EP0097906B1 - Kontakte für Vakuumschalter - Google Patents
Kontakte für Vakuumschalter Download PDFInfo
- Publication number
- EP0097906B1 EP0097906B1 EP83106046A EP83106046A EP0097906B1 EP 0097906 B1 EP0097906 B1 EP 0097906B1 EP 83106046 A EP83106046 A EP 83106046A EP 83106046 A EP83106046 A EP 83106046A EP 0097906 B1 EP0097906 B1 EP 0097906B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- contact
- boron
- less
- vacuum
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229910052796 boron Inorganic materials 0.000 claims abstract description 27
- 230000002265 prevention Effects 0.000 claims abstract description 19
- 238000003466 welding Methods 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims description 39
- 239000000956 alloy Substances 0.000 claims description 16
- 229910045601 alloy Inorganic materials 0.000 claims description 15
- 239000010949 copper Substances 0.000 claims description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 8
- 239000004332 silver Substances 0.000 claims description 8
- 230000003746 surface roughness Effects 0.000 claims description 8
- 229910052797 bismuth Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052714 tellurium Inorganic materials 0.000 claims description 4
- 238000004901 spalling Methods 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims 1
- 239000011651 chromium Substances 0.000 claims 1
- 229910017052 cobalt Inorganic materials 0.000 claims 1
- 239000010941 cobalt Substances 0.000 claims 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims 1
- 239000000203 mixture Substances 0.000 description 10
- 238000005219 brazing Methods 0.000 description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 229910052745 lead Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 229910017944 Ag—Cu Inorganic materials 0.000 description 1
- 229910009043 WC-Co Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000003245 working effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/06—Alloys based on silver
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
- H01H1/0203—Contacts characterised by the material thereof specially adapted for vacuum switches
Definitions
- This invention relates to a vacuum switch of the type which comprises a vacuum vessel and a pair of relatively separable electroconductive rods disposed in said vacuum vessel and provided with contact members at the opposing ends of said rods and in which each of said contact members contains 0.003-0.5% by weight of boron, a highly electroconductive component and a welding prevention component.
- a vacuum switch has excellent characteristics in comparison with other circuit breakers in respects of small size, light weight, maintenance cost, and adaptability for various environments.
- the quantity of brittle welding prevention components which tend to decrease breakdown strength should be limited to be as small as possible and (2) quantity of gas impurities and pin-holes should be highly suppressed.
- a contact alloy containing elements having high vapor pressures such as Bi, Pb, Te or the like
- air voids are liable to be formed in an ingot. More particularly, in pouring the alloy into a mold having a small diameter, serious casting problems often occur. For example, a lot of air voids are formed near the surface of the ingot and shrinkage holes are formed in the interior.
- the contact alloy containing welding prevention components described above exhibits drawbacks such as low workability and generation of segregation because of low solubility of these components into matrix, which results in brittleness of the contact alloy.
- An object of this invention is to provide a vacuum switch having separable electrode rods provided with improved contact members capable of exhibiting little or no drawbacks in respect of art restriking phenomenon.
- a vacuum switch of the type which comprises a vacuum vessel and a pair of relatively separable electroconductive rods disposed in said vacuum vessel and provided with contact members at the opposing ends of said rods and in which each of said contact members contains boron, a highly electroconductive component and a welding preventing component, characterized in that each of said contact members contains 0.005-2% by weight of boron and is provided with a worked contact surface having a disc shape and finished to obtain surface roughness of less than 6 um and the total members of surface roughing portions, spallings, and breaks appearing on said worked contact surface are less than ten correspondingly in case the contact material has a diameter of 75 mm.
- a vacuum switch shown in Fig. 1 comprises a cylindrical insulating casing 2, i.e. vacuum vessel, which defines an air tight vacuum circuit breaking chamber 1 and metallic caps 4 and 5 are provided at both ends of the casing 2 through seal members 3 and 3a.
- the casing 2 is made of an insulating material.
- a pair of separable electroconductive rods 6 and 7 provided with stationary and movable electrodes 8 and 9 at the opposing ends are disposed within the vacuum chamber 1 and a bellows 10 is attached to the lower end cap 5 for permitting reciprocation of the movable electrode 9 while maintaining the vacuum condition in the chamber 1.
- the bellows 10 is covered with a metallic shield 11 to prevent metal vapor from depositing on the inner surface of the vacuum vessel 2 and a cylindrical metallic shield 12 is also disposed in the chamber 1 as shown in Fig. 1 to prevent the metal vapor from depositing thereon.
- the movable electrode 9 is fixed to the conductive rod 7 by a brazing member 13 or tightly connected thereto by calking and a movable contact 14 is attached to the upper portion of the movable electrode 9 by brazing means 15.
- the stationary electrode 8 has substantially the same construction as that of the movable electrode 9 and is provided with a stationary contact 14a at its front end.
- the contact material is used for contacts 14 and 14a.
- the contact material has a composition which is not specifically different from that of a conventional contact material including the addition of boron.
- Cu and/or Ag are usually used as a highly electroconductive composition, if necessary, these metals can be replaced in part with less than 5% (based on the total weight of the conductive composition) of Fe, less than 5% of Co or less than 1% of Cr.
- the electroconductive composition Cu or a copper rich alloy is suitable for the purposes of this invention.
- These conductive components are used in an amount of the balance of the composition as described hereinafter.
- the welding prevention component are used one or more elements of Bi, Pb, Te, Sb, and mixtures thereof which are incorporated into the contact material,according to this invention in an amount of from 0.1 % to 15%. If the amount of the welding prevention component is less than 0.1 %, the welding resistance property against large current decreases and if the amount thereof exceeds 15%, the segregation will occur during manufacture of the contact material, thus hardly obtaining a suitable contact material.
- 0.005% to 2% preferably from 0.01% to 2% of boron is added to the highly conductive component and the welding prevention component. If the amount of added boron is less than 0.005%, the object of adding it cannot be expected and more than 2% of boron does not improve its function than a case of adding boron of 0.005%-2%. Thus, it was found that boron tends to segregate from the highly conductive component when the contact material is prepared by melting technique. This means that the use of more than 2% of boron is not suitable.
- the range of the boron to be added should be defined as content of boron present in the resulting contact material rather than the amount of additive thereof by taking into consideration the effects of grades of the used high conductive component and of the used welding prevention component, melting temperature of the composition, and the fluctuation of the degree of the vacuum in the vacuum chamber.
- the highly conductive component is melted under vacuum of from about 1.3 ⁇ 10 -3 to 1.3 ⁇ 10 -5 m bar at a temperature of from 1000° to 1300°C and the welding prevention component is then added thereto so as to be uniformly dissolved into the molten high conductive component. Thereafter, the resulting mixture is cooled and solidified in a mold, but if necessary, oriented solidification process can be used.
- the order of addition of boron and the welding prevention component is optional and in order to prevent vaporization and scattering, it is advantageous to add the components after increasing the pressure in the melting furnace by introducing argon gas thereinto.
- the source of the boron to be added can be used mother alloys such as Cu-B or borides such as FeB, Fe 2 B as well as boron itself.
- Contacts made of the contact material and having desired shape, can be obtained by subjecting the resulting contact material to mechanical workings such as cutting, polishing or the like, or plastic deformation such as rolling, as required.
- contact alloys having the compositions shown in Table 1 were prepared by a method comprising the steps of melting Cu under vacuum of about 1.3x10-5 mbarand at a temperature of 1200°C, completely degassing, adding and melting Cu-B mother alloy (containing 2.2% of B) and welding prevention components (Bi, Pb, Te, or Sb), pouring the molten alloy thus obtained into a mold and cooling and solidifying the poured alloy.
- the end surface of a rod shaped contact material having a diameter of 75 mm was finished to obtain surface roughness of less than 6 pm (6-s; Japanese Industrial Standard 0601) by using a WC-Co super hard alloy cutting tool while the contact material was rotated at 180 r.p.m.
- the number of defects such as spallings, breaks and the like on the end surface were visually measured and the minimum and maximum numbers of the observed defects of six samples are shown in Table 1.
- a disc-shaped contact piece having a diameter of 30 mm and a thickness of 5 mm was attached to the end of each electrode rod of a demountable vacuum switch and a circuit having a rating of 6KV and 500 A was interrupted 2000 times.
- the observed frequency of the arc restriking was represented by a range of difference (maximum and minimum values) of two circuit breakers.
- the attachment of the contacts was performed only by baking for 30 minutes at a temperature of 450°C and not only no brazing material was used but also no heating operation was carried out.
- the conventional boron-free contact materials exhibit significant surface roughness caused by working. Accordingly, restriking occurs with high probability.
- the boron containing contact materials it can be understood that these materials exhibit remarkably improved workability and low probability of arc restriking.
- the boron free contact material of the Control Example 1 exhibit 96-97% I.A.C.S. (International Annealed Copper Standard), whereas the contact material of Example 1 exhibits 95-97% I.A.C.S. This fact shows that the improved workability can be achieved without substantial reduction of the conductivity according to the contact material of the present invention.
- oxygen content of the contact material of the Control Example 1 is 7 ppm, whereas that of the Example 1 is from about 1/2 to 1/7 of the Control Example 1. This fact shows that the added boron acts as a deoxidizer and the reduction of the oxygen content contributes to the prevention of the arc restriking.
- a silver brazing plate consisting of 72% of Ag and 28% of Cu and having a diameter of 10 mm and a thickness of 0.1 mm was inserted between a pure copper electrode and a disc-shaped contact piece having a diameter of 15 mm and a thickness of 4.2 mm.
- the structure thus prepared was heated for 30 minutes in H 2 atmosphere at a temperature of 820°C to thereby firmly bond together the materials used.
- the amount of silver brazing crept up to the contact surface by passing through the contact piece during the heat treatment was measured as count numbers (C.P.S) by an X-ray microanalyzer under conditions of the absorption current of 5 ⁇ 10 -8 A, a scanning time of 50 seconds and an acceleration voltage of 25 KV. Background value of a contact piece to which silver brazing is not applied is shown in Table 2.
- the boron-containing contact materials exhibit an extremely small amount of crept-up silver brazing in comparison with the conventional boron-free contact materials and also exhibit count numbers nearly equal to the background.
- contact materials were prepared in substantially the same manner as that of the Example 1 except that in place of the highly conductive component consisting only of Cu were used highly conductive components in which a portion of the copper was replaced with Fe, Co, or Cr in a proportion shown in Table 3. Thereafter, the probability of arc restriking was measured for each of these examples in substantially the same manner as that of the Example 1. The results obtained are shown in the following Table 3, from which it will be found that the probability of the arc restriking was remarkably decreased by the addition of boron.
- contact materials were also prepared in substantially the same manner as that of the Example 1 except that an Ag-Cu alloy (Example 16) and Ag alone (Example 17) were used as the highly conductive component.
- the workability and the probability of the arc restriking were examined in substantially the same manner as that of the Example 1. The results obtained are shown in the following Table 4 from which advantageous effect caused by the addition of boron will be clearly confirmed.
- contact materials for separable electrodes of a vacuum switch can be obtained by adding a small amount of boron to a contact material consisting of highly conductive components (mainly Cu and/or Ag; partially replaced with Fe, Co or Cr and welding prevention components (such as Bi, Pb, Te, Sb and the like).
- the contact materials thus obtained exhibit improved workability and arc restriking prevention characteristics without impairing fundamental characteristics required for the contact material such as electroconductivity.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
- Contacts (AREA)
- Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
- Keying Circuit Devices (AREA)
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT83106046T ATE22365T1 (de) | 1982-06-25 | 1983-06-21 | Kontakte fuer vakuumschalter. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP109276/82 | 1982-06-25 | ||
JP57109276A JPS59819A (ja) | 1982-06-25 | 1982-06-25 | 真空しや断器用接点材料 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0097906A1 EP0097906A1 (de) | 1984-01-11 |
EP0097906B1 true EP0097906B1 (de) | 1986-09-17 |
Family
ID=14506059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83106046A Expired EP0097906B1 (de) | 1982-06-25 | 1983-06-21 | Kontakte für Vakuumschalter |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0097906B1 (de) |
JP (1) | JPS59819A (de) |
AT (1) | ATE22365T1 (de) |
DE (1) | DE3366257D1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01129311U (de) * | 1988-02-17 | 1989-09-04 | ||
CN114686720A (zh) * | 2020-12-28 | 2022-07-01 | 广西纵览线缆集团有限公司 | 稀土合金化Cu-Fe合金的制备工艺 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2310317A1 (de) * | 1973-03-01 | 1974-09-05 | Siemens Ag | Mehrbereichskontakt fuer vakuumschaltroehren |
DE2723749C3 (de) * | 1976-05-28 | 1980-07-24 | Tokyo Shibaura Electric Co., Ltd., Kawasaki, Kanagawa (Japan) | Kontaktstücke für Vakuum-Trennschalter |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3551622A (en) * | 1963-03-22 | 1970-12-29 | Hitachi Ltd | Alloy materials for electrodes of vacuum circuit breakers |
GB1309197A (en) * | 1971-10-28 | 1973-03-07 | Int Standard Electric Corp | Vacuum interrupter contacts |
JPS5530246A (en) * | 1978-08-25 | 1980-03-04 | Sumitomo Electric Ind Ltd | Noise elimination system for picture information |
-
1982
- 1982-06-25 JP JP57109276A patent/JPS59819A/ja active Granted
-
1983
- 1983-06-21 DE DE8383106046T patent/DE3366257D1/de not_active Expired
- 1983-06-21 AT AT83106046T patent/ATE22365T1/de not_active IP Right Cessation
- 1983-06-21 EP EP83106046A patent/EP0097906B1/de not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2310317A1 (de) * | 1973-03-01 | 1974-09-05 | Siemens Ag | Mehrbereichskontakt fuer vakuumschaltroehren |
DE2723749C3 (de) * | 1976-05-28 | 1980-07-24 | Tokyo Shibaura Electric Co., Ltd., Kawasaki, Kanagawa (Japan) | Kontaktstücke für Vakuum-Trennschalter |
Non-Patent Citations (1)
Title |
---|
DIN 140/Oktober 1954 Handbuch für das Schleifen und Polieren, 4. Aufl. 1974, Eugen G. Lenze Verlag, Saulgan * |
Also Published As
Publication number | Publication date |
---|---|
ATE22365T1 (de) | 1986-10-15 |
DE3366257D1 (en) | 1986-10-23 |
EP0097906A1 (de) | 1984-01-11 |
JPS59819A (ja) | 1984-01-06 |
JPS6359214B2 (de) | 1988-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0083200B1 (de) | Elektrodenzusammensetzung für Vakuumschalter | |
JPH0471970B2 (de) | ||
EP0031159B1 (de) | Elektrischer Kontakt | |
EP0521274B1 (de) | Verfahren zur Herstellung von Kontaktwerkstoffen für Vakuumschalter | |
JP3428416B2 (ja) | 真空遮断器及びそれに用いる真空バルブと電気接点並びに製造方法 | |
EP0097906B1 (de) | Kontakte für Vakuumschalter | |
EP0668599B1 (de) | Kontaktmaterial für Vakuumschalter und Verfahren zu dessen Herstellung | |
EP0460680B1 (de) | Kontakt für einen Vakuumschalter | |
JPS6359217B2 (de) | ||
US5352404A (en) | Process for forming contact material including the step of preparing chromium with an oxygen content substantially reduced to less than 0.1 wt. % | |
US4229631A (en) | Vacuum-type circuit breaker | |
CA1082267A (en) | Vacuum circuit breaker | |
US3437479A (en) | Contact materials for vacuum switches | |
EP0401595B1 (de) | Gesintertes Kontaktmaterial für Vakuumschalter und Verfahren zur Herstellung desselben | |
JP3251779B2 (ja) | 真空バルブ用接点材料の製造方法 | |
JPH0612646B2 (ja) | 真空バルブ用接点材料 | |
JP2006032036A (ja) | 真空バルブ用接点材料 | |
JPH07320608A (ja) | 接点材料の製造方法 | |
KR0171607B1 (ko) | 진공회로 차단기용 전극 및 진공회로 차단기 | |
JP2511019B2 (ja) | 真空バルブ用接点材料 | |
JP2003183749A (ja) | 真空遮断器用接点材料および真空遮断器 | |
JP2000188045A (ja) | 真空遮断器及びそれに用いる真空バルブとその電極 | |
JP3627712B2 (ja) | 真空遮断器及びそれに用いる真空バルブと電気接点 | |
JP3443516B2 (ja) | 真空バルブ用接点材料の製造方法 | |
CN115679140A (zh) | 铜铬碲合金及其制备方法、应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19830927 |
|
AK | Designated contracting states |
Designated state(s): AT BE DE GB IT |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: KABUSHIKI KAISHA TOSHIBA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
ITF | It: translation for a ep patent filed | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE GB IT |
|
REF | Corresponds to: |
Ref document number: 22365 Country of ref document: AT Date of ref document: 19861015 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3366257 Country of ref document: DE Date of ref document: 19861023 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: DODUCO KG DR. EUGEN DUERRWAECHTER Effective date: 19870615 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19900731 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19910610 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19910612 Year of fee payment: 9 |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19910806 Year of fee payment: 9 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 19910228 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state | ||
BERE | Be: lapsed |
Owner name: K.K. KAISHA TOSHIBA Effective date: 19920630 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |