elimination of the third and ninth harmonic fluxes using a superposed secondary winding, PSA-PSA, PSB-PSB and PSC-PSC, connected in a triangle. In addition, the losses in the control core N are considerably reduced due to the fact that no bidirectional reaction remains between the control core and the phase nuclei, since there is no alternating magnetic flux in the core of control N, the sum of the effects of the three phases being zero. In addition, the neutral of the star connection being isolated from ground, it is not possible for the zero sequence components of the current to establish in transient state.
Lorsqu'il est utilisé en triphasé, l'arrangement de l'inductance variable des figures 1 et 3 présente un avantage accru par rapport à l'utilisation de trois inductances monophasées comprenant chacune un noyau de contrôle séparé en raison du fait que la même quantité d'énergie de contrôle est requise pour l'ensemble des trois phases que celle qui serait requise pour une seule phase si on utilisait des inductances variables monophasées, de sorte que les pertes de contrôle sont moindres et réparties sur les trois phases.When used in three-phase, the arrangement of the variable inductor of Figures 1 and 3 has an increased advantage compared to the use of three single-phase inductors each comprising a separate control core due to the fact that the same quantity control energy is required for all three phases than that which would be required for a single phase if single-phase variable inductors were used, so that the control losses are less and distributed over the three phases.
De plus, dans ces inductances triphasées, le contrôle du flux magnétique à courant continu peut s'effectuer par auto-contrôle, à l'aide de ponts de diodes R, tel qu'illustré à la figure 2, ou encore par contrôle inverse à l'aide d'un enroulement à courant continu constant et réglable, superposé à l'enroulement d'auto-contrôle, sur le noyau de contrôle N.In addition, in these three-phase inductors, the control of the direct current magnetic flux can be carried out by self-control, using diode bridges R , as illustrated in FIG. 2, or even by reverse control at using a constant and adjustable direct current winding, superimposed on the self-checking winding, on the control core N.
La figure 2 illustre donc un raccordement en auto-contrôle du dispositif de la figure 1 par insertion de ponts de diodes R entre les enroulements alternatifs PA-PA, PB-PB et PC-PC et l'enroulement continu E1-E2 eu dispositif. Ce montage permet de faire varier de façon continue la perméabilité des noyaux MA, MB et MC en fonction de brusques variations dans les flux magnétiques alternatifs.FIG. 2 therefore illustrates a self-checking connection of the device of FIG. 1 by insertion of diode bridges R between the alternative windings PA-PA, PB-PB and PC-PC and the continuous winding E1-E2 had the device. This arrangement makes it possible to continuously vary the permeability of the MA, MB and MC cores as a function of sudden variations in the alternating magnetic fluxes.
- Cet auto-contrôle, à l'aide d'un courant redressé, a pour effet de modifier la pente du front de la courbe de magnétisation et de déplacer le point de fonctionnement de l'inductance sur les différentes courbes de magnétisation à des niveaux qui sont fonction de la tension de la source alternative. Ainsi, la réluctance des circuits magnétiques à courants alternatifs MA, MB et MC se modifie d'elle-même, et.dans le bon sens, selon les niveaux de tension alternative appliqués, ce qui s'avère excellent pour les cas de très grande variation de tension, par exemple dans les cas de surtension et de délestage d'une ligne de transport d'énergie.- This self-check, using a rectified current, has the effect of modifying the slope of the front of the magnetization curve and of moving the operating point of the inductance on the different magnetization curves to levels which are a function of the voltage of the AC source. Thus, the reluctance of the magnetic circuits with alternating currents MA, MB and MC changes itself, and in the right direction, according to the applied alternating voltage levels, which proves to be excellent for cases of very large voltage variation, for example in the event of overvoltage and load shedding of a power transmission line.
Par ailleurs, en vue d'effectuer une régulation de tension pour une pente de 3 à 10 % selon le choix de l'utilisateur, le nombre de tours de la bobine à courant continu alimentée par les ponts de diodes R pourrait éventuellement être modifié à l'aide de thyristors asservis à une consigne de tension, ce qui aurait pour effet'de déplacer la courbe du point de fonctionnement de l'inductance.Furthermore, in order to carry out a voltage regulation for a slope of 3 to 10% according to the choice of the user, the number of turns of the direct current coil supplied by the diode bridges R could possibly be modified to using thyristors slaved to a voltage setpoint, which would have the effect of shifting the curve of the operating point of the inductor.
Il est à noter que le temps de réponse du circuit à inductance variable, quand il est en auto-contrôle, est quasi-instantané, c'est-à-dire que le temps de réponse sera inférieur à une période. Quant au temps de contrôle en régulation, il pourra varier selon le mode d'asservissement utilisé et atteindre une ou deux périodes (sur une base de 60 Hertz) selon les besoins de l'utilisateur.It should be noted that the response time of the variable inductance circuit, when it is in self-control, is almost instantaneous, that is to say that the response time will be less than a period. As for the regulation control time, it may vary depending on the control mode used and reach one or two periods (based on 60 Hertz) depending on the needs of the user.
Par ailleurs, dans le mode de réalisation auto- contrôlé du circuit à inductance variable triphasé de la figure 2, on peut réaliser, tel que déjà mentionné, un contrôle inverse de faible puissance du champ magnétique à courant continu dans le noyau N. Pour ce faire, un second enroulement est superposé à l'enroulement El-E2 et est alimenté par une source à courant continu constant et réglable de faible puissance. Cet enroulement supplémentaire est disposé de façon que le champ magnétique généré dans le noyau de contrôle N s'oppose à celui généré par l'enroulement d'auto-contrôle El-E2. Le champ magnétique résultant, dans le noyau de contrôle, sera alors une fonction du champ magnétique généré par le courant alternatif redressé, qui circule dans l'enroulement en auto-contrôle et, par conséquent, une fonction du niveau de tension aux bornes PA-PA, PB-PB et PC-PC. Le fonctionnement de ce mode de contrôle est simple et ne requiert aucune boucle de retour pour corriger le couple magnétique désiré sur les dipôles des espaces magnétiques communs D3, D4 et D5.Furthermore, in the self-controlled embodiment of the three-phase variable inductance circuit of FIG. 2, it is possible, as already mentioned, to perform a reverse control of low power of the direct current magnetic field in the core N. For this do, a second winding is superimposed on the winding El-E2 and is supplied by a constant and adjustable direct current source of low power. This additional winding is arranged so that the magnetic field generated in the control core N opposes that generated by the self-control winding El-E2. The resulting magnetic field in the control core will then be a function of the magnetic field generated by the rectified alternating current, which flows in the winding in self-control and, therefore, a function of the voltage level at the terminals PA- PA, PB-PB and PC-PC. The operation of this control mode is simple and does not require any feedback loop to correct the desired magnetic torque on the dipoles of the common magnetic spaces D3, D4 and D5.
Pour le dispositif de la figure 1, la figure 4 montre les variations d'impédance de l'inductance triphasée en fonction de l'augmentation des ampères-tours injectés dans le noyau de contrôle N. Sur cette figure 4, on a porté en abscisse le courant I dans les enroulements PA-PA, PB-PB et PC-PC et en ordonnée la tension phase-neutre U0-N appliquée aux trois enroulements PA-PA, PB-PB et PC-PC qui sont reliés en étoile. On note que les impédances V/I de chaque phase varient dans un rapport allant jusqu'à 11/1 pour un champ magnétique à courant continu variant de 0 à 4 848 ampères-tours. La famille de courbes d'impédance de la figure 4 présente les résultats de la phase «A» seulement, désignée par PA, de cette inductance triphasée. Le trait pointillé 1 montre le comportement de l'inductance variable pour une tension de 80 volts efficaces mesurée phase-neutre. Le trait pointillé 2 montre le comportement de l'inductance variable lorsqu'elle est raccordée en série avec un condensateur et dont la résultante est inductive. Dans cette dernière configuration, la valeur de la capacité utilisée était de 200µF let la source triphasée était maintenue fixe à 120 volts efficaces aux bornes du circuit. L'augmentation des volts-ampères de l'inductance variable pour un déplacement de A à B sur les courbes est de 360 volts-ampères triphasés pour 4 848 ampères-tours. Cette augmentation de puissance est 'd'environ 1.78 fois plus grande que pour le cas de l'inductance seule pour une même tension.For the device in FIG. 1, FIG. 4 shows the variations in impedance of the three-phase inductance as a function of the increase in ampere-turns injected into the control core N. In this FIG. 4, we have plotted on the abscissa the current I in the PA-PA, PB-PB and PC - PC windings and on the ordinate the phase-neutral voltage U 0-N applied to the three PA-PA, PB-PB and PC-PC windings which are connected in star. It is noted that the V / I impedances of each phase vary in a ratio of up to 11/1 for a direct current magnetic field varying from 0 to 4,848 amps- turns. The family of impedance curves in FIG. 4 presents the results of phase "A" only, designated by PA, of this three-phase inductance. The dotted
La figure 5 présente une famille de courbes de saturation de l'inductance variable de la figure 1. On a porté en ordonnée le courant alternatif IcA en valeur efficace, en abcisse les ampères-tours du contrôle à courant continu, et en paramètre de courbes les tensions phase-neutre, en valeur efficace. Cette figure 5 renseigne sur le comportement des dipôles dans l'espace magnétique commun aux deux circuits magnétiques. On note sur chacune de ces courbes une région non-satnrée et une région saturée. Dans la partie non- saturée, chaque courbe possède une pente de plus en plus grande à mesure que la densité de flux grandit dans le circuit magnétique excité par l'enroulement à courant alternatif. Quant à la région saturée de chacune de ces courbes, elle résulte de trois facteurs: du flux de fuite associé au circuit magnétique à courant continu; de la distorsion des flux dans l'espace magnétique commun aux deux circuits; de la répartition des tensions aux bornes de l'impédance et de la magnétisation du circuit à courant alternatif. On note bien que la variation optimale de l'impédance de l'inductance est fonction de la densité des flux alternatifs et à courant continu dans l'espace magnétique commun. Cette famille de courbes facilite le choix des points de fonctionnement de l'inductance variable soit dans la configuration inductance seule (ligne 1) ou dans la configuration avec condensateur en série (ligne 2).FIG. 5 presents a family of saturation curves of the variable inductance of FIG. 1. The alternating current IcA has been plotted on the ordinate in rms value, in abscissa the ampere-turns of the DC control, and in curve parameter phase-neutral voltages, in effective value. This figure 5 provides information on the behavior of dipoles in the magnetic space common to the two magnetic circuits. We note on each of these curves an unsaturated region and a saturated region. In the unsaturated part, each curve has an increasingly steep slope as the flux density increases in the magnetic circuit excited by the alternating current winding. As for the saturated region of each of these curves, it results from three factors: the leakage flux associated with the direct current magnetic circuit; distortion of the fluxes in the magnetic space common to the two circuits; distribution of the voltages across the impedance and magnetization of the alternating current circuit. We note well that the optimal variation of the impedance of the inductance is a function of the density of the alternating and direct current flows in the common magnetic space. This family of curves facilitates the choice of the operating points of the variable inductor either in the inductance only configuration (line 1) or in the configuration with capacitor in series (line 2).
Les figures 6, 7, 8 et 9 donnent respectivement le taux d'harmoniques du courant de troisième, cinquième, septième et neuvième harmoniques en fonction des ampères-tours à courant continu. Ces taux d'harmoniques sont calculés entre l'harmonique considérée et la fondamentale pour un courant alternatif de pleine charge qui correspond à 5.0 (x 606) ampères-tours à courant continu.Figures 6, 7, 8 and 9 respectively show the level of harmonics of the third, fifth, seventh and ninth harmonics current as a function of the ampere-turns with direct current. These harmonic rates are calculated between the harmonic considered and the fundamental for a full load alternating current which corresponds to 5.0 (x 606) ampere-turns with direct current.
-Comme le montrent les figures 6 à 9, les taux d'harmoniques,-calculés pour une phase seulement de l'inductance triphasée de la figure 1, sont très faibles et même négligeables pour certaines harmoniques. Sur ces figures, les courbes 1, 2, 3 et 4 correspondent à des essais effectués sous des tensions, en valeurs efficaces, de 80 volts, 160 volts, 200 volts, et 280 volts, respectivement. On note la présence d'un courant de troisième (figure 6) et de neuvième (figure 9) harmonique malgré le fait que les enroulements primaires sont reliés en étoile avec neutre isolé. La disposition asymétrique des circuits magnétiques de la figure 1 joue un rôle important dans ce phénomène. En effet, le noyau de contrôle N est ovale et les noyaux de phase ne sont pas disposés à 120° l'un par rapport à l'autre sur ce noyau de contrôle. Des résultats améliorés peuvent être obtenus avec l'inductance triphasée de la figure 3 où les noyaux de phase sont disposés à 120° l'un par rapport à l'autre et'où le noyau de contrôle est de forme hexagonale.-As shown in Figures 6 to 9, the harmonic rates, -calculated for only one phase of the three-phase inductance in Figure 1, are very low and even negligible for some harmonics. In these figures, curves 1, 2, 3 and 4 correspond to tests carried out under voltages, in effective values, of 80 volts, 160 volts, 200 volts, and 280 volts, respectively. We note the presence of a third (figure 6) and ninth (figure 9) harmonic current despite the fact that the primary windings are connected in star with isolated neutral. The asymmetrical arrangement of the magnetic circuits in Figure 1 plays an important role in this phenomenon. Indeed, the control core N is oval and the phase cores are not arranged at 120 ° relative to each other on this control core. Improved results can be obtained with the three-phase inductor of Figure 3 where the phase cores are arranged at 120 ° to each other and where the control core is hexagonal in shape.
La figure 10 présente des courbes de distorsion de la tension phase-neutre de 180 volts en valeur efficace en fonction des harmoniques générées par une phase de l'inductance triphasée de la figure 1. La courbe 1 donne des résultats mesurés pour le réseau seul alors que les courbes 2 et 3 illustrent les résultats obtenus lorsque l'inductance variable est branchée au réseau et où le flux de contrôle est respectivement nul et égal à 1,212 ampères-tours cc. On constate alors que le taux de distorsion de la tension de phase se situe en tout temps en deça de 1 %.FIG. 10 presents curves of distortion of the phase-neutral voltage of 180 volts in rms value function of the harmonics generated by a phase of the three-phase inductor in Figure 1.
La figure 11 présente des courbes obtenues en portant en abscisse un rapport d'irpédance Zo/Z, en ordonnée la tension U∅N phase-neutre aux bornes PA-PA, PB-PB et PC-PC de l'inductance de la figure 1 et en paramètre de courbes le nombre d'ampères-tours du circuit magnétique à courant continu, Zo correspondant à l'impédance d'une phase, lorsque le champ magnétique à courant continu est nul, et Z à l'impédance de cette phase pour les valeurs indiquées d'ampères-tours à courant continu. On note que les rapports d'impédance diminuent avec l'augmentation de la saturation des noyaux à courant alternatif et que lorsqu'il y a saturation complète le rapport d'impédance est égal à l'unité, car alors les dipôles de l'espace magnétique commun font un angle nul avec le vecteur du champ magnétique alternatif. Cependant, la saturation se produit à un niveau d'autant plus élevé, que le champ magnétique à courant continu transversal est élevé, comme dans le cas des courants de contrôle de 4848 ampères-tours cc.FIG. 11 presents curves obtained by plotting on the abscissa a ratio of irpedance Zo / Z, on the ordinate the voltage U ∅N phase-neutral at the terminals PA-PA, PB-PB and PC-PC of the inductance of the figure 1 and in curve parameter the number of ampere-turns of the direct current magnetic circuit, Zo corresponding to the impedance of a phase, when the direct current magnetic field is zero, and Z to the impedance of this phase for the indicated values of direct current ampere-turns. It is noted that the impedance ratios decrease with increasing saturation of the alternating current nuclei and that when there is complete saturation the impedance ratio is equal to unity, because then the space dipoles magnetic field make a zero angle with the vector of the alternating magnetic field. However, saturation occurs at a higher level the higher the transverse direct current magnetic field, as in the case of control currents of 4848 ampere-turns dc.
Les figures 12a à 12e donnent respectivement les courbes de puissance triphasée de l'inductance variable de la figure 1 pour des tensions phase-neutre respectivement de 80, 160, 200, 240 et 280 volts en valeur efficace. Sur ces graphiques, la courbe marquée «V.A.» donne la puissance totale (active et réactive) fournie par l'inductance exprimée en volts-ampères et la courbe marquée «watts» donne les pertes de l'inductance sous forme de puissance active exprimée en watts. A l'exception de la caractéristique relative à la courbe 12a, on peut dire que ces pertes diminuent sous l'effet de l'augmentation du champ magnétique transversal à courant continu. Pour le cas de la figure 12a, la surélévation de watts est reliée à une augmentation des composantes de troisième et neuvième harmoniques, comme indiqué antérieurement. Ce phénomène de diminution des pertes dans le noyau avec l'augmentation de l'énergie réactive de l'inductance variable contribue à augmenter le rendement de l'inductance autour de 96% lorsque le champ magnétique à courant continu atteint une valeur de 3030 ampères-tours.FIGS. 12a to 12e respectively give the three-phase power curves of the variable inductance of FIG. 1 for phase-neutral voltages respectively of 80, 160, 200, 240 and 280 volts in rms value. On these graphs, the curve marked "VA" gives the total power (active and reactive) provided by the inductance expressed in volts-amperes and the curve marked "watts" gives the losses of the inductance in the form of active power expressed in watts. With the exception of the characteristic relating to the curve 12a, it can be said that these losses decrease under the effect of the increase in the transverse direct current magnetic field. For the case of FIG. 12a, the increase in watts is related to an increase in the components of third and ninth harmonics, as indicated previously. This phenomenon of decreasing losses in the core with the increase in the reactive energy of the variable inductor contributes to increasing the efficiency of the inductor around 96% when the direct current magnetic field reaches a value of 3030 amperes- turns.
Bien que l'inductance variable triphasée selon l'invention ait été décrite à l'aide de modes préférés de réalisation, il est évident que celle-ci peut être modifiée à volonté, à condition de respecter l'étendue des revendications ci-jointes, sans_pour cela changer la nature de la présente invention.Although the three-phase variable inductor according to the invention has been described using preferred embodiments, it is obvious that it can be modified at will, provided that the scope of the appended claims is respected, sans_pour that change the nature of the present invention.
Claims (5)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA313821 | 1978-10-20 | ||
CA000313821A CA1118509A (en) | 1978-10-20 | 1978-10-20 | Inductance variable |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP79400766.6 Division | 1979-10-19 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0106371A2 true EP0106371A2 (en) | 1984-04-25 |
EP0106371A3 EP0106371A3 (en) | 1984-05-30 |
EP0106371B1 EP0106371B1 (en) | 1986-03-26 |
Family
ID=4112642
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83111087A Expired EP0106371B1 (en) | 1978-10-20 | 1979-10-19 | Variable inductance for a three-phase circuit |
EP83111475A Expired EP0109096B1 (en) | 1978-10-20 | 1979-10-19 | Variable inductance device |
EP79400766A Expired EP0010502B1 (en) | 1978-10-20 | 1979-10-19 | Variable inductance |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83111475A Expired EP0109096B1 (en) | 1978-10-20 | 1979-10-19 | Variable inductance device |
EP79400766A Expired EP0010502B1 (en) | 1978-10-20 | 1979-10-19 | Variable inductance |
Country Status (6)
Country | Link |
---|---|
US (1) | US4393157A (en) |
EP (3) | EP0106371B1 (en) |
JP (1) | JPS6040171B2 (en) |
BR (1) | BR7906797A (en) |
CA (1) | CA1118509A (en) |
DE (1) | DE2967481D1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2451353C1 (en) * | 2010-10-21 | 2012-05-20 | Александр Михайлович Брянцев | Three-phase magnetisation-controlled reactor |
RU2473999C1 (en) * | 2011-07-15 | 2013-01-27 | "Сиадор Энтерпрайзис Лимитед" | Method to increase efficiency of shunting reactor controlled by magnetisation |
RU2486619C1 (en) * | 2012-02-07 | 2013-06-27 | Александр Михайлович Брянцев | Electric three-phase inductor with magnetic bias |
RU2643787C1 (en) * | 2016-09-29 | 2018-02-06 | Сергей Александрович Смирнов | Method of controlling a shunting reactor at disconnection |
RU2643789C1 (en) * | 2016-09-29 | 2018-02-06 | Сергей Александрович Смирнов | Method of connecting the controlled shunting reactor (options) |
RU2658346C1 (en) * | 2017-06-07 | 2018-06-20 | Илья Николаевич Джус | Method of controlled shunt reactor commutation |
RU2658347C1 (en) * | 2017-10-03 | 2018-06-20 | Илья Николаевич Джус | Device for regulating the current of the shunt reactor |
RU2659820C1 (en) * | 2017-07-13 | 2018-07-04 | Илья Николаевич Джус | Seven-rod three-phase magnified reactor |
RU2686301C1 (en) * | 2018-07-24 | 2019-04-25 | Илья Николаевич Джус | Shunting reactor with combined excitation (versions) |
RU2686657C1 (en) * | 2018-07-23 | 2019-04-30 | Илья Николаевич Джус | Controlled shunting reactor (versions) |
RU2700569C1 (en) * | 2019-03-26 | 2019-09-18 | Илья Николаевич Джус | Controlled reactor with independent magnetization |
RU2701144C1 (en) * | 2019-01-28 | 2019-09-25 | Илья Николаевич Джус | Controlled shunting reactor |
RU2701150C1 (en) * | 2019-01-28 | 2019-09-25 | Илья Николаевич Джус | Controlled reactor-compensator (versions) |
RU2701147C1 (en) * | 2019-03-26 | 2019-09-25 | Илья Николаевич Джус | Shunting controlled reactor |
RU2701149C1 (en) * | 2019-03-26 | 2019-09-25 | Илья Николаевич Джус | Controlled shunting reactor (versions) |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63102575A (en) * | 1986-10-20 | 1988-05-07 | Sanyo Electric Co Ltd | Video disk player |
US5523673A (en) * | 1994-03-04 | 1996-06-04 | Marelco Power Systems, Inc. | Electrically controllable inductor |
US5426409A (en) * | 1994-05-24 | 1995-06-20 | The United States Of America As Represented By The Secretary Of The Navy | Current controlled variable inductor |
US6137391A (en) * | 1997-12-17 | 2000-10-24 | Tohoku Electric Power Company, Incorporated | Flux-controlled type variable transformer |
KR100510638B1 (en) * | 1999-02-04 | 2005-08-31 | 엘지전자 주식회사 | Divice for inductor of semiconductor |
KR100621186B1 (en) * | 1999-12-28 | 2006-09-06 | 삼성전자주식회사 | A circuit for compensing a horizontal-linearity of a video display system |
GB2361107A (en) * | 2000-04-03 | 2001-10-10 | Abb Ab | Magnetic bias of a magnetic core portion used to adjust a core's reluctance |
NO317045B1 (en) * | 2000-05-24 | 2004-07-26 | Magtech As | Magnetically adjustable current or voltage regulating device |
US6933822B2 (en) * | 2000-05-24 | 2005-08-23 | Magtech As | Magnetically influenced current or voltage regulator and a magnetically influenced converter |
US7026905B2 (en) * | 2000-05-24 | 2006-04-11 | Magtech As | Magnetically controlled inductive device |
JP4789030B2 (en) * | 2001-04-27 | 2011-10-05 | 財団法人北九州産業学術推進機構 | Voltage control method for induction generator using variable reactor |
NO318397B1 (en) * | 2001-11-21 | 2005-03-14 | Magtech As | System for controlling impedance in a working circuit |
NO319424B1 (en) * | 2001-11-21 | 2005-08-08 | Magtech As | Method for Controllable Conversion of a Primary AC / Voltage to a Secondary AC / Voltage |
NO319363B1 (en) * | 2002-12-12 | 2005-07-18 | Magtech As | Voltage stabilization system for power supply lines |
NO20033362D0 (en) * | 2003-07-25 | 2003-07-25 | Magtech As | Soft starts for asynchronous motors |
GB2407214A (en) * | 2003-10-14 | 2005-04-20 | Magtech A S | Variable inductor |
WO2005076293A1 (en) * | 2004-02-03 | 2005-08-18 | Magtech As | Power supply control methods and devices |
GB2419479A (en) * | 2004-10-14 | 2006-04-26 | Magtech A S | Symetrization of a three-phase system with a single-phase load |
US7378828B2 (en) * | 2004-11-09 | 2008-05-27 | The Boeing Company | DC-DC converter having magnetic feedback |
NO322286B1 (en) * | 2004-12-23 | 2006-09-11 | Magtech As | Device and method for reducing harmonics in a three-phase power supply |
DE102006022438A1 (en) * | 2006-05-13 | 2007-11-15 | Robert Bosch Gmbh | Choke coil for e.g. multiple mains filter drive system, has primary winding, where choke coil is coupled with coupling coil and choke coil inductivity is adjusted by coupling coil that is realized as air core coil, which does not have core |
US7274574B1 (en) * | 2006-05-15 | 2007-09-25 | Biegel George E | Magnetically controlled transformer apparatus for controlling power delivered to a load with current transformer feedback |
CN102356438B (en) * | 2009-03-31 | 2014-08-27 | 伟创力国际美国公司 | Magnetic device formed with u-shaped core pieces and power converter employing the same |
US8120457B2 (en) | 2010-04-09 | 2012-02-21 | Delta Electronics, Inc. | Current-controlled variable inductor |
KR102032791B1 (en) * | 2013-06-03 | 2019-10-16 | 삼성전자주식회사 | Noise filter and electronic device including the same |
JP6504766B2 (en) * | 2014-08-28 | 2019-04-24 | 株式会社日立製作所 | Stationary induction appliance |
US9997290B2 (en) * | 2015-06-26 | 2018-06-12 | Intel Corporation | Variable inductor and wireless communication device including variable device for conversion of a baseband signal to a radio frequency (RF) range |
US9979273B2 (en) * | 2016-05-19 | 2018-05-22 | Abb Schweiz Ag | Resonant converters with variable inductor |
US10144035B1 (en) * | 2017-08-23 | 2018-12-04 | Teledyne Instruments, Inc. | Low-frequency sound source for underwater sound propagation research and calibration |
RU2685221C1 (en) * | 2018-07-24 | 2019-04-17 | Илья Николаевич Джус | Shunting reactor with mixed excitation (versions) |
RU2699017C1 (en) * | 2018-12-19 | 2019-09-03 | Илья Николаевич Джус | Device for control of two magnetized reactors (versions) |
RU2706719C1 (en) * | 2019-01-28 | 2019-11-20 | Илья Николаевич Джус | Device for controlling two reactors (versions) |
CN112541154B (en) * | 2020-11-26 | 2021-10-08 | 东南大学 | Method for calculating magnetic circuit power |
RU2757149C1 (en) * | 2020-12-08 | 2021-10-11 | Илья Николаевич Джус | Three-phase controlled reactor (variants) |
FR3142851A1 (en) * | 2022-12-06 | 2024-06-07 | Thales | Inductance variation module and radio frequency filter comprising such a module |
CN116599162B (en) * | 2023-07-19 | 2023-09-15 | 昆明理工大学 | Method for determining new energy permeability under N-1 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH391921A (en) * | 1962-03-16 | 1965-05-15 | Bbc Brown Boveri & Cie | Single-phase transformer for welding purposes |
US3757201A (en) * | 1972-05-19 | 1973-09-04 | L Cornwell | Electric power controlling or regulating system |
FR2324053A1 (en) * | 1975-09-12 | 1977-04-08 | Inst Elektroswarki Patona | Device for plasma arc working of metals - e.g. welding, cutting or microwelding |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1788152A (en) * | 1928-06-20 | 1931-01-06 | Union Switch & Signal Co | Electrical translating apparatus |
US1862204A (en) * | 1930-11-01 | 1932-06-07 | Union Switch & Signal Co | Electrical translating apparatus |
US2445857A (en) * | 1944-11-23 | 1948-07-27 | Automatic Elect Lab | Magnetic frequency changer |
US2844804A (en) * | 1955-07-06 | 1958-07-22 | Letourneau Westinghouse Compan | Control transformer |
DE1026416B (en) * | 1955-10-08 | 1958-03-20 | Siemens Ag | DC biased three-phase choke coil |
US3087108A (en) * | 1957-01-03 | 1963-04-23 | Dominic S Toffolo | Flux switching transformer |
CH355210A (en) * | 1958-01-25 | 1961-06-30 | Bbc Brown Boveri & Cie | Regulation arrangement for welding rectifier |
US3188456A (en) * | 1961-08-24 | 1965-06-08 | Jr Raymond L King | Magnetic modulator for computing divisions and multiplications |
US3403323A (en) * | 1965-05-14 | 1968-09-24 | Wanlass Electric Company | Electrical energy translating devices and regulators using the same |
US3582829A (en) * | 1968-08-05 | 1971-06-01 | Wanlass Electric Co | Modulating systems incorporating an electrically variable inductance as a modulating element |
US3622868A (en) * | 1970-02-06 | 1971-11-23 | Joachim H Todt | Regulating power transformer with magnetic shunt |
US3657678A (en) * | 1970-06-08 | 1972-04-18 | Carl A Schwenden | Multi-purpose, multi-voltage transformer |
US3735305A (en) * | 1972-09-20 | 1973-05-22 | Us Air Force | High power electrically variable inductor |
GB1424986A (en) * | 1974-02-11 | 1976-02-11 | Rivas R V De | Electromagnetic device |
-
1978
- 1978-10-20 CA CA000313821A patent/CA1118509A/en not_active Expired
- 1978-12-05 US US05/966,555 patent/US4393157A/en not_active Expired - Lifetime
-
1979
- 1979-01-29 JP JP54008308A patent/JPS6040171B2/en not_active Expired
- 1979-10-19 EP EP83111087A patent/EP0106371B1/en not_active Expired
- 1979-10-19 EP EP83111475A patent/EP0109096B1/en not_active Expired
- 1979-10-19 DE DE7979400766T patent/DE2967481D1/en not_active Expired
- 1979-10-19 EP EP79400766A patent/EP0010502B1/en not_active Expired
- 1979-10-22 BR BR7906797A patent/BR7906797A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH391921A (en) * | 1962-03-16 | 1965-05-15 | Bbc Brown Boveri & Cie | Single-phase transformer for welding purposes |
US3757201A (en) * | 1972-05-19 | 1973-09-04 | L Cornwell | Electric power controlling or regulating system |
FR2324053A1 (en) * | 1975-09-12 | 1977-04-08 | Inst Elektroswarki Patona | Device for plasma arc working of metals - e.g. welding, cutting or microwelding |
Non-Patent Citations (1)
Title |
---|
BROWN BOVERI MITTEILUNGEN, juillet 1965, pages 489-494 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2451353C1 (en) * | 2010-10-21 | 2012-05-20 | Александр Михайлович Брянцев | Three-phase magnetisation-controlled reactor |
RU2473999C1 (en) * | 2011-07-15 | 2013-01-27 | "Сиадор Энтерпрайзис Лимитед" | Method to increase efficiency of shunting reactor controlled by magnetisation |
RU2486619C1 (en) * | 2012-02-07 | 2013-06-27 | Александр Михайлович Брянцев | Electric three-phase inductor with magnetic bias |
RU2643787C1 (en) * | 2016-09-29 | 2018-02-06 | Сергей Александрович Смирнов | Method of controlling a shunting reactor at disconnection |
RU2643789C1 (en) * | 2016-09-29 | 2018-02-06 | Сергей Александрович Смирнов | Method of connecting the controlled shunting reactor (options) |
RU2658346C1 (en) * | 2017-06-07 | 2018-06-20 | Илья Николаевич Джус | Method of controlled shunt reactor commutation |
RU2659820C1 (en) * | 2017-07-13 | 2018-07-04 | Илья Николаевич Джус | Seven-rod three-phase magnified reactor |
RU2658347C1 (en) * | 2017-10-03 | 2018-06-20 | Илья Николаевич Джус | Device for regulating the current of the shunt reactor |
RU2686657C1 (en) * | 2018-07-23 | 2019-04-30 | Илья Николаевич Джус | Controlled shunting reactor (versions) |
RU2686301C1 (en) * | 2018-07-24 | 2019-04-25 | Илья Николаевич Джус | Shunting reactor with combined excitation (versions) |
RU2701144C1 (en) * | 2019-01-28 | 2019-09-25 | Илья Николаевич Джус | Controlled shunting reactor |
RU2701150C1 (en) * | 2019-01-28 | 2019-09-25 | Илья Николаевич Джус | Controlled reactor-compensator (versions) |
RU2700569C1 (en) * | 2019-03-26 | 2019-09-18 | Илья Николаевич Джус | Controlled reactor with independent magnetization |
RU2701147C1 (en) * | 2019-03-26 | 2019-09-25 | Илья Николаевич Джус | Shunting controlled reactor |
RU2701149C1 (en) * | 2019-03-26 | 2019-09-25 | Илья Николаевич Джус | Controlled shunting reactor (versions) |
Also Published As
Publication number | Publication date |
---|---|
DE2967481D1 (en) | 1985-08-14 |
EP0010502B1 (en) | 1985-07-10 |
US4393157A (en) | 1983-07-12 |
EP0106371B1 (en) | 1986-03-26 |
EP0106371A3 (en) | 1984-05-30 |
EP0109096A1 (en) | 1984-05-23 |
BR7906797A (en) | 1980-06-17 |
EP0109096B1 (en) | 1986-04-30 |
EP0010502A1 (en) | 1980-04-30 |
JPS5556608A (en) | 1980-04-25 |
JPS6040171B2 (en) | 1985-09-10 |
CA1118509A (en) | 1982-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0106371B1 (en) | Variable inductance for a three-phase circuit | |
EP0194163B1 (en) | Self-controlled variable inductance with gaps, and electrical system having such an inductance | |
CA1258881A (en) | Self-regulated transformer with gaps | |
FR2532511A1 (en) | ||
EP1841616B1 (en) | Transformer for multicurrent motor vehicle | |
FR2514212A1 (en) | INVERTER WITH OSCILLATING CIRCUIT | |
FR2709891A1 (en) | Self-oscillating converter of the adjustment type. | |
CA1298881C (en) | Thermo-induction hot fluid generator | |
BE1011254A3 (en) | HOMOPOLAR FILTER. | |
EP0443342A1 (en) | Method for controlling the energy transfer in a static converter, static energy converter for carrying out such method and electric power supply using such converter | |
FR2494520A1 (en) | IMPROVED STATIC INVERTER, IN PARTICULAR FOR DISCHARGE LAMPS | |
BE495834A (en) | ||
BE519791A (en) | ||
BE475379A (en) | ||
BE408336A (en) | ||
BE485412A (en) | ||
BE483325A (en) | ||
BE387750A (en) | ||
BE486084A (en) | ||
FR2801736A1 (en) | Filter for harmonics generated by a load in a variable frequency single or multi-phase electrical network, uses magnetic control with control winding coupled to inductance | |
FR2503504A1 (en) | HIGH FREQUENCY CONTROLLED POWER SUPPLY SOURCE FOR TELEVISION HAVING A LOW VOLTAGE CONVERTER TRANSFORMER COUPLED TO A HIGH VOLTAGE TRANSFORMER-ELEVATOR | |
BE351530A (en) | ||
BE495595A (en) | ||
BE441290A (en) | ||
BE558421A (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 10502 Country of ref document: EP |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB SE |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB SE |
|
17P | Request for examination filed |
Effective date: 19840517 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 10502 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB SE |
|
REF | Corresponds to: |
Ref document number: 2967589 Country of ref document: DE Date of ref document: 19860430 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 83111087.9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19961011 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19961028 Year of fee payment: 18 Ref country code: FR Payment date: 19961028 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19961118 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19961209 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19971031 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971031 |
|
BERE | Be: lapsed |
Owner name: HYDRO-QUEBEC Effective date: 19971031 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19971019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980701 |
|
EUG | Se: european patent has lapsed |
Ref document number: 83111087.9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |