EP0098258B1 - Heizkörper - Google Patents

Heizkörper Download PDF

Info

Publication number
EP0098258B1
EP0098258B1 EP19830890093 EP83890093A EP0098258B1 EP 0098258 B1 EP0098258 B1 EP 0098258B1 EP 19830890093 EP19830890093 EP 19830890093 EP 83890093 A EP83890093 A EP 83890093A EP 0098258 B1 EP0098258 B1 EP 0098258B1
Authority
EP
European Patent Office
Prior art keywords
radiator
fan
heater
turbine
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19830890093
Other languages
English (en)
French (fr)
Other versions
EP0098258A2 (de
EP0098258A3 (en
Inventor
Raimund Ing. Wanderer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WANDERER, RAIMUND, ING.
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0098258A2 publication Critical patent/EP0098258A2/de
Publication of EP0098258A3 publication Critical patent/EP0098258A3/de
Application granted granted Critical
Publication of EP0098258B1 publication Critical patent/EP0098258B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • F28D1/024Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels with an air driving element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/08Fluid driving means, e.g. pumps, fans

Definitions

  • the invention relates to a radiator, in particular a heating radiator, to which the heat energy to be given off is fed through a liquid heating medium which flows through the radiator, an overpressure turbine being provided in the heating medium flow path in the region of the radiator, in which the heating medium is a blade via flow guide surfaces flowing impeller flows, and on the radiator a fan rotated by this turbine is arranged, which intensifies the air flow over the radiator and thus increases the heat dissipation of the radiator surfaces.
  • a radiator of the aforementioned type which is designed as a convector largely insulated against radiation, is known from CH-A-411 285. It is in this known radiator, the turbine with built-in flow areas through which the medium flows to the impeller, provided, the possibility is also considered by deflecting a portion of the flow directed to the impeller, which z. B. can be made by moving the impeller to reduce the drive flow of the impeller. In this known concept, a relatively strong flow of the heating medium is required in order to obtain sufficient fan drive.
  • the radiator according to the invention of the type mentioned at the outset is characterized in that the turbine impeller is preceded by an interchangeable insert provided with flow guide surfaces and directing the flow of the heating medium.
  • the heating element is designed as a plate radiator and the fan is arranged in the region of the lower edge of the radiator plate or the radiator plates. Good accessibility of the turbine for the exchange of the insert provided with flow control surfaces can also be achieved in this way.
  • the plate radiator consists of at least two radiator plates and the fan is arranged in the space between the radiator plates in the region of the lower edge of these plates.
  • the fan can also be used to extract air from the radiator.
  • the fan itself, it is in many cases, e.g. B. for mounting the fan in the area of the lower edge of the radiator or in the space between the individual plates of a plate heater, advantageous if the fan is a so-called cross-flow fan.
  • an axial fan can also be provided as a fan.
  • FIGS. 1 and 2 The embodiment of a radiator according to the invention shown in FIGS. 1 and 2 has two radiator plates 1, 2 which, as is conventional, are connected via connecting pipes.
  • a connecting pipe 3 is shown, and a hydraulic motor 4 is placed in this connecting pipe, which serves to drive a fan 5.
  • This fan 5 is designed as a cross-flow fan with a fan roller 6 and flow guide surfaces 7, 8 and is arranged in the area of the lower edge of the radiator in the space 9 between the two radiator plates 1, 2.
  • this fan roller conveys ambient air in the sense of arrows 10 from the area located under the radiator through the space 9 between the two radiator plates 1, 2 and thus intensifies the heat dissipation from this radiator plate by convection.
  • convection plates 11, 12 can also be arranged in the space 9 on the radiator plates in the usual way.
  • the hydraulic motor 4 provided for driving the fan 5 is designed in the form of an overpressure turbine, specifically in the form of a propeller turbine with an impeller 14, and this impeller is mounted on a shaft 15, which also establishes the drive connection to the fan roller 6.
  • the shaft 15 leads through a bearing body 16 with a precise, easily fitting fit, this fitting also providing the required seal against the escape of heating medium which flows through the hydraulic motor 4.
  • the impeller 14 of the hydraulic motor which is designed as a propeller turbine, is surrounded by an annular wall 17, which immediately follows the inlet connecting piece 18 of the radiator.
  • the connecting tube 20 is screwed into this supply line connection during the usual assembly of the radiator.
  • a displacer 21 Upstream of the impeller 14 is a displacer 21 which directs the flow of the heating medium and which carries flow guide surfaces 22 which determine the angle at which the flow impinges on the blades 23 of the impeller 14.
  • the displacer body 21 with the flow guide surfaces 22 is provided interchangeably, and by different design of the flow guide surfaces 22, an adaptation to the conditions of the flow of the heating medium and to the conditions of the fan 5 can be achieved according to the respective application.
  • the hydraulic motor can also be designed in the form of a Francis turbine, both an axial feed, as in the case of the propeller turbine according to FIG. 2, and a spiral feed. Since the spiral feed of a Francis turbine has an external inflow of operating fluid that takes place via a channel following the impeller circumference and the outflow of the operating fluid takes place axially, such an embodiment is particularly suitable for radiators in which, analogously to FIGS horizontally running drive shaft of the fan is present and the supply connection of the radiator is oriented perpendicular to it, that is to say it has a vertical course.
  • the hydraulic motor is designed in the form of a Francis turbine, the standing flow guide surfaces of the turbine are designed in the form of an exchangeable insert.
  • the shaft 15, which connects the impeller 14 of a turbine to a rotor 26 of the fan is mounted with a slight play in a bearing 27, which supports the heating medium fulfilled space 28, in which the turbine is located, separates from the free environment 29 of the radiator, and an annular seal 30 is inserted for sealing in the bearing 27, which z. B. can be in the form of an O-ring or a Simmer ring.
  • the drive connection leading from the hydraulic motor 4 to the fan 5 is formed by a permanent magnetic coupling.
  • the driving coupling part is formed by a permanent magnet 31 arranged on the shaft 15 of the rotor 14 of the turbine, and the driven coupling part is realized in the form of a bracket 32 made of ferromagnetic material, in particular soft iron.
  • This bracket 32 is mounted on a shaft 33 which is connected to the roller-shaped rotor 6 of the fan 5.
  • the driving coupling part 31 and the driven coupling part 32 are separated from one another by a liquid-tight wall in the form of a cup 34.
  • the cup 34 is made of a non-magnetizable material which has a value of its electrical resistance that largely avoids the formation of eddy currents.
  • the drive of the driven coupling part from the driving coupling part takes place via the action of the magnetic lines of force 35 of the magnet 31, for which the bracket 32 represents a closing yoke.
  • Radiators designed according to the invention can also be controlled in terms of their heat emission via the supply with heating medium.
  • This change can also be made individually for individual radiators by means of valve control, e.g. B. using thermostatic valves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung bezieht sich auf einen Heizkörper, insbesondere Heizungsradiator, dem die abzugebende Wärmeenergie durch ein flüssiges Heizmedium, welches den Heizkörper durchfließt, zugeführt wird, wobei im Fließweg des Heizmedizums im Bereich des Heizkörpers eine Überdruckturbine vorgesehen ist, in der das Heizmedium über Strömungsleitflächen einem Schaufeln tragenden Laufrad zufließt, und am Heizkörper ein von dieser Turbine in Drehung versetzter Lüfter angeordnet ist, der die über den Heizkörper führende Luftströmung intensiviert und damit die Wärmeabgabe der Heizkörperflächen vergrößert.
  • Ein Heizkörper vorgenannter Art, der als gegen Abstrahlung weitgehend isolierter Konvektor ausgebildet ist, ist aus der CH-A-411 285 bekannt. Es ist bei diesem bekannten Heizkörper die Turbine mit fix eingebauten Strömungsflächen, über die das Medium dem Laufrad zufließt, versehen, wobei auch die Möglichkeit in Betracht gezogen ist, durch Ablenken eines Teiles der auf das Laufrad gerichteten Strömung, was z. B. durch Verschieben des Laufrades vorgenommen werden kann, die Antriebsströmung des Laufrades herabzumindern. Es ist bei diesem bekannten Konzept eine verhältnismäßig starke Strömung des Heizmediums erforderlich, um einen ausreichenden Antrieb des Lüfters zu erhalten.
  • Man trachtet nun in neuerer Zeit bei Heizungsanlagen mit kleinen Rohrdimensionen das Auslangen zu finden, und es ist der Wirkungsgrad der Umwälzpumpen, insbesondere bei Kleinanlagen, eher gering. Damit kann in den meisten Fällen an den Heizkörpern nur eine mäßige Strömung des Heizmediums erzielt werden, wobei überdies an den verschiedenen Heizkörpern einer Heizungsanlage unterschiedliche Strömungsverhältnisse vorliegen können.
  • Es ist ein Ziel der Erfindung, einen Heizkörper eingangs erwähnter Art zu schaffen, bei dem auf einfache Weise eine Abstimmung des Antriebes für den Lüfter an die jeweils vorliegenden Verhältnisse, und zwar sowohl hinsichtlich der Umlaufströmung des Heizmediums im Heizsystem als auch hinsichtlich der Lage des jeweiligen Heizkörpers im Heizsystem und hinsichtlich der jeweils gewünschten Lüfterwirkung vorgenommen werden kann.
  • Der erfindungsgemäße Heizkörper eingangs erwähnter Art ist dadurch gekennzeichnet, daß dem Laufrad der Turbine ein mit Strömungsleitflächen versehener und die Strömung des Heizmediums dirigierender austauschbarer Einsatz vorgeschaltet ist.
  • Durch die erfindungsgemäß vorgesehene Ausbildung kann der vorstehend angeführten Zielsetzung gut entsprochen werden. Durch die Austauschbarkeit des mit Strömungsleitflächen versehenen Einsatzes kann auf einfache Weise eine Anpassung der Turbinenleistung und des Turbinenwirkungsgrades an die jeweils vorliegenden Strömungsverhältnisse und eine gute Ausnützung der Strömung für den Antrieb des Lüfters erzielt werden.
  • Eine vorteilhafte Ausführungsform für Einrohrheizungen erhält man, wenn man den Hydraulikmotor in einer Bypass-Strecke anordnet, da man auf diese Weise für den Hydraulikmotor einerseits eine verhältnismäßig groß Durchströmung zur Verfügung hat und andererseits durch den Strömungswiderstand des Hydraulikmotors von selbst die erforderliche Drosselung der Bypass-Strecke, die ja die Durchströmung des Heizkörpers einer Einrohrheizung ergibt, erhält. Gewünschtenfalls kann man auch bei einer normalen Zweirohrverteilung des Heizmediums einer Heizungsanlage den Hydraulikmotor dem jeweiligen Heizkörper parallel schalten, was insbesondere dann vorteilhaft ist, wenn in der betreffenden Heizungsanlage ein großes Umlaufvolumen an Heizmedium bei verhältnismäßig niederem Druck zur Verfügung steht.
  • Zur Placierung des Lüfters am Heizkörper stehen eine Reihe von Möglichkeiten offen, wobei natürlich einerseits die Form der wärmeabgebenden Flächen des betreffenden Heizkörpers und die sich ergebende natürliche Konvektion und andererseits die Lage des Hydraulikmotors und die Gegebenheiten der Antriebsverbindung vom Hydraulikmotor zum Lüfter in Betracht zu ziehen sind. Eine vorteilhafte Ausführungsform ergibt sich dabei, wenn man vorsieht, daß der Heizkörper als Plattenradiator ausgebildet ist und der Lüfter im Bereich des unteren Randes der Radiatorplatte bzw. der Radiatorplatten angeordnet ist. Es kann so auch eine gute Zugänglichkeit der Turbine für den Austausch des mit Strömungsleitflächen versehenen Einsatzes erzielt werden. Es ergibt sich dabei weiter eine kompakte, platzsparende Ausbildung, wenn man vorsieht, daß der Plattenradiator aus mindestens zwei Radiatorplatten besteht und der Lüfter im Zwischenraum zwischen den Radiatorplatten im Bereich des unteren Randes dieser Platten angeordnet ist.
  • Außer dem bevorzugten Anblasen kommt auch ein Absaugen von Luft vom Heizkörper mit Hilfe des Lüfters in Frage.
  • Hinsichtlich des Lüfters selbst ist es in vielen Fällen, z. B. für ein Angringen des Lüfters im Bereich des unteren Randes des Heizkörpers oder im Zwischenraum zwischen den einzelnen Platten eines Plattenheizkörpers, von Vorteil, wenn der Lüfter ein sogenannter Querstromlüfter ist. Man kann aber als Lüfter auch einen Axialventilator vorsehen.
  • Die Erfindung wird nun anhand in der Zeichnung dargestellter Beispiele weiter erläutert. In der Zeichnung zeigt:
    • Fig. 1 eine Ausführungsform eines erfindungsgemäß ausgebildeten Heizkörpers in einem lotrechten Schnitt,
    • Fig. 2 diesen Heizkörper in einem waagrecht geführten Schnitt gemäß der Linie 11-11 in Fig. 1,
    • Fig. 3 eine für einen erfindungsgemäß ausgebildeten Heizkörper vorgesehene Antriebsverbindung vom Hydraulikmotor zum Lüfter, und
    • Fig. 4 eine weitere Ausbildung einer derartigen Antriebsverbindung.
  • Die in den Fig. 1 und 2 dargestellte Ausführungsform eines erfindungsgemäßen Heizkörpers weist zwei Radiatorplatten 1, 2 auf, die, wie an sich üblich, über Verbindungsrohre zusammengeschlossen sind. Es ist ein derartiges Verbindungsrohr 3 dargestellt, und es ist in diesem Verbindungsrohr ein Hydraulikmotor 4 placiert, der zum Antrieb eines Lüfters 5 dient. Dieser Lüfter 5 ist als Querstromlüfter mit einer Lüfterwalze 6 und Strömungsleitflächen 7, 8 ausgebildet und im Bereich des unteren Randes des Heizkörpers im Zwischenraum 9 zwischen den beiden Radiatorplatten 1, 2 angeordnet. Diese Lüfterwalze fördert bei Rotation Umgebungsluft im Sinne der Pfeile 10 aus dem unter dem Heizkörper gelegenen Bereich durch den Zwischenraum 9 zwischen den beiden Radiatorplatten 1, 2 nach oben und intensiviert damit die Wärmeabgabe von dieser Radiatorplatte durch Konvektion. Man kann dabei gewünschtenfalls im Zwischenraum 9 an den Radiatorplatten in üblicher Weise auch Konvektionsbleche 11, 12 anordnen.
  • Der zum Antrieb des Lüfters 5 vorgesehene Hydraulikmotor 4 ist in Form einer Überdruckturbine und zwar im speziellen in Form einer Propellerturbine mit einem Laufrad 14 ausgebildet, und es ist dieses Laufrad auf einer Welle 15 gelagert, welche auch die Antriebsverbindung zur Lüfterwalze 6 herstellt. Die Welle 15 führt mit genauer leicht gängiger Passung durch einen Lagerkörper 16, wobei durch diese Passung auch die erforderliche Abdichtung gegen einen Austritt von Heizmedium, welches den Hydraulikmotor 4 durchfließt, geschaffen ist. Das Laufrad 14 des als Propellerturbine ausgebildeten Hydraulikmotors ist von einer Ringwand 17 umgeben, welche unmittelbar auf den Zuleitungsanschlußstutzen 18 des Heizkörpers folgt. In diesem Zuleitungsanschluß wird bei der üblichen Montage des Heizkörpers das Anschlußrohr 20 eingeschraubt. Dem Laufrad 14 ist ein die Strömung des Heizmediums dirigierender Verdrängerkörper 21 vorgeordnet, der Strömungsleitflächen 22 trägt, welche den Winkel, unter dem die Strömung auf die Schaufeln 23 des Laufrades 14 trifft, bestimmen. Der Verdrängerkörper 21 mit den Strömungsleitflächen 22 ist austauschbar vorgesehen, wobei man durch verschiedene Ausbildung der Strömungsleitflächen 22 eine dem jeweiligen Einsatzfall entsprechende Anpassung an die Gegebenheiten der Strömung des Heizmediums und an die Gegebenheiten des Lüfters 5 erzielen kann.
  • Gewünschtenfalls kann man den Hydraulikmotor auch in Form einer Francis-Turbine ausbilden, wobei sowohl eine axiale Anspeisung, wie bei der Propellerturbine nach Fig. 2, als auch eine Spiralanspeisung in Betracht kommt. Da die Spiralanspeisung einer Francis-Turbine einen außen liegenden Betriebsmittelzufluß aufweist, der über einen dem Laufradumfang folgenden Kanal erfolgt und die Abströmung des Betriebsmittels vom Laufrad axial stattfindet, eignet sich eine solche Ausführungsform insbesondere für Heizkörper, bei denen analog den Fig. 1 und 2 eine waagrecht verlaufende Antriebswelle des Lüfters vorliegt und der Zuleitungsanschluß des Heizkörpers dazu senkrecht ausgerichtet ist, also einen lotrechten Verlauf hat. Auch bei der Ausbildung des Hydraulikmotors in Form einer Francis-Turbine sind die stehenden Strömungsleitflächen der Turbine in Form eines austauschbaren Einsatzes ausgeführt.
  • Die Strömung des Heizmediums von der Zuleitung des Heizkörpers durch die Propellerturbine 4 und weiter in die Radiatorplatten 1, 2 ist in Fig. 2 durch die Pfeile 25 angedeutet.
  • Bei der in Fig. 3 dargestellten Variante der Antriebsverbindung vom Hydraulikmotor zum Lüfter eines erfindungsgemäß ausgebildeten Heizkörpers ist die Welle 15, welche das Laufrad 14 einer Turbine mit einem Läufer 26 des Lüfters verbindet, mit leichtem Laufspiel in einem Lager 27 gelagert, welches den vom Heizmedium erfüllten Raum 28, in dem sich die Turbine befindet, von der freien Umgebung 29 des Heizkörpers trennt, und es ist zur Abdichtung in das Lager 27 eine Ringdichtung 30 eingefügt, welche z. B. in Form eines O-Ringes oder eines Simmer-Ringes ausgebildet sein kann.
  • Bei der in Fig. 4 dargestellten Variante ist die vom Hydraulikmotor 4 zum Lüfter 5 führende Antriebsverbindung durch eine dauermagnetische Kupplung gebildet. Der treibende Kupplungsteil ist dabei durch einen auf der Welle 15 des Läufers 14 der Turbine angeordneten Dauermagneten 31 gebildet, und es ist der getriebene Kupplungsteil in Form eines Bügels 32 aus ferromagnetischem Material, insbesondere weichem Eisen, realisiert. Dieser Bügel 32 ist auf einer Welle 33, die mit dem walzenförmigen Rotor 6 des Lüfters 5 verbunden ist, angebracht. Der treibende Kupplungsteil 31 und der getriebene Kupplungsteil 32 sind voneinander durch eine flüssigkeitsdichte Wand in Form eines Bechers 34 getrennt. Der Becher 34 besteht aus einem nicht magnetisierbaren Material, welches einen die Entstehung von Wirbelströmen weitgehend vermeidenden Wert seines elektrischen Widerstandes hat. Die Mitnahme des getriebenen Kupplungsteiles vom treibenden Kupplungsteil her erfolgt dabei über die Wirkung der magnetischen Kraftlinien 35 des Magneten 31, für die der Bügel 32 ein Schließjoch darstellt.
  • Erfindungsgemäß ausgebildete Heizkörper können auch über die Anspeisung mit Heizmedium in ihrer Wärmeabgabe gesteuert werden. Es ergibt sich dabei auch die Möglichkeit, durch Änderung der Umlaufmenge des Heizmediums ohne Veränderung der Zulauftemperatur des Heizmediums die Wärmeabgabe der Heizkörper zu steuern, da mit einer Änderung der Umlaufmenge des Heizmediums bzw. des Pumpendrucks im System die Drehzahl der Turbinen in den Heizkörpern einer Anlage und damit die die Wärmeabfuhr von den Heizkörpern wesentlich bestimmende Lüfterwirkung verändert werden kann. Diese Veränderung kann auch mittels Ventilsteuerung für einzelne Heizkörper individuell vorgenommen werden, z. B. unter Verwendung von Thermostatventilen.

Claims (5)

1. Heizkörper, insbesondere Heizungsradiator, dem die abzugebende Wärmeenergie durch ein flüssiges Heizmedium, welches den Heizkörper durchfließt, zugeführt wird, wobei im Fließweg des Heizmediums im Bereich des Heizkörpers eine Überdruckturbine (4) vorgesehen ist, in der das Heizmedium über Strömungsleitflächen einem Schaufeln (23) tragenden Laufrad (14) zufließt, und am Heizkörper ein von dieser Turbine in Drehung versetzter Lüfter (5) angeordnet ist, der die über den Heizkörper führende Luftströmung intensiviert und damit die Wärmeabgabe der Heizkörperflächen vergrößert, dadurch gekennzeichnet, daß dem Laufrad (14) der Turbine ein mit Strömungsleitflächen (22) versehener und die Strömung des Heizmediums dirigierender austauschbarer Einsatz (21) vorgeschaltet ist.
2. Heizkörper nach Anspruch 1, dadurch gekennzeichnet, daß die Turbine (4) in einer Bypass-Strecke einer Einrohrheizung angeordnet ist.
3. Heizkörper nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Turbine (4) eine Propellerturbine mit axialer Anströmung und der Einsatz (21) ein Verdrängerkörper ist.
4. Heizkörper nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Heizkörper als Plattenradiator ausgebildet ist und der Lüfter (5) im Bereich des unteren Randes der Radiatorplatte bzw. der Radiatorplatten angeordnet ist.
5. Heizkörper nach Anspruch 4, dadurch gekennzeichnet, daß der Plattenradiator aus mindestens zwei Radiatorplatten besteht und der Lüfter (5) im Zwischenraum (9) zwischen den Radiatorplatten (1, 2) im Bereich des unteren Randes dieser Platten angeordnet ist.
EP19830890093 1982-06-18 1983-06-03 Heizkörper Expired EP0098258B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT237282A AT375767B (de) 1982-06-18 1982-06-18 Heizkoerper
AT2372/82 1982-06-18

Publications (3)

Publication Number Publication Date
EP0098258A2 EP0098258A2 (de) 1984-01-11
EP0098258A3 EP0098258A3 (en) 1984-07-18
EP0098258B1 true EP0098258B1 (de) 1989-03-01

Family

ID=3533164

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19830890093 Expired EP0098258B1 (de) 1982-06-18 1983-06-03 Heizkörper

Country Status (3)

Country Link
EP (1) EP0098258B1 (de)
AT (1) AT375767B (de)
DE (1) DE3379280D1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2231621B (en) * 1989-03-23 1992-07-01 Dasic Equipment Limited Fan
GB2235039A (en) * 1989-05-24 1991-02-20 Ian Harvey Jacobson Space heating radiators
GB2266950B (en) * 1992-04-24 1995-11-08 Ingersoll Rand Co Apparatus for and method of inhibiting formation of frozen condensate in a fluid system
WO1997020184A1 (es) * 1995-11-24 1997-06-05 Picaza Perez Juan Jose Emisor de baja temperatura para sistemas de calefaccion y refrigeracion
EP2038587A1 (de) * 2006-06-30 2009-03-25 Gulliver S.r.l. Vorrichtung zur verbesserung der effizienz eines heizkörpers
GB0621129D0 (en) * 2006-10-24 2006-12-06 Ward James Heating rotation pump
EP1939567A1 (de) * 2006-12-27 2008-07-02 Radiatori Tubor S.P.A. Wärmetauscher mit hydraulischem Gebläse oder verbessertem Flügel
GB2450510A (en) * 2007-06-27 2008-12-31 Suteesh Kumar Chumber Increasing the circulation of air over a radiator
WO2009133330A1 (en) * 2008-04-29 2009-11-05 James Ward Pump apparatus
ITTO20110542A1 (it) * 2011-06-22 2012-12-23 Renato Sacco Apparecchio di convogliamento forzato di aria calda per impianti di riscaldamento a circolazione di acqua termica
GB2525876A (en) * 2014-05-06 2015-11-11 Francis Gateley Fan Radiator G M
CN113405143A (zh) * 2021-05-27 2021-09-17 路娜 一种家用取暖器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE832795C (de) * 1949-03-11 1952-02-28 Belge Des Freins Westinghouse Verfahren zur Raumheizung und Lufterhitzer-Aggregate zur Durchfuehrung des Verfahrens
DE1204379B (de) * 1959-01-13 1965-11-04 Firth Cleveland Ltd Konvektionsheizgeraet mit Querstromgeblaese
FR2148980A5 (de) * 1971-08-04 1973-03-23 Galmes Alain
DE2162729C3 (de) * 1971-12-17 1975-09-04 Wilhelm 7900 Ulm Korner Vorrichtung zur Zustandsänderung der Raumluft
GB1561085A (en) * 1976-12-23 1980-02-13 Rankel Turbines Ltd Hydraulic turbines

Also Published As

Publication number Publication date
AT375767B (de) 1984-09-10
EP0098258A2 (de) 1984-01-11
ATA237282A (de) 1983-10-15
EP0098258A3 (en) 1984-07-18
DE3379280D1 (en) 1989-04-06

Similar Documents

Publication Publication Date Title
EP0098258B1 (de) Heizkörper
EP0529353B1 (de) Gastherme
EP0460399B1 (de) Kreiselpumpe und damit ausgestattete Gastherme
DE3036661C2 (de) Zentrale Warmwasserheizungsanlage
DE4310417A1 (de) Vorrichtung zur Erhöhung der Wärmeleitung von mit Flüssigkeiten betriebenen Raumheizkörpern
EP0302083B1 (de) Mischerventil für heizungsanlagen
DE2225263B2 (de) Ruecklaufbeimischeinrichtung fuer eine warmwasserheizungsanlage oder eine brauchwarmwasserbereitungsanlage
DE2246790A1 (de) Foerderanlage fuer zentralheizungsanlagen mit automatischer regelung
EP3012553B1 (de) Baueinheit für eine Heizungsanlage
DE3834440C2 (de) Vorrichtung mit Wärmerückgewinnung zur Be- und Entlüftung von Räumen mit Wärmeüberschuß
DE2162729A1 (de) Vorrichtung zur zustandsaenderung der raumluft
DE4127822C2 (de) Vorrichtung zur Raumheizung und Warmwasserbereitung
DE10120858A1 (de) Raum-/Kühlsystem mit erhöhtem Energieaustausch durch eigengenerierte erzwungende Konvektion
DE1936137A1 (de) Dampfkraftanlage mit Luftkuehlung
DE1579949C3 (de) Konvektionsheizgerät
CH463896A (de) Misch- und Temperaturregelvorrichtung in einem Gehäuse mit mehreren Anschluss-Stutzen für Warmwasserheizungs- und -bereitungsanlagen
EP0366683B1 (de) Backofen
AT234967B (de) Konvektionsheizgerät mit einem Wärmetauscher und einem Gebläse
DE3013374C2 (de) Lüftungsvorrichtung mit einem Wärmeübertrager zum Übertragen von Abluftwärme auf die Zuluft
DE1528887A1 (de) Hydrodynamisches oder aerodynamisches Leit- oder Foerderelement
DE1119485B (de) Wasserumwaelzpumpe, vorzugsweise fuer Sammelheizungsanlagen
DE3438592C2 (de) Wärmetauscher
DE7027571U (de) Antriebsvorrichtung fuer luft- bzw. gasfoerderelemente.
EP0185900B1 (de) Vorrichtung an Ventilatoren zur Regelung des Luftstromes
DE737783C (de) Durch Drosselung regelbares Fluessigkeitsgetriebe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19850315

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WANDERER, RAIMUND, ING.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WANDERER, RAIMUND, ING.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890301

Ref country code: NL

Effective date: 19890301

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19890301

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890301

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19890301

Ref country code: BE

Effective date: 19890301

REF Corresponds to:

Ref document number: 3379280

Country of ref document: DE

Date of ref document: 19890406

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940610

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950621

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960630

Ref country code: CH

Effective date: 19960630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL