EP0093389A1 - Schwingmechanismus für geradlinige gleichförmige Hin- und Herbewegungen eines Trägers oder dgl. - Google Patents

Schwingmechanismus für geradlinige gleichförmige Hin- und Herbewegungen eines Trägers oder dgl. Download PDF

Info

Publication number
EP0093389A1
EP0093389A1 EP83104110A EP83104110A EP0093389A1 EP 0093389 A1 EP0093389 A1 EP 0093389A1 EP 83104110 A EP83104110 A EP 83104110A EP 83104110 A EP83104110 A EP 83104110A EP 0093389 A1 EP0093389 A1 EP 0093389A1
Authority
EP
European Patent Office
Prior art keywords
electromagnetic coil
carrier
linear motor
mechanism according
print head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83104110A
Other languages
English (en)
French (fr)
Other versions
EP0093389B1 (de
Inventor
Gordon C. Whitaker
James H. Safford
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mannesmann Tally Corp
Original Assignee
Mannesmann Tally Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann Tally Corp filed Critical Mannesmann Tally Corp
Publication of EP0093389A1 publication Critical patent/EP0093389A1/de
Application granted granted Critical
Publication of EP0093389B1 publication Critical patent/EP0093389B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J25/00Actions or mechanisms not otherwise provided for
    • B41J25/001Mechanisms for bodily moving print heads or carriages parallel to the paper surface
    • B41J25/006Mechanisms for bodily moving print heads or carriages parallel to the paper surface for oscillating, e.g. page-width print heads provided with counter-balancing means or shock absorbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/22Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material
    • B41J2/23Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material using print wires
    • B41J2/235Print head assemblies
    • B41J2/245Print head assemblies line printer type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S400/00Typewriting machines
    • Y10S400/903Stepping-motor drive for carriage feed

Definitions

  • the invention relates to an oscillation mechanism for rectilinear, uniform back and forth movements of a carrier or the like.
  • a linear drive in particular a carrier for a matrix printing device which can be moved in the line direction in front of a record carrier which can be displaced perpendicular to the line direction.
  • oscillation mechanisms are suitable for moving the print head or a hammer bank of a matrix printer back and forth.
  • matrix line printers comprise a printhead or a hammer bank with a multiplicity of dot printing elements, each printing element forming a dot on the recording medium when it strikes. These dot printing elements lie in a row, which in turn is perpendicular to the direction of the conveyance of the recording medium. Since the conveying direction of the recording medium is normally perpendicular, the dot printing elements are usually in a horizontal row. On the side of the paper facing away from the dot printing elements there is a support, i. H. a roller, and an ink ribbon between the dot printing elements and the recording medium.
  • a support i. H. a roller
  • the dot printing elements are actuated so that one or more dots are formed on the recording medium in the print series described by the dot printing elements.
  • the record carrier usually paper, is moved on step by step after printing a row of dots. Continuous movement of the record carrier is also possible.
  • a series of rows of dots in the direction of the movement of the recording medium horizontally forms a series of characters, such characters being able to consist of alphanumeric characters.
  • the present invention was developed to move the printhead or the hammer bank of a matrix line printer back and forth and is therefore primarily used in printers of this type, the invention can also be used to support other devices that are accurate Moving back and forth at a controlled speed requires moving back and forth.
  • matrix line printers can be divided into two categories.
  • the first category of matrix line printers is based on the system in which only the dot printing elements are moved back and forth.
  • the second category of the matrix line printer contains dot printing elements with which the entire printhead, i. H. the actuators for the point pressure elements are moved back and forth.
  • the individual parts of the dot printing elements, which have to be moved back and forth, are mounted on a carrier, carriage, carriage or the like. It does not matter what type of matrix printers it is.
  • the present invention is suitable for both categories of matrix line printers.
  • a known type includes a stepper motor which is set relative to the carrier in such a way that individual steps of the carrier can be carried out. At the end of each step, the corresponding actuators for the dot printing elements are energized so that dots are imaged on the record carrier. Printing in both directions of movement is made possible in that the carrier or the carriage is first moved gradually in one direction and then gradually moved back in the opposite direction.
  • a main disadvantage when using stepper motors in matrix line printers, in particular in those matrix line printers in which both the actuating device lines as well as the associated dot printing elements to and fro, is the fact that stepper motors of conventional size do not have enough power to move the print head of these matrix line printers.
  • stepper motors of conventional size only have sufficient power to move the dot printing elements back and forth on their own, so that they are only advantageous in borderline cases for matrix printers in which the entire printing head or the hammer bank is moved back and forth.
  • stepper motors are limited in their speed, so that they are not suitable for matrix line printers with a relatively high speed, ie with a printing capacity of 600 or more lines per minute.
  • matrix line printers which are operated at high speed, must be precisely positioned with respect to the print head or the hammer bank when the dot printing elements are actuated.
  • Mechanical wear is therefore extremely disadvantageous because it affects the accuracy of the positioning of the print head.
  • the accuracy of the printhead positioning deteriorates, defects in the print image arise. The result is distorted and / or blurred lettering and representations.
  • such distortions and blurrings are not acceptable where high quality printing is required or desired.
  • a high quality print requires a matrix line printer in which the dots in each row of dots are located at exactly the same point when the print head or hammer bank is moved back and forth.
  • a coupling system has already been proposed (European patent application 0 044 415) in order to switch off mechanical wear and the non-linear movement-time curve of previous systems when mechanically coupling a motor at a constant speed to the print head or to the hammer bank of a matrix line printer to be used with a pair of elliptical discs or gears.
  • the coupling device described by means of elliptical, second-order wheels provided with two hoops are connected to one another either directly or with a 90 ° phase offset.
  • the speed compensation system which is fully utilized, senses the zero movement of the drive and reverses the direction in which the electromagnetic drive is energized. At the same time, the hammer bank speed during movement is over one Print passport is sensed and additional kinetic energy is applied by the speed assist system to compensate for the frictional losses and braking effects during printing and other changes in the hammer bank speed.
  • the reciprocating linear actuator described in U.S. Patent 4,180,766 has a number of disadvantages.
  • the use of a low power motor which essentially serves to cover the friction and pressure load losses, leads to a system with a short return and return time, so that the printer as a whole works slowly.
  • This non-desirable property is further burdened by the rebound system in contrast to an energy storage system that would improve the oscillation time.
  • the type of device described also requires several oscillating movements before the forward or reverse speed has reached the desired printing speed.
  • the known printer therefore has a disadvantageously long start-up time, which is undesirable.
  • the invention has for its object to provide an oscillation mechanism for a rapid oscillation movement, which is simple in construction, requires little drive energy and whose drive energy can be regulated precisely.
  • the stated object is achieved according to the invention in the above-described oscillation mechanism for rectilinear, uniform back and forth movements of a carrier or the like by means of a linear drive, in particular a carrier for a matrix printing device which can be moved in the line direction in front of a recording medium which can be advanced perpendicular to the line direction.
  • the carrier is supported on a frame, parallel bending elements
  • the linear drive consists of an electrically driven linear motor, which is arranged in a housing, that the linear motor magnetic means and has an electromagnetic coil, the polarity of which can be changed, that the housing is supported on separate, likewise clamped, parallel bending elements, that the resonance vibration frequency of the combination of the linear motor and the housing bending elements is based on the resonance vibration frequency of the combination of the carrier and the bending elements of the carrier is matched, wherein a connecting member is provided between the electromagnetic coil and the carrier and that the electromagnetic coil is electrically connected to power supply means and control means for the polarity and magnitude of the current flow.
  • Such an oscillation mechanism is suitable for rapid movements of the print head or hammer bank, is clearly structured and the movement steps can be precisely positioned, i.e. can be set.
  • the structure is simple and the physical requirements for movements over a short distance are created.
  • the bending elements store energy which can be used to reduce the time for reversing the movement at the end of the stroke.
  • Another advantage is based on the fact that the resonance oscillation frequency of the combinations mentioned can be easily matched to the number of strokes of the movements of the carrier.
  • the swing mechanism is also easy to control and the power supply to the electromagnetic coil is also easy to implement.
  • the linear motor mounted by means of bending elements is advantageously arranged in such a way that the axis of movement (preferably coaxial) is aligned with the axis of movement of the print head or hammer bank.
  • the electromagnetic coil is advantageously coupled directly to the printhead or to the hammer bank, an interaction of the forces of the bending elements with the forces generated by the electromagnetic coil being particularly important.
  • the oscillation mechanism can now be designed particularly quickly in that the spring constant of the bending elements supporting the carrier is selected such that the resonant oscillation frequency of the combination of the carrier and the bending elements largely corresponds to the reciprocating frequency.
  • control means for the polarity and magnitude of the current flow in the electromagnetic coil from a position sensor for the position of the carrier from means for the continuous generation of an actual position signal, from means for the continuous generation of a target position signal, from means for comparing the actual position signals with the target position signals, from means for generating deviation signals of the size of the difference between actual and target values and from means for regulating the current flow exist in the electromagnetic coil according to polarity and size.
  • the means for the continuous generation of a desired position signal have a main controller for generating the desired position signals in digital form and a digital-to-analog converter and that the actual position signals, which are present in analog form, together with the analog target position signals in analog signal means are compared.
  • a precise control of the electromagnetic coil is also supported in that the means for regulating the current flow in the electromagnetic coil include a pulse width modulator.
  • This precise control of the electromagnetic coil also serves the proposal that the means for regulating the current flow in the electromagnetic coil have a bridge circuit which includes four switches, one switch in each bridge branch and the solenoid in the bridge diagonal and one bridge branch connected to the power source, and that the pulse width modulator generates four output control signals at the four switches.
  • the position sensor for the position of the carrier has a light source, a pair of photocells assigned to the light source and a slide which has a pair of windows and which is connected to the carrier is.
  • the photocells consist of elongated, approximately equally sized photoelectric cells.
  • the determination of the actual values is further favored by the fact that the windows in the photocells are roughly the same size, elongated in shape and offset in the longitudinal direction.
  • the transmission of the actual values determined by the position sensor is also improved in that the position sensor has a differential comparator which is connected to the photoelectric cells, the output signal forming the actual position signal in accordance with the voltage difference.
  • the actual value determination is also advantageous in that the position sensor is connected to a light control circuit which is connected to the outputs of the photoelectric cells and to the light source.
  • Fig. 1 shows the print head 11 or the aforementioned hammer bank of a matrix line printer, which is supported by a pair of bending elements 13 and 15.
  • the print head 11 and the hammer bank are not part of the invention and are therefore not shown in detail.
  • the bending elements 13 and 15 are preferably formed from elongated, flat spring steel pieces which are attached on one side to the frame 16 of the matrix printer. The bending elements 13 and 15 are also aligned parallel and, due to the length of the print head 11, are spaced apart.
  • the print head 11 is mounted between the movable ends of the bending elements 13 and 15 so that it moves at right angles in the direction of the arrow 17.
  • the arrow 17 runs parallel to the longitudinal axis of the print head 11 and at right angles to the parallel planes of the bending elements 13 and 15.
  • the length of the print head 11 corresponds essentially to the width of the largest record carrier 21, which can be recorded by a matrix printer.
  • the printhead 11 can have, for example, 66 separate dot printing elements, each of which is designed to scan or cover two character positions.
  • the total or maximum character line width of such a printer is therefore 132 dot characters. Since the number of character positions (2) to be scanned is small compared to the number of dot printing elements (66), the movement path is small compared to the length of the print head.
  • FIG. 1 shows the print roller 19 parallel to the print head 11 on the other side of the recording medium 21 as seen from the print head.
  • a suitable ink supply such as an ink ribbon
  • the bending elements 13 and 15 lie next to the edge of the recording medium 21.
  • the linear motor 23 is located on one side of the print head 11, specifically directly next to the bending element 15.
  • the housing 25 of the linear motor 23 is supported by a pair of bending elements 27 and 29.
  • One side of the bending elements 27 and 29 are attached to the frame 16 of the matrix printer.
  • the other sides of the bending elements 27 and 29 support the housing 25 of the linear motor 23.
  • the bending elements 27 and 29 are preferably formed from flat spring steel pieces that run parallel to one another, but also parallel to the planes of the bending elements 13 and 15.
  • the linear motor 23 is arranged so that the perpendicular movement axis of the electromagnetic coil 31 of the linear motor 23 is coaxial with the longitudinal axis of the print head 11.
  • the electromagnetic coil 31 of the linear motor 23 is coupled to the adjacent side of the print head 11 via a connecting member 33.
  • the electromagnet Coil 31 of the linear motor 23 as will be described in more detail below, the print head 11 in the direction of the arrow 17 it reciprocates.
  • matrix line printers can be used as character and plotter printers.
  • a matrix line printer designed in accordance with the invention is suitable for both operating modes. When used as a character printer, the movement of the electromagnetic coil is somewhat larger than the width of the number of character positions to be scanned by the print head 11, as specified in the example with two.
  • Fig. 2 it is shown schematically that the electromagnetic coil 31 of the linear motor 23 is arranged such that it can be moved back and forth in the housing 25 of the motor.
  • the housing 25 contains a permanent magnet 35, which preferably has a cylindrical shape.
  • One side of the cylindrical permanent magnet 35 is closed by a plate 37 whose magnetic resistance is low (i.e., e.g. ferromagnetic) and which forms a stud 39 in the middle.
  • the electromagnetic coil 31 is sized so that it surrounds the stud 39 with play.
  • the other side of the cylindrical permanent magnet 35 is covered by the plate 41 (also included with low magnetic resistance), which has a central opening 43 through which the electromagnetic coil 31 extends.
  • the magnetic flux generated by the cylindrical permanent magnet 35 has the flow directions indicated by the arrows in FIG. 2.
  • This magnetic flux interacts with the magnetic flux which is generated by the electromagnetic coil 31 when, as a result of the application of current to the electromagnetic coil 31, electrical current flows therein.
  • the electromagnetic effect is such that the electromagnetic coil 31 is either pulled into the housing 25 or pushed out of it.
  • the current direction of current thus controls the current direction of movement of the electromagnetic coil 31 and thus the current direction of movement of the print head 11.
  • the size of the current flow regulates the size of the coil attraction or recoil force.
  • the spring constants of the bending elements 27 and 29 are chosen so that the vibration mechanism acts in a vibration-balanced manner. This means that the resonance oscillation frequency of the linear motor 23 and its bending elements 27 and 29 is matched to the resonance oscillation frequency of the carrier 11 and its bending elements 13 and 15. In addition, the resonance frequency is at or near the reciprocating speed. The energy requirement for the oscillation mechanism is therefore low.
  • FIG. 3 is a block diagram showing the preferred embodiment of a linear motor oscillating mechanism according to the invention in connection with the printhead 11 of a matrix line printer.
  • FIG. 3 also contains a position sensor 51, a main controller 53, a tilt controller 55, a tilt comparator 57 and a switching amplifier 59 , a print hammer trigger controller 61, a print hammer trigger comparator 63, and a print hammer trigger circuit 65.
  • the position sensor 51 is connected to the print head 11 so as to continuously scan the position of the print head 11. Based on the information received, the position sensor 51 generates an actual position signal, which is applied to an input of the tilt comparator 57 and to an input of the print hammer trigger comparator 63.
  • the main controller 53 generates control signals which are applied to the second input of the tilt comparator 57, specifically via the tilt controller 55 and via the print hammer trigger controller 61 to the second input of the print hammer trigger comparator 63.
  • the output of the tilt comparator 57 is connected to the control input of the switching amplifier 59.
  • the switching amplifier 59 is connected to the electromagnetic coil 31 of the linear motor 23 and regulates the size and direction of the current flow. Thus, the output signal generated by the tilt comparator 57 controls the operation of the linear motor 23.
  • the output of the print hammer release comparator 63 is connected to the print hammer release circuit 65 for the purpose of controlling the point in time for the triggering process of the actuating devices for the individual dot print elements in the print head 11 and thus the point in time of the printing process on the recording medium 21.
  • the main controller 53 In operation, the main controller 53 generates control signals suitable for controlling the printhead position and the printhead position in which the actuators for printing the dots are released. More specifically, the main controller 53 generates print head position control signals, ie, target position signals in digital form.
  • the toggle controller 55 converts the digital signals into analog signals and applies the analog signals to the toggle comparator 57.
  • the toggle comparator 57 compares the analog signal generated by the toggle controller 55 (the desired position signal) with the actual position signal generated by the position sensor 51. As a result, the tilt comparator 57 generates a deviation signal, which is fed to the switching amplifier 59.
  • the switching amplifier 59 then applies a current to the electromagnetic coil 31 of the linear motor 23, the size and polarity of which moves the electromagnetic coil 31 in a direction which brings the print head 11 into the desired position.
  • the print hammer trigger controller 61 receives digital signals from the main controller 53 with the position of the print head 11 in which the print hammers are to be set. An analog signal is generated accordingly. This analog signal passes through a leading circuit, before it is compared with the actual position signal in the print hammer trigger comparator 63.
  • the print hammer trigger comparator 63 When the printhead 11 reaches the position where the print actuators are to be energized, the print hammer trigger comparator 63 generates a trigger pulse.
  • the trigger pulse enables the print hammer trigger circuit 65 to transmit actuation signals to the corresponding actuators. More specifically, the print hammer trip circuit is given 65 In addition to the trigger pulse, signals indicating which of the (e.g. 66) actuators are to be energized when the position is reached, which is determined by the position of the control signals generated by the main controller 53 and is implemented by the print hammer trigger controller 61.
  • the trigger pulse occurs through the pre-circuit before the point pressure position is reached.
  • the lead time is chosen so that it corresponds to the time that the dot printing elements need to get from their rest position to the dot printing position on the recording medium 21.
  • Which of the actuating devices are to be energized first of course depends on the type of characters or the image to be created.
  • the devices to be actuated are selected by the main controller 53 or another data source, for example a character generator.
  • the corresponding actuators are only energized when the print hammer trigger comparator 63 generates a trigger pulse.
  • the print hammer trigger comparator 63 generates a signal which merely indicates that the print head 11 is in the position in which the actuators for the pressure point elements are to be energized - but not which pressure point elements have to be fired.
  • FIG. 4 illustrates a detailed block diagram of the essential components of the swing mechanism shown in FIG. 3.
  • the position sensor 51 preferably comprises two signal amplifiers, namely A1 and A2; four operational amplifiers, namely OA1, OA2, OA3 and OA4; a light source L (light emitting diode); two photoelectric cells A and B and a slide V with two windows W1 and W2.
  • the slider V is connected to the electromagnetic coil 31 of the linear motor 23 by a broken line which indicates that the slider V is moving with the electromagnetic coil 31 and thus the position of the slider V follows the position of the print head 11.
  • the light source L, the slider V and the photoelectric cells A and B are all positioned so that light from the light source L shines through the windows W1 and W2 and strikes the light detector surfaces of the photoelectric cells A and B.
  • the windows W1 and W2 lie between the light source L and the photoelectric cells A and B, so that one window, namely W1, regulates the amount of light impinging on the photosensitive surface of the photoelectric cell A and the other window W2 regulates the amount on the photosensitive surface the photoelectric cell B regulates the amount of light.
  • the photoelectric cells are elongated, of the same size and are parallel to one another, as can be seen from FIG. 4.
  • the windows W1, W2 are also elongated, of the same size and are parallel to each other.
  • While the windows W1, W2 are the same size, only the length of the windows W1, W2 is the same as the length of the photoelectric cells A, B.
  • the windows W1, W2 are somewhat wider than the photoelectric cells A, B.
  • the windows W1, W2 are also offset from one another and not laterally aligned like the photoelectric cells A, B, so that each window W1, W2 at the end of the other window begins and extends outwards in the opposite longitudinal direction.
  • the signal amplifiers A1 and A2 are each connected to one of the photoelectric cells A and B.
  • the signal amplifiers A1 and A2 amplify the signals generated by the photoelectric cells.
  • the operational amplifier OA1 works as a differential amplifier and generates an output voltage whose magnitude corresponds to the difference between the voltage of the signals which are applied to the inverting and non-inverting outputs.
  • the output of signal amplifier A1 is connected to the non-inverting input of differential amplifier OA1 and the output of signal amplifier A2 is connected to the inverting input of differential amplifier OA1. Accordingly, the output of differential amplifier OA1 is mathematically equal to the value of the voltage generated by photoelectric cell A minus the value of the voltage generated by photoelectric cell B (in Fig. 4, lower left part labeled A-B).
  • the output of the differential amplifier OA1 is connected to an input of the tilt comparator 57 and to an input of the pressure hammer trigger comparator 63.
  • the summator 0A2 generates an output voltage whose magnitude corresponds to the sum of the partial voltages applied to the two inputs, both of which can be described as non-inverting.
  • the differential amplifiers 0A3 and 0A4 are components of the position sensor 51.
  • the output of the signal amplifier A1 is connected to the input of the summer 0A2 and the output of the signal amplifier A2 is connected to the second input of the summer OA2.
  • the output of the summator 0A2 (labeled A + B in Fig. 4) is connected to the inverting input of the differential amplifier 0A3.
  • a reference voltage VR is present at the non-inverting input of the differential amplifier OA3.
  • the differential amplifier OA3 thus forms a trimming amplifier, which raises or lowers the output of the summator 0A2 to a suitable voltage level.
  • the output of the differential amplifier 0A3 is connected to the inverting input of the differential amplifier OA4.
  • the base voltage source VB is connected to the non-inverting input of the differential amplifier OA4.
  • the output of the differential amplifier OA4 is connected to ground via the light source L.
  • the circuit formed by the summator OA2, the differential amplifiers OA3 and OA4 is an intensity control which regulates the illuminance generated by the light source L so that it is always constant.
  • This control circuit compensates for fluctuations in the illuminance generated by the light source L, as well as gain fluctuations that occur equally in the two photoelectric cells A and B.
  • the two photoelectric cells A and B should advantageously be identical, ie matched to one another, so that most long-term Fluctuations are the same and are canceled by the control loop explained. The best way to match is by building the two photoelectric cells on the same plate and doping the adjacent surfaces of the common plate.
  • the toggle controller 55 shown in FIG. 4 contains the following components: a counter 71, a flip-flop module 73 in which data can be temporarily stored, a read-only memory 75 (ROM) and a digital-to-analog converter 77
  • Main controller 53 generates a plurality of output signals which are applied to the toggle controller 55.
  • These control signals include reset pulses applied to the reset input of the counter 71, flip-flop pulses applied to the pulse counter input of the counter 71 and a parallel, selected, digital flip profile signal which is applied to the signal input of the flip-flop assembly 73 in the data stored temporarily.
  • the input of the flip-flop module 73 is connected to the output of one of the stages of the counter 71.
  • the address inputs of the read-only memory 75 are connected to the parallel outputs of the stages of the counter 71 and to the output of the flip-flop module 73.
  • the signal outputs of the read-only memory 75 are connected to the digital signal inputs of the digital-to-analog converter 77 .
  • the analog output of converter 77 is at the input of flip-flop comparator 57, as shown in FIG. 3 and described above.
  • the counter 71 Whenever a reset pulse occurs during operation, the counter 71 is reset to the starting position (for example zero). Thereafter, the counter 71 advances by 1 for each pulse when a toggle pulse is generated by the main controller 53.
  • the selected digital tilt profile signal determines the tilt profile to be followed by the print head 11 during the movement by the linear motor 23.
  • the main controller 53 generates tilt profile selection signals which represent the profile (triangular, sinusoidal, sawtooth-shaped and the like) determine that must be followed when moving the print head 11 back and forth.
  • the selected tilting profile signals are read into the flip-flop module 73 and stored there.
  • the pulse generated by the counter 71 can occur, for example, when the counter 71 has been reset to zero.
  • the selectable tilting profile signal stored in the flip-flop module 73 in conjunction with the counter stage output signals, forms the address to be applied to the read-only memory 75 at any time. Since the counter 71 is continued each time a toggle pulse is generated by the main controller 53, the read-only memory address changes as the toggle pulses are generated by the main controller 53. Thus, the master controller 53 also controls the read-only memory address change rate by regulating the toggle pulse speed, which in turn controls the rate of change of the read-only memory output signals. As a result, both the printhead tilt profile and the speed at which the tilt profile is followed are controlled by the main controller 53.
  • the parallel digital output signals generated by the read-only memory 75 are converted by the digital-to-analog converter 77 from the digital form into the analog form.
  • the signal applied by the toggle controller 55 to the toggle comparator 57 is an analog signal, the shape and rate of change of which is determined by the address on the read-only memory 75, which in turn is controlled by the main controller 53.
  • the tilt comparator 57 has a differential amplifier OA5.
  • the output of differential amplifier 0A1 is connected to the inverting input of differential amplifier 0A5 and the output of digital-to-analog converter 77 of toggle regulator 55 is connected to the non-inverting input of differential amplifier 0A5.
  • the differential amplifier 0A5 compares its two inputs in a conventional manner and generates a corresponding differential output signal.
  • the switching amplifier 59 consists of the following assemblies: two differential amplifiers OA6 and OA7, a filter 81, a current limiter 83, a pulse width modulator 85, two PNP transistors Q1 and Q2, two NPN transistors Q3 and Q4 and two resistors R1 and R2.
  • the voltage source + V is connected via the filter 81 to the emitter connections of the transistors Q1 and Q2 and to the voltage input of the current limiter 83.
  • the collector of the transistor Q1 is connected to the collector Q3 and the collector of the transistor Q2 to the collector of the transistor Q4 .
  • the emitters of transistors Q3 and Q4 are connected to ground via resistors R1 and R2.
  • the branch between the transistors Q1 and Q3 is on one side of the electromagnetic coil 31 of the linear motor 23 and the branch between the transistors Q2 and Q4 on the other side of the electromagnetic coil 31.
  • the output of the differential amplifier 0A5 is connected to the inverting input of the differential amplifier OA6.
  • the branch between the emitter of transistor Q3 and resistor R1 is connected to the inverting input of differential amplifier 0A7 and the branch between the emitter of transistor Q4 and resistor R2 is connected to the non-inverting input of differential amplifier OA7.
  • the output of the differential amplifier OA7 is connected to the non-inverting input of the differential amplifier 0A6 and to the control input of the current limiter 83.
  • the output of the differential amplifier 0A6 is connected to the control input of the pulse width modulator 85 and the output of the current limiter 83 to the switch-off control input of the pulse width modulator 85.
  • the pulse width modulator 85 produces four outputs, one of which is at the base of transistors Q1, Q2, Q3 and Q4.
  • the transistors Q1 to Q4 form the branches of a bridge circuit that the polarity of the current flow through the Elektromag netspule 31 of the linear motor 23 controls.
  • the transistors Q1 and Q4 as well as Q2 and Q3 form switch pairs which are each in opposite operating states at a time (ie the transistors Q1 and Q4 are switched on when the transistors Q2 and Q3 are switched off and vice versa), unless that all four transistors Q1 to Q4 are turned off. If a pair of transistors, i.e.
  • the respectively open or closed switching states of the transistors Q1 to Q4 are regulated by the high-low states of the outputs of the pulse width modulator 85.
  • the HL states of the outputs of the pulse width modulator 85 are in turn regulated by the polarity of the output of the differential amplifier OA6.
  • the outputs of the pulse width modulator 85 are switched such that one pair of transistors (Q1 and Q4 or Q2 and Q3) is switched on and the other pair is switched off.
  • the outputs of the pulse width modulator 85 are switched such that the second pair of transistors is switched on and the first pair is switched off.
  • the polarity of the output of differential amplifier 0A6 depends on whether the current feedback signal developed by differential amplifier 0A7 (that by the difference of the of the voltage drops across the resistors R1 and R2) is greater or smaller than the output of the differential amplifier OA5, the ratio between these two voltages determines the polarity of the current flow through the electromagnetic coil 31 of the linear motor 23.
  • the position deviation voltage, which occurs at the output of the differential amplifier OA5 above the voltage at the output of the differential amplifier 0A7, the direction of current flow is such that the electromagnetic coil 31 drives the slide V in a direction which changes the voltage value AB in such a way that the output of the differential amplifier changes 0A5 increased.
  • the current flow direction is such that the coil moves the slide V (and thus the print head 11) in one direction so that the voltage value moves AB changes in such a way that the output pulse at the differential amplifier OA5 decreases.
  • the output of the differential amplifier OA6 not only regulates the direction of the current flow through the electromagnetic coil 31 in the manner just described, but also the size of the current flow. More specifically, the size of the output on differential amplifier OA6 controls the width of the switching pulses that are applied to the pair of transistors that are turned on. Since the width or switch-on time of the transistor switches determines the size of the current applied to the electromagnetic coil 31, the size of the output at the differential amplifier OA6 regulates the size of the current applied to the electromagnetic coil 31.
  • the current limiter 83 is provided in order to maximally determine the amount of current that can be applied to the electromagnetic coil, so that destruction of the electromagnetic coil and / or the transistors Q1 to Q4 is prevented.
  • the print hammer trigger controller 61 consists essentially of the following modules: the flip-flop module 91, in which data can be temporarily stored, and a digital-to-analog converter 93.
  • the main controller 53 generates digital signals in parallel which indicate the print hammer trigger positions.
  • the digital signals are read into the flip-flop module 91 and stored there, whenever the main controller 53 generates a memory signal.
  • the digital output of the flip-flop module 91 is connected to the digital input of the digital-to-analog converter 93 and is converted there from digital form to analog form.
  • the analog form of the print hammer trigger position signals are applied to the second input of the print hammer trigger comparator 63.
  • the print hammer trigger comparator 63 comprises the following essential elements: a guide circuit 95 and a differential amplifier OAB.
  • the signals A-B generated by the position sensor 51 are applied via the guide circuit 95 to the non-inverting input of the differential amplifier OA8.
  • the analog signals generated by the digital-to-analog converter 93 of the print hammer trigger controller 61 are applied to the inverting input of the differential amplifier OA8.
  • the differential amplifier 0A8 compares its two input signals by differentiation and generates another output signal, which is connected to the print hammer release circuit 65 shown in FIG. 3 and already described.
  • the guide circuit 95 forms part of the path for the actual position signal to compensate for the print hammer flight time.
  • a time advance of the actual print hammer position signal is compared to a signal representing the desired print hammer trigger position. In the event that the two signals match, the state of the output on the differential amplifier OA8 changes and forms a print hammer trigger pulse for the print hammer trigger circuit 65.
  • the invention represents a highly precise oscillation mechanism which is particularly suitable for matrix line printers and which precisely controls the movement of the print head 11 and the triggering of the print actuation devices.
  • the invention uses a relatively rigid, tuned flexure system that operates near its resonant vibration frequency and a relatively strong linear motor with a vibrating solenoid to minimize printhead travel time.
  • the invention is therefore ideally suited for use in matrix line printers which operate at high speed.
  • the electromagnetic coil 31 is preferably completely reversed when the last point position is reached.
  • the full excitation of the linear motor 23 in connection with the energy stored in the bending elements 13, 15 and 27, 29 leads to extremely short cycle times. In one embodiment of the invention, the cycle time is 3 milliseconds.
  • printhead movement increases to operating speed within a quarter.

Landscapes

  • Character Spaces And Line Spaces In Printers (AREA)
  • Linear Motors (AREA)

Abstract

Es wird ein Schwingmechanismus für die Bewegung des Druckkopfes (11) eines Matrix-Zeilendruckers beschrieben, Der Druckkopf (11) ist von einem Paar Biegeelemente (13,15) abgestützt, so daß er sich auf einer Druckzeile frei hin- und herbewegen kann. Eine Seite des durch die Biegeelemente (13,15) abgestützten Druckkopfes (11) ist mit der Elektromagnetspule (31) eines Linearmotors (23) gekoppelt. Der Linearmotor (23) wird gleichfalls durch Biegeelemente (27,29) abgestützt. Der Linearmotor (23) ist derart angeordnet, daß die Achse der Elektromagnetspule (31) koaxial mit der Bewengungsachse des Druckkopfes (11) verläuft. Darüber hinaus wird die Resonanzschwingfrequenz der Kombination aus Linearmotor (23) und Linearmotor-Biegeelementabstützung auf die Resonanz-schwingfrequenz der Kombination aus Druckkopf (11) und Druckkopf-Biegeelementabstützung abgestimmt. Ein Positionsfühler (51) in Form eines Fensterpaares (W1,W2), das mit dem Druckkopf (11) verbunden ist und sich mit ihm bewegt und das auf ein Paar fotoelektrischer Zellen (A,B) auftreffendes Licht steuert, erzeugt ein Signal, das die Ist-Stellung des Druckkopfes (11) anzeigt. Das Ist-Stellungssignal wird mit einem Soll-Stellungssignal in einem Regelkreis verglichen und das resultierende Abweichungssignal zur Regelung der Größe und Polarität des an die Elektromagnetspule (31) des Linearmotors (23) angelegten Stromes benutzt und somit zur Regelung der Stellung des Druckkopfes (11). Die von den fotoelektrischen Zellen (A,B) erzeugten Signale dienen auch der Regelung der Intensität des Lichtes, das auf die Zellen (A,B) trifft, so daß die Summe der fotoelektrischen Zellen-Signale konstant ist.

Description

  • Die Erfindung betrifft einen Schwingmechanismus für geradlinige, gleichförmige Hin- und Herbewegungen eines Trägers oder dgl. mittels eines Linearantriebs, insbesondere eines Trägers für eine Matrixdruckeinrichtung, die in Zeilenrichtung vor einem senkrecht zur Zeilenrichtung verschiebbaren Aufzeichnungsträger bewegbar ist. Derartige Schwingmechanismen eignen sich für das Hin- und Herfahren des Druckkopfes bzw. einer Hammerbank eines Matrixdruckers.
  • Es sind verschiedene Arten von Zeichen- bzw. Zeilendruckern, die nach dem Matrixpunktdruckverfahren arbeiten, vorgeschlagen worden, die praktisch eingesetzt werden. Allgemein gesprochen umfassen Matrix-Zeilendrucker einen Druckkopf bzw. eine Hammerbank mit einer Vielzahl von Punkt-Druckelementen, wobei jedes Druckelement bei einem Anschlag einen Punkt auf dem Aufzeichnungsträger bildet. Diese Punkt-Druckelemente liegen in einer Reihe, die wiederum rechtwinklig zur Richtung der Förderung des Aufzeichnungsträgers liegt. Da die Förderrichtung des Aufzeichnungsträgers normalerweise senkrecht verläuft, liegen die Punkt-Druckelemente gewöhnlich in einer horizontalen Reihe. Auf der von den Punkt-Druckelementen abgewandten Seite des Papiers befindet sich eine Auflage, d. h. eine Walze, und zwischen den Punkt-Druckelementen und dem Aufzeichnungsträger ein Farbband. Während des Druckens werden die Punkt-Druckelemente betätigt, so daß in der durch die Punkt-Druckelemente beschriebenen Druckreihe ein oder mehrere Punkte auf dem Aufzeichnungsträger entstehen. Der Aufzeichnungsträger, meist Papier, wird nach dem Druck einer Punktreihe schrittweise weiterbewegt. Ein kontinuierliches Bewegen des Aufzeichnungsträgers ist ebenfalls möglich. Eine Serie von Punktreihen in Richtung der Bewegung des Aufzeichnungsträgers bildet horizontal eine Zeichenreihe, wobei solche Zeichen aus alphanumerischen Zeichen bestehen können.
  • Obgleich die vorliegende Erfindung entwickelt wurde, um den Druckkopf bzw. die Hammerbank eines Matrix-Zeilendruckers hin- und herzufahren und somit primär in Druckern dieser Gattung zum Einsatz kommt, kann die Erfindung jedoch auch eingesetzt werden, um die Träger anderer Einrichtungen, die einer genauen Hin- und Herbewegung mit geregelter Geschwindigkeit bedürfen, hin- und herzubewegen.
  • Allgemein lassen sich Matrix-Zeilendrucker im Gegensatz zu seriell arbeitenden Druckern in zwei Kategorien einteilen. Die erste Kategorie der Matrix-Zeilendrucker basiert auf dem System, bei dem lediglich die Punkt-Druckelemente hin- und hergefahren werden. Die zweite Kategorie der Matrix-Zeilendrucker enthält Punkt-Druckelemente, mit denen der gesamte Druckkopf, d. h. die Betätigungseinrichtungen für die Punkt-Druckelemente hin- und hergefahren werden. Die Einzelteile der Punkt-Druckelemente, die hin- und herbewegt werden müssen, sind auf einem Träger, Schlitten, Wagen oder dgl. montiert, wobei es gleichgültig ist, um welche Art von Matrixdruckern es sich handelt. Die vorliegende Erfindung eignet sich für beide Kategorien der Matrix-Zeilendrucker.
  • Es sind bisher verschiedene Arten von Schwingmechanismen für Matrix-Zeilendrucker vorgeschlagen worden. Eine bekannte Art enthält einen Schrittmotor, der gegenüber dem Träger derart eingestellt ist, daß einzelne Schritte des Trägers ausgeführt werden können. Am Ende eines jeden Schrittes werden die entsprechenden Betätigungseinrichtungen für die Punkt-Druckelemente erregt, so daß Punkte auf dem Aufzeichnungsträger abgebildet werden. Ein Drucken in beiden Bewegungsrichtungen wird dadurch ermöglicht, daß der Träger bzw. der Wagen zunächst in eine Richtung schrittweise vorwärtsbewegt und dann in die entgegengesetzte Richtung schrittweise zurückbewegt wird. Ein Hauptnachteil beim Einsatz von Schrittmotoren in Matrix-Zeilendruckern, insbesondere in solchen Matrix-Zeilendruckern, bei denen sowohl die Betätigungseinrichtungen als auch die zugehörigen Punkt-Druckelemente hin- und herbewegt werden, ist der Umstand, daß Schrittmotoren herkömmlicher Größe nicht genügend Kraft besitzen, um den Druckkopf dieser Matrix-Zeilendrucker zu bewegen. Solche Schrittmotoren herkömmlicher Größe besitzen nur ausreichend Kraft, um die Punkt- Druckelemente allein hin- und herzubewegen, so daß sie nur in Grenzfällen für Matrixdrucker von Vorteil sind, bei denen der gesamte Druckkopf bzw. die Hammerbank hin- und hergefahren wird. Darüber hinaus sind Schrittmotoren in ihrer Geschwindigkeit beschränkt, so daß sich diese für Matrix-Zeilendrucker mit relativ hoher Geschwindigkeit, d.h. mit einer Druckleistung von 600 und mehr Zeilen pro Minute nicht eignen.
  • Wegen der vorstehend genannten Nachteile von Schrittmotoren sind Versuche unternommen worden; Wechelstrommotore mit konstanter Drehzahl und Gleichstrommotore für die Pendelbewegung des Druckkopfes bzw. der Hammerbank von Matrix-Zeilendruckern einzusetzen. Ein wesentlicher Nachteil der Schwingmechanismen, die auf der Basis von Motoren mit konstanter Drehzahl arbeiten, liegt in den Kupplungseinrichtungen, mittels denen die Motore an den Druckkopf bzw. an die Hammerbank angekuppelt werden. In den meisten Fällen dient als Kupplungseinrichtung eine Nockenkurve mit kraftschlüssig anliegender Stößeleinrichtung. Sowohl die Nockenkurve als auch die Stößeleinrichtung sind jedoch einem hohen mechanischen Verschleiß ausgesetzt und sind daher für den sehr genau arbeitenden Pendelmechanismus eines Matrix-Zeilendruckers ungeeignet. Genauer gesagt müssen Matrix-Zeilendrucker, die mit hoher Geschwindigkeit betrieben werden, hinsichtlich des Druckkopfes bzw. der Hammerbank bei Betätigung der Punktdruckelemente genau positioniert sein. Ein mechanischer Verschleiß ist daher äußerst nachteilig, da er die Genauigkeit der Positionierung des Druckkopfes beeinträchtigt. Sofern jedoch die Genauigkeit der Druckkopf-Positionierung nachläßt, entstehen Mängel des Druckbildes. Als Folge ergeben sich verzerrte und/oder verwischte Schriftzüge und Darstellungen. Derartige Verzerrungen und Verwischungen sind jedoch dort, wo ein Druck von hoher GUte benötigt oder angestrebt wird, nicht akzeptabel. Mit anderen Worten ausgedrückt, verlangt ein Druck von hoher Qualität einen Matrix-Zeilendrucker, bei dem die Punkte in jeder Punktreihe an genau dergleichen Stelle bei Hin- und Herbewegung des Druckkopfes bzw. der Hammerbank liegen.
  • Ein weiterer Nachteil bekannter Schwingmechanismen, die mit Motoren konstanter Drehzahl arbeiten und deren Kupplungeseinrichtungen aus einer Nockenkurve mit Nockenstößel bestehen, ist darin zu sehen, daß die Bewegungs-Zeit-Kurve nicht linear verläuft. Dieser Umstand bedeutet jedoch, daß relativ komplizierte Stellungsfühler- und Regelsysteme erforderlich sind, um bei derartigen Schwingmechanismen dennoch eine genaue Punktpositionierung zu erreichen.
  • Um den mechanischen Verschleiß und die nicht linear verlaufende Bewegungs-Zeit-Kurve früherer Systeme bei mechanischer Ankupplung eines Motors mit konstanter Drehzahl an den Druckkopf bzw. an die Hammerbank eines Matrix-Zeilendruckers auszuschalten, wurde bereits vorgeschlagen (Europäische Patentanmeldung 0 044 415) ein Kupplungssystem mit einem Paar elliptischer Scheiben bzw. Zahnräder zu verwenden. Die beschriebene Kupplungseinrichtung mittels elliptischen, mit zwei Hökern versehene Räder zweiter Ordnung sind entweder direkt oder über einen Riemen 90° phasenversetzt miteinander verbunden. Obgleich eine derartige Kupplungseinrichtung eine sehr genaue Bewegungs-Zeit-Kurve erzeugt, sind damit wenig wünschenswerte Geräusche verbunden und die Kupplungseinrichtung ist außerdem mechanisch kompliziert und teurer in der Herstellung als wünschenswert wäre.
  • Neben den Schrittmotoren und Motoren konstanter Drehzahl wurde auch bereits vorgeschlagen (US-Patent 3,911,814), Linearmotoren für die Hin- und Herbewegung der Wagen von Druckern anzuwenden. Bei einen derartigen-Linearmotor handelt es sich um einen Motor, bei dem die Bewegungsachse des beweglichen Motorelements geradlinig und nicht rotierend verläuft. Aus der genannten Druckschrift ist ein Schwingmechanismus für geradlinige, gleichförmige Hin- und Herbewegungen einesHammerbank-Trägers zwischen zwei Stellungen bekannt. In einer Stellung werden die Hämmer zu ungeraden Zeichenpositionen ausgerichtet und in der anderen Stellung zu geraden Zeichenpositionen. Auf Regelsignale hin wird die Hammerbank betätigt, um ein Zeichen zu drucken, sobald das entsprechende Punkt-Druckelement mit dem zugeordneten Hammer ausgerichtet ist. Mit anderen Worten ist die Einrichtung für den Einsatz in einem Typendrucker und nicht in einem Matrixdrucker bestimmt. Es versteht sich, daß ein Typendrucker nicht die gleiche präzise Druckkopfpositionierung wie ein Matrix-Zeilendrucker benötigt.
  • Ein weiterer Vorschlag für den Einsatz eines Linearmotors in einem Matrix-Zeilendrucker ist aus der US-Patentschrift 4,180,766 bekannt. Bei diesem System wird der hin- und hergehende Antriebsmechanismus, der die Hammerbank stützt, dem freien Flug bei geringer Reibung auf einer bestimten Achse parallel zur Zeilenrichtung unterzogen. Jeweils am Ende der Bewegung trifft der Antrieb auf einen gefederten Anschlag, der die Bewegungsrichtung des Antriebs und damit der Hammerbank umkehrt. Energieverluste, die während der Umkehr auftreten, werden mit Hilfe eines Energieimpulses, eines angekoppelten Linear-Elektromagnetantriebs und eines angeschlossenen Geschwindigkeitsausgleichssystems aufgefangen, so daß sich eine genaue Servoregelung während der Umkehr erübrigt und die Antriebsumkehr durch den Rückprall bewirkt wird. Während der Umkehr fühlt das Geschwindigkeitsausgleichssystem, das vollkommen ausgenutzt wird, den Eintritt einer Null-Bewegung des Antriebs und kehrt die Richtung der Energiebeaufschlagung des elektromagnetischen Antriebs um. Gleichzeitig wird die Hammerbankgeschwindigkeit während der Bewegung über einen Druckpaß abgetastet, und vom Geschwindigkeitshilfssystem wird weitere kinetische Energie aufgebracht, um die Reibungsverluste und die Bremseffekte während des Druckens und andere Veränderungen der Hammerbankgeschwindigkeit zu kompensieren.
  • Der hin- und hergehende Linearantrieb, der in dem US-Patent 4,180,766 beschrieben wird, besitzt eine Reihe von Nachteilen. Beispielsweise führt der Einsatz eines Motors mit niedriger Leistung, der im wesentlichen dazu dient, die Reibungs- und Druckbelastungsverluste zu decken, zu einem System mit geringer Hin- und Rücklaufzeit, so daß der Drucker insgesamt langsam arbeitet. Diese wenig wünschenswerte Eigenschaft wird noch durch das Rückprallsystem im Gegensatz zu einem Energiespeichersystem, das die Schwingungszeit verbessern würde, belastet. Auch die beschriebene Art der Einrichtungen benötigt mehrere Schwingbewegungen, bevor die Vor- bzw. Rückfahrgeschwindigkeit die gewünschte Druckgeschwindigkeit erreicht hat. Der bekannte Drucker weist daher eine nachteilig hohe Anfahrzeit auf, die unerwünscht ist.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Schwingmechanismus für eine schnelle Schwingbewegung zu schaffen, der einfach aufgebaut ist, wenig Antriebsenergie erfordert und dessen Antriebsenergie genau geregelt werden kann.
  • Die gestellte Aufgabe wird bei dem eingangs bezeichneten Schwingmechanismus für geradlinige, gleichförmige Hin- und Herbewegungen eines Trägers oder dgl. mittels eines Linearantriebs, insbesondere eines Trägers für eine Matrixdruckeinrichtung, die in Zeilenrichtung vor einem senkrecht zur Zeilenrichtung vorschiebbaren Aufzeichnungsträger bewegbar ist, erfindungsgemäß dadurch gelöst, daß der Träger auf in einen Rahmen eingespannten, parallel verlaufenden Biegeelementen abgestützt ist, daß der Linearantrieb aus einen elektrisch angetriebenen Linearmotor besteht, der in einem Gehäuse angeordnet ist, daß der Linearmotor Magnetmittel und eine Elektromagnetspule aufweist, deren Polarität veränderbar ist, daß das Gehäuse auf separate, ebenfalls eingespannte, parallel verlaufende Biegeelemente gestützt ist, daß die Resonanzschwingfrequenz der Kombination aus dem Linearmotor und den Gehäuse-Biegeelementen auf die Resonanzschwingfrequenz der Kombination aus dem Träger und den Biegeelementen des Trägers abgestimmt ist, wobei zwischen der Elektromagnetspule und dem Träger ein Verbindungsglied vorgesehen ist und daß die Elektromagnetspule an Stromversorgungsmittel und Regelmittel für die Polarität und Größe des Stromflusses elektrisch angeschlossen ist.
  • Ein solcher Schwingmechanismus eignet sich für schnelle Bewegungen des Druckkopfes bzw. der Hammerbank, ist übersichtlich aufgebaut und die Bewegungsschritte können genau positioniert, d.h. eingestellt werden. Außerdem ist der Aufbau einfach und die physikalischen Voraussetzungen für Bewegungen über eine kurze Distanz sind geschaffen. Vorteilhaft ist auch, daß bei Bewegung des Druckkopfes bzw. der Hammerbank in die eine oder andere Bewegungsrichtung die Biegeelemente Energie speichern, die zur Verringerung der Zeit für die Bewegungsumkehr am Hubende benutzt werden kann. Ein weiterer Vorteil beruht darauf, daß die Resonanzschwingfrequenz der genannten Kombinationen leicht abgestimmt werden kann auf die Hubzahl der Bewegungen des Trägers. Der Schwingmechanismus ist außerdem leicht zu regeln und die Stromversorgung der Elektromagnetspule ist ebenfalls einfach zu verwirklichen. Der mittels Biegelementen montierte Linearmotor ist vorteilhafterweise so angeordnet, daß die Bewegungsachse (vorzugsweise koaxial) mit der Bewegungsachse des Druckkopfes bzw. der Hammerbank ausgerichtet ist. Hierbei ist vorteilhafterweise die Elektromagnetspule mit dem Druckkopf bzw. mit der Hammerbank unmittelbar gekoppelt, wobei ein Zusammenspiel der Kräfte der Biegeelemente mit den Kräften, die durch die Elektromagnetspule erzeugt werden, von besonderer Bedeutung ist.
  • Der Schwingmechanismus kann nunmehr dadurch besonders schnell konzipiert werden, indem die Federkonstante der den Träger stützenden Biegeelemente derart gewählt ist, daß die Resonanz- schwingfrequenz der Kombination aus dem Träger und den Biegeelementen weitestgehend mit der Hin- und Herbewegungsfrequenz übereinstimmt.
  • Ein übersichtlicher und daher gut funktionierender Aufbau der elektrischen Schaltung ergibt sich ferner dadurch, daß die Regelmittel für die Polarität und Größe des Stromflusses in der Elektromagnetspule aus einem Positionsfühler für die Stellung des Trägers aus Mitteln für die kontinuierliche Erzeugung eines Ist-Stellungssignals, aus Mitteln für die kontinuierliche Erzeugung eines Soll-Stellungssignals, aus Mitteln für den Vergleich der Ist-Stellungssignale mit den Soll- Stellungssignalen, aus Mitteln für die Erzeugung von Abweichungssignalen von der Größe der Differenz zwischen Ist- und Soll-Werten und aus Mitteln für die Regelung des Stromflusses in der Elektromagnetspule nach Polarität und Größe bestehen.
  • Zur Steigerung der Schnelligkeit des Systems wird außerdem vorgeschlagen, daß die Mittel für die kontinuierliche Erzeugung eines Soll-Stellungssignals einen Hauptregler zur Erzeugung der Soll-Stellungssignale in Digitalform sowie einen Digital-Analog-Wandler aufweisen und daß die in Analogform vorliegenden Ist-Stellungssignale zusammen mit den Analog-Soll-Stellungssignalen in Analogsignalmitteln verglichen werden.
  • Eine genaue Ansteuerung der Elektromagnetspule wird ferner dadurch unterstützt, daß die Mittel für die Regelung des Stromflusses in der Elektromagnetspule einen Impulsbreiten-Modulator einschließen.
  • Dieser genauen Ansteuerung der Elektromagnetspule dient außerdem der Vorschlag, daß die Mittel für die Regelung des Stromflusses in der Elektromagnetspule einen Brückenschaltkreis aufweisen, der vier Schalter enthält, wobei jeweils ein Schalter in einem Brückenzweig und die Elektromagnetspule in der Brückendiagonalen angeordnet sind und ein Brückenzweig an die Stromquelle angeschlossen ist, und daß der Impulsbreiten-Modulator vier Ausgangsregelsignale an den vier Schaltern erzeugt.
  • Die Ermittlung der Ist-Werte bzw. die Erzeugung von Ist-Stellungssignalen wird dadurch unterstützt, daß der Positionsfühler für die Stellung des Trägers eine Lichtquelle aufweist, außerdem ein Paar der Lichtquelle zugeordnete Fotozellen und einen Schieber der ein Fensterpaar besitzt und der mit dem Träger verbunden ist.
  • Hierbei ist es vorteilhaft, daß die Fotozellen aus länglich ausgebildeten, etwa gleichgroßen fotoelektrischen Zellen bestehen.
  • Die Ermittlung der Ist-Werte wird ferner dadurch begünstigt, daß die Fenster in den Fotozellen etwa gleichgroß, von länglicher Form und in Längsrichtung gegeneinander versetzt angeordnet sind.
  • Der schnellen und genauen Ermittlung der Ist-Werte dient außerdem, daß die Fenster sich in Richtung der länglich geformten Fotozellen erstrecken.
  • Die Weitergabe der vom Positionsfühler ermittelten Ist-Werte wird außerdem dadurch verbessert, daß der Positionsfühler einen Differentialkomparator aufweist, der an die fotoelektrischen Zellen angeschlossen ist, wobei das Ausgangssignal entsprechend der Spannungsdifferenz das Ist-Stellungssignal bildet.
  • Der Ist-Wert-Ermittlung dient ferner vorteilhaft, daß der Positionsfühler mit einem Lichtregelkreis verbunden ist, der an die Ausgänge der fotoelektrischen Zellen und an die Lichtquelle angeschlossen ist.
  • Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher beschreiben. Es zeigen
    • Fig. 1 den zusammengebauten Schwingmechanismus und hierbei die Lage des Druckkopfes sowie die übrigen Bauteile für einen Matrix-Zeilendrucker,
    • Fig. 2 einen senkrechten Querschnitt des in Fig. 1 dargestellten Linearmotors,
    • Fig. 3 ein Blockdiagramm zur Ermittlung der Ist- und Sollwerte sowie zur Steuerung der Druckhämmer in Abhängigkeit der Bewegung des Druckkopfes,
    • Fig. 4 einen elektrischen Schaltplan mit den elektronischen Bauteilen für die Ermittlung der Regelungsgrößen, deren Verarbeitung und deren Verwendung als Steuerbefehle für die Druckhämmer.
  • Fig. 1 zeigt den Druckkopf 11 bzw. die erwähnte Hammerbank eines Matrix-Zeilendruckers, der durch ein Paar Biegeelemente 13 und 15 abgestützt ist. Der Druckkopf 11 bzw. die Hammerbank sind nicht Teil der Erfindung und deshalb nicht im einzelnen dargestellt. Die Biegeelemente 13 und 15 sind vorzugsweise aus länglichen, flachen Federstahlstücken gebildet, die auf einer Seite am Rahmen 16 des Matrixdruckers befestigt sind. Die Biegeelemente 13 und 15 sind außerdem parallel ausgerichtet und liegen, bedingt durch die Länge des Druckkopfes 11, mit Abstand zueinander.
  • Der Druckkopf 11 ist zwischen den beweglichen Enden der Biegeelemente 13 und 15 montiert, so daß er sich rechtwinklig in Richtung des Pfeils 17 bewegt. Der Pfeil 17 verläuft parallel zur Längsachse des Druckkopfes 11 und rechtwinklig zu den Parallelebenen der Biegeelemente 13 und 15.
  • Die Länge des Druckkopfes 11 entspricht im wesentlichen der Breite des größten Aufzeichnungsträgers 21, der von einem Matrix-Drucker aufgenommen werden kann. Der Druckkopf 11 kann beispielsweise 66 getrennte Punkt-Druckelemente besitzen, die jeweils so ausgelegt sind, daß sie zwei Zeichenpositionen abtasten oder abdecken. Die gesamte oder maximale Zeichenzeilenbreite eines solchen Druckers beträgt somit 132 Punktzeichen. Da die Anzahl der abzutastenden Zeichenpositionen (2) im Vergleich zur Anzahl der Punktdruckelemente (66) gering ist, ist der Bewegungsweg im Vergleich zur Länge des Druckkopfes klein.
  • Zum besseren Verständnis zeigt Fig. 1 die Druckwalze 19 parallel zum Druckkopf 11 auf der anderen Seite des Aufzeichnungsträgers 21 vom Druckkopf aus gesehen. In Fig. 1 ist nicht gezeigt, wie ein geeigneter Farbvorrat (wie beispielsweise ein Farbband) arbeitet, der zwischen dem Druckkopf 11 und dem Aufzeichnungsträger 21 angel ordnet sein muß. Die Biegeelemente 13 und 15 liegen neben dem Rand des Aufzeichnungsträgers 21.
  • Auf einer Seite des Druckkopfes 11 befindet sich der Linearmotor 23, und zwar unmittelbar neben dem Biegeelement 15. Das Gehäuse 25 des Linearmotors 23 wird durch ein Paar Biegeelemente 27 und 29 abgestützt. Eine Seite der Biegeelemente 27 und 29 sind am Rahmen 16 des Matrixdruckers befestigt. Die anderen Seiten der Biegeelemente 27 und 29 stützen das Gehäuse 25 des Linearmotors 23. Die Biegeelemente 27 und 29 werden vorzugsweise aus flachen Federstahlstücken gebildet, die parallel zueinander verlaufen, aber auch parallel zu den Ebenen der Biegeelemente 13 und 15.
  • Der Linearmotor 23 ist so angeordnet, daß die rechtwinklige Bewegungsachse der Elektromagnetspule 31 des Linearmotors 23 mit der Längsachse des Druckkopfes 11 koaxial liegt. Die Elektromagnetspule 31 des Linearmotors 23 ist mit der anliegenden Seite des Druckkopfes 11 über ein Verbindungsglied 33 gekoppelt. Somit wird bei einer hin- und hergehenden Oszillation der Elektromagnetspule 31 des Linearmotors 23, wie nachstehend noch genauer beschrieben werden wird, der Druckkopf 11 in Richtung des Pfeil es 17 hin- und herbewegt. Wie leicht verständlich ist, lassen sich derartige Matrix-Zeilendrucker als Zeichen- und Plotterdrucker einsetzen. Ein entsprechend der Erfindung ausgebildeter Matrix-Zeilendrucker ist für beide Betriebsarten geeignet. Bei Einsatz als Zeichendrucker ist die Bewegung der Elektromagnetspule etwas größer als die Breite der vom Druckkopf 11 abzutastenden Anzahl von Zeichenpositionen, wie im Beispiel mit zwei festgelegt.
  • In Fig. 2 ist schematisch dargestellt, daß die Elektromagnetspule 31 des Linearmotors 23 derart angeordnet ist, daß sie im Gehäuse 25 des Motors hin- und herbewegt werden kann. Das Gehäuse 25 enthält einen Dauermagneten 35, der vorzugsweise zylindrische Form hat. Eine Seite des zylindrischen Dauermagneten 35 wird durch eine Platte 37 verschlossen deren magnetischer Widerstand gering ist (d.h. z.B. ferromagnetisch ist) und die in der Mitte einen Stehbolzen 39 bildet. Die Elektromagnetspule 31 ist größenmäßig so bemessen, daß sie den Stehbolzen 39 mit Spiel umgibt. Die andere Seite des zylindrischen Dauermagneten 35 wird von der Platte 41 (ebenfalls mit geringem magnetischem Widerstand eingeschlossen), die eine Mittenöffnung 43 aufweist, durch die die Elektromagnetspule 31 hindurchgreift. Der von dem zylindrischen Dauermagneten 35 erzeugte Magnetfluß besitzt die durch die Pfeile in Fig. 2 angegebenen Flußrichtungen. Dieser Magnetfluß steht in Wechselwirkung mit dem Magnetfluß, der von der Elektromagnetspule 31 erzeugt wird, wenn infolge der Beaufschaltung von Strom auf die Elektromagnetspule 31 in dieser elektrischer Strom fließt. Je nach Richtung des Stromflusses ist die elektromagnetische Wirkung so, daß die Elektromagnetspule 31 entweder in das Gehäuse 25 gezogen oder aus diesem herausgestoßen wird. Damit steuert die momentane Stromrichtung die momentane Bewegungsrichtung der elektromagnetischen Spule 31 und damit die momentane Bewegungsrichtung des Druckkopfes 11. Die Größe des Stromflusses regelt die Größe der Spulenanziehungs- oder -rückstoßkraft.
  • Die Federkonstanten der Biegeelemente 27 und 29 sind so gewählt, daß der Schwingmechanismus schwingungsabgeglichen wirkt. Das heißt, daß die Resonanzschwingfrequenz des Linearmotors 23 und seiner Biegeelemente 27 und 29 auf die Resonanzschwingungsfrequenz des Trägers 11 und dessen Biegeelemente 13 und 15 abgestimmt wird. Darüber hinaus liegt die Resonanzfrequenz auf oder in der Nähe der Hin- und Herbewegungsgeschwindigkeit. Somit ist der Energiebedarf für den Schwingmechanismus gering.
  • Fig. 3 stellt ein Blockdiagramm dar, das die bevorzugte Ausführungsform eines Schwingmechanismus mit einem Linearmotor entsprechend der Erfindung in Verbindung mit dem Druckkopf 11 eines Matrix-Zeilendruckers zeigt. Neben dem Druckkopf 11, dem Linearmotor 23 und dem Verbindungsglied 33, die ebenfalls in Fig. 1 gezeigt und dort beschrieben sind, enthält Fig. 3 darüber hinaus einen Positionsfühler 51, einen Hauptregler 53, einen Kippregler 55, einen Kippkomparator 57, einen Schaltverstärker 59, einen Druckhammerauslöseregler 61, einen Druckhammerauslösekomparator 63 und einen Druckhammerauslösekreis 65.
  • Wie durch die gestrichelte Linie angezeigt wird, ist der Positionsfühler 51 mit dem Druckkopf 11 verbunden, um so die Stellung des Druckkopfes 11 kontinuierlich abzutasten. Aufgrund der erhaltenen Information erzeugt der Positionsfühler 51 ein Ist-Stellungssignal, das an einen Eingang des Kippkomparators 57 und an einen Eingang des Druckhammerauslösekomparators 63 gelegt wird. Der Hauptregler 53 erzeugt Regelsignale, die an den zweiten Eingang des Kippkomparators 57 gelegt werden, und zwar über den Kippregler 55 und über den Druckhammerauslöseregler 61 an den zweiten Eingang des Druckhammerauslösekomparators 63. Der Ausgang des Kippkomparators 57 ist mit dem Regeleingang des Schaltverstärkers 59 verbunden. Der Schaltverstärker 59 ist an die Elektromagnetspule 31 des Linearmotors 23 angeschlossen und regelt die Größe und Richtung des Stromflusses. Somit regelt das vom Kippkomparator 57 erzeugte Ausgangssignal den Betrieb des Linearmotors 23.
  • Der Ausgang des Druckhammerauslösekomparators 63 ist mit dem Druckhammerauslösekreis 65 verbunden zwecks Steuerung des Zeitpunktes für den Auslösevorgang der Betätigungseinrichtungen für die einzelnen Punktdruckelemente im Druckkopf 11 und somit des Zeitpunktes des Druckvorgangs auf dem Aufzeichnungsträger 21.
  • Im Betrieb erzeugt der Hauptregler 53 Regelsignale, die zur Regelung der Druckkopfstellung und der Stellung des Druckkopfes, in der die Betätigungseinrichtungen zum Drucken der Punkte freigesetzt werden, geeignet sind. Genauer gesagt, erzeugt der Hauptregler 53 Druckkopf-Positionsregelsignale, d.h. Soll-Stellungssignale in Digitalform. Der Kippregler 55 setzt die Digitalsignale in Analogsignale um und legt die Analogsignale an den Kippkomparator 57. Der Kippkomparator 57 vergleicht das vom Kippregler 55 erzeugte Analogsignal (das Soll-Stellungssignal) mit dem vom Positionsfühler 51 erzeugten Ist-Stellungsignal. Als Folge erzeugt der Kippkomparator 57 ein Abweichsignal , das dem Schaltverstärker 59 zugeführt wird. Daraufhin legt der Schaltverstärker 59 einen Strom an die Elektromagnetspule 31 des Linearmotors 23, dessen Größe und Polarität die Elektromagnetspule 31 in eine Richtung bewegt, die den Druckkopf 11 in die Sollstellung bringt. Das bedeutet, daß der Schaltverstärker 59 die Elektromagnetspule 31 des Linearmotors 23 mit einem Korrekturstrom beaufschaltet. In gleicher Weise erhält der Druckhammerauslöseregler 61 Digitalsignale vom Hauptregler 53 mit der Stellung des Druckkopfes 11, in der die Druckhämmer gesetzt werden sollen. Entsprechend wird ein Analogsignal erzeugt. Dieses Analogsignal durchläuft einen Vorlaufkreis, und zwar bevor es mit dem Ist-Stellungsignal im Druckhammerauslösekomparator 63 verglichen wird. Wenn der Druckkopf 11 die Stellung erreicht, in der die Druckbetätigungseinrichtungen erregt werden sollen, dann erzeugt der Druckhammerauslösekomparator 63 einen Auslöseimpuls. Der Auslöseimpuls ermöglicht es dem Druckhammerauslösekreis 65, den entsprechenden Betätigigungseinrichtungen Betätigungssignale zu übertragen. Genauer gesagt erhält der Druckhammerauslösekreis 65 neben dem Auslöseimpuls Signale, die anzeigen, welche der (z.B. 66) Betätigungseinrichtungen erregt werden sollen, wenn die Stellung erreicht wird, die durch die Stellung der vom Hauptregler 53 erzeugten Regelsignale bestimmt und durch den Druckhammerauslöseregler 61 umgesetzt wird. Bewirkt durch den Vorlaufkreis tritt der Auslöseimpuls ein, ehe die Punktdruckstellung erreicht ist. Die Vorlaufzeit wird so gewählt, daß sie der Zeit entspricht, die die Punktdruckelemente benötigen, um aus ihrer Ruhestellung in die Punktdruckstellung auf dem Aufzeichnungsträger 21 zu gelangen. Welche der Betätigungseinrichtungen als erste bestromt werden sollen, hängt natürlich von der Art der Zeichen oder des zu schaffenden Bildes ab. Die Auswahl der zu betätigenden Einrichtungen erfolgt durch den Hauptregler 53 oder eine andere Datenquelle, z.B. einen Zeichengenerator. Ungeachtet der Auslöseinformationsquelle werden die entsprechenden Betätigungseinrichtungen erst dann erregt, wenn der Druckhammerauslösekomparator 63 einen Auslöseimpuls erzeugt. Zusammengefaßt kann gesagt werden, daß der Druckhammerauslösekomparator 63 ein Signal erzeugt, das lediglich anzeigt, daß sich der Druckkopf 11 in der Stellung befindet, in der die Betätigungseinrichtungen für die Druckpunktelemente bestromt werden sollen - jedoch nicht, welche Druckpunktelemente abgeschossen werden müssen.
  • Fig. 4 stellt ein detailliertes Blockschema der wesentlichsten Bauteile des Schwingmechanismus' dar, das in Fig. 3 gezeigt ist. Wie aus Fig. 4 ersichtlich ist, umfaßt der Positionsfühler 51 vorzugsweise zwei Signalverstärker, nämlich A1 und A2; vier Operationsverstärker, nämlich OA1, OA2, OA3 und OA4; eine Lichtquelle L (lichtemittierende Diode); zwei fotoelektrische Zellen A und B und einen Schieber V mit zwei Fenstern W1 und W2. Der Schieber V ist mit der Elektromagnetspule 31 des Linearmotors 23 durch eine gestrichelte Linie verbunden, die anzeigt, daß der Schieber V sich mit der Elektromagnetspule 31 bewegt und somit die Stellung des Schiebers V der Stellung des Druckkopfes 11 folgt. Die Lichtquelle L, der Schieber V und die fotoelektrischen Zellen A und B sind alle so positioniert, daß Licht von der Lichtquelle L durch die Fenster W1 und W2 strahlt und auf die Lichtdetektorflächen der fotoelektrischen Zellen A und B trifft. Anders ausgedrückt liegen die Fenster W1 und W2 zwischen der Lichtquelle L und den fotoelektrischen Zellen A und B, so daß ein Fenster, nämlich Wl, die auf die lichtempfindliche Fläche der fotoelektrischen Zelle A auftreffende Lichtmenge regelt und das andere Fenster W2 die auf die lichtempfindliche Fläche der fotoelektrischen Zelle B auftreffende Lichtmenge regelt. Die fotoelektrischen Zellen sind länglich, von gleicher Größe und liegen parallel zueinander, wie aus Fig. 4 ersichtlich ist. Die Fenster W1, W2 sind gleichfalls länglich, von gleicher Größe und liegen parallel zueinander. Während die Fenster W1, W2 gleich groß sind, ist lediglich die Länge der Fenster W1, W2 die gleiche wie die Länge der fotoelektrischen Zellen A,B. Die Fenster W1, W2 sind etwas breiter als die fotoelektrischen Zellen A, B. Die Fenster W1, W2 sind auch gegeneinander versetzt und nicht seitlich ausgerichtet wie die fotoelektrischen Zellen A, B, so daß jedes Fenster W1, W2 am Ende des jeweils anderen Fensters beginnt und sich nach außen hin in entgegengesetzter Längsrichtung erstreckt.
  • Die Signalverstärker A1 und A2 sind jeweils mit einer der fotoelektrischen Zellen A und B verbunden. Die Signalverstärker A1 und A2 verstärken die von den fotoelektrischen Zellen erzeugten Signale. Der Operationsverstärker OA1 arbeitet als Differentialverstärker und erzeugt eine Ausgangsspannung, deren Größe der Differenz der Spannung der Signale entspricht, die an die invertierenden und nichtinvertierenden Ausgänge gelegt werden. Der Ausgang des Signalverstärkers A1 ist an den nichtinvertierenden Eingang des Differentialverstärkers OA1 und der Ausgang des Signalverstärkers A2 an den invertierenden Eingang des Differentialverstärkers OA1 gelegt. Demzufolge ist der Ausgang des Differentialverstärkers OA1 mathematisch gleich dem Wert der von der fotoelektrischen Zelle A erzeugten Spannung abzüglich des Wertes der von der fotoelektrischen Zelle B erzeugten Spannung (in Fig. 4, unterer linker Teil mit A-B bezeichnet).
  • Der Ausgang des Differentialverstärkers OA1 ist an einen Eingang des Kippkomparators 57 gelegt und an einen Eingang des Druckhammerauslösekomparators 63.
  • Der Summator 0A2 erzeugt eine Ausgangsspannung, deren Größe der Summe der an die beiden Eingänge gelegten Teilspannungen entspricht, wobei beide als nichtinvertierend zu bezeichnen sind. Die Differentialverstärker 0A3 und 0A4 sind Bestandteile des Positionsfühlers 51. Der Ausgang des Signalverstärkers A1 ist an den Eingang des Summators 0A2 gelegt und der Ausgang des Signalverstärkers A2 ist an den zweiten Eingang des Summators OA2 geschaltet. Der Ausgang des Summators 0A2 (mit A + B in Fig. 4 bezeichnet) ist an den invertierenden Eingang des Differentialverstärkers 0A3 gelegt. An dem nichtinvertierenden Eingang des Differentialverstärkers OA3 liegt eine Bezugsspannung VR. Somit bildet der Differentialverstärker OA3 einen Abgleichverstärker, der den Ausgang des Summators 0A2 auf eine geeignete Spannungshöhe anhebt oder absenkt. Der Ausgang des Differentialverstärkers 0A3 ist an den invertierenden Eingang des Differentialverstärkers OA4 gelegt. Die Basisspannungsquelle VB ist an den nichtinvertierenden Eingang des Differentialverstärkers OA4 gelegt. Der Ausgang des Differentialverstärkers OA4 liegt über die Lichtquelle L an Masse.
  • Wie ohne weiteres zu erkennen ist, handelt es sich bei dem von dem Summator OA2, den Differentialverstärkern OA3 und OA4 gebildeten Schaltkreis um eine Intensitätsregelung, die die von der Lichtquelle L erzeugte Beleuchtungsstärke so regelt, daß diese stets konstant ist. Dieser Regelkreis gleicht Schwankungen in der von der Lichtquelle L erzeugten Beleuchtungsstärke aus, wie auch Verstärkungsschwankungen, die gleichermaßen in den beiden fotoelektrischen Zellen A und B auftreten. Die beiden fotoelektrischen Zellen A und B sollten vorteilhafterweise identisch, d.h. aufeinander abgestimmt sein, so daß die meisten langfristigen Schwankungen gleich sind und durch den erläuterten Regelkreis aufgehoben werden. Die Abstimmung erfolgt am besten durch Aufbau der beiden fotoelektrischen Zellen auf der gleichen Platte und Dotieren der nebeneinanderliegenden Flächen der gemeinsamen Platte.
  • Der in Fig. 4 dargestellte Kippregler 55 enthält folgende Bauteile: Einen Zähler 71, eine Flipflop-Baugruppe 73, in der Daten vorübergehend gespeichert werden können, einen Nur-Lese-Speicher 75 (ROM) und einen Digital-Analog-Wandler 77. Der Hauptregler 53 erzeugt eine Vielzahl von Ausgangssignalen, die an den Kippregler 55 gelegt sind. Diese Regelsignale schließen Rückstellimpulse ein, die an den Rückstelleingang des Zählers 71 gelegt sind, ferner Kippimpulse, die an den Impulszählereingang des Zählers 71 gelegt sind und ein paralleles, ausgewähltes, digitales Kippprofilsignal, welches an den Signaleingang der Flipflop-Baugruppe 73, in der Daten vorübergehend gespeichert werden, gelegt ist. Der Eingang der Flipflop-Baugruppe 73 ist an den Ausgang einer der Stufen des Zählers 71 gelegt. Die Adresseingänge des Nur-Lese-Speichers 75 sind an die Parallelausgänge der Stufen des Zählers 71 gelegt und an den Ausgang der Flipflop-Baugruppe 73. Die Signalsausgänge des Nur-Lese-Speichers 75 sind an die Digitalsignaleingänge des Digital-Analog-Wandlers 77 gelegt. Der Analogausgang des Wandlers 77 liegt an dem Eingang des Kippkomparators 57, wie in Fig. 3 gezeigt und vorstehend beschrieben ist.
  • Immer, wenn während des Betriebes ein Rückstellimpuls eintritt, wird der Zähler 71 in die Ausgangsstellung (beispielsweise Null) zurückgestellt. Danach fährt der Zähler 71 bei jedem Impuls um 1 weiter, wenn vom Hauptregler 53 ein Kippimpuls erzeugt wird. Das ausgewählte, digitale Kippprofilsignal bestimmt das vom Druckkopf 11 zu befolgende Kippprofil während der Bewegung durch den Linearmotor 23. Anders ausgedrückt, erzeugt der Hauptregler 53 Kippprofil-Auswahlsignale, die das Profil (dreieckförmig, sinusförmig, sägezahnförmig und dgl.) bestimmen, das beim Hin- und Herbewegen des Druckkopfes 11 befolgt werden muß. In allen Fällen, in denen die entsprechende Stufe des Zählers 71 einen Impuls erzeugt, werden die ausgewählten Kippprofilsignale in die Flipflop-Baugruppe 73 hineingelesen und dort gespeichert. Der von dem Zähler 71 erzeugte Impuls kann beispielsweise eintreten, wenn der Zähler 71 auf Null zurückgestellt worden ist. Das in der Flipflop-Baugruppe 73 gespeicherte auswählbare Kippprofilsignal bildet in Verbindung mit den Zählerstufenausgangssignalen, die zu jedem Zeitpunkt an den Nur-Lese-Speicher 75 anzulegende Adresse. Da der Zähler 71 jedesmal weitergefahren wird, wenn vom Hauptregler 53 ein Kippimpuls erzeugt wird, so ändert sich die Nur-LeseSpeicheradresse in dem Maße, wie Kippimpulse vom Hauptregler 53 erzeugt werden. Somit steuert der Hauptregler 53 durch Regelung der Kippimpulsgeschwindigkeit auch die Geschwindigkeit der Nur-Lese-Speicher-Adressenänderung, wodurch wiederum die Geschwindigkeit der Änderung der Nur-Lese-Speicher-Ausgangssignale geregelt wird. Daraus ergibt sich, daß sowohl das Druckkopf-Kippprofil als auch die Geschwindigkeit mit der dem Kippprofil gefolgt wird, durch den Hauptregler 53 gesteuert werden. Das bedeutet, daß jedesmal, wenn sich die Nur-Lese-Speicheradresse ändert, ein anderes paralleles Digitalausgangssignal erzeugt wird. Die vom Nur-Lese-Speicher 75 erzeugten parallelen Digitalausgangssignale werden durch den Digital-Analog-Wandler 77 von der Digitalform in die Analogform umgesetzt. Somit ist das durch den Kippregler 55 an den Kippkomparator 57 angelegte Signal ein Analogsignal, dessen Form und Änderungsgeschwindigkeit durch die an dem Nur-Lese-Speicher 75 liegende Adresse bestimmt wird, die wiederum durch den Hauptregler 53 gesteuert ist.
  • Der Kippkomparator 57 weist einen Differentialverstärker OA5 auf. Der Ausgang des Differentialverstärkers 0A1 ist an den invertierenden Eingang des Differentialverstärkers 0A5 gelegt und der Ausgang des Digital-Analog-Wandlers 77 des Kippreglers 55 liegt an dem nichtinvertierenden Eingang des Differentialverstärkers 0A5. Der Differentialverstärker 0A5 vergleicht seine beiden Eingänge auf herkömmliche Weise und erzeugt ein entsprechendes Differentialausgangssignal.
  • Der Schaltverstärker 59 besteht aus folgenden Baugruppen: Aus zwei Differentialverstärkern OA6 und OA7, einem Filter 81, einen Strombegrenzer 83, einem Impulsbreitenmodulator 85, zwei PNP-Transistoren Ql und Q2, zwei NPN-Transistoren Q3 und Q4 und aus zwei Widerständen R1 und R2. Die Spannungsquelle +V ist über den Filter 81 jeweils mit den Emitteranschlüssen der Transistoren Q1 und Q2 verbunden sowie mit dem Spannungseingang des Strombegrenzers 83. Der Kollektor des Transistors Ql ist mit dem Kollektor Q3 verbunden und der Kollektor des Transistors Q2 mit dem Kollektor des Transistors Q4. Die Emitter der Transistoren Q3 und Q4 sind über die Widerstände Rl und R2 mit Masse verbunden. Der Abzweig zwischen den Transistoren Ql und Q3 liegt auf einer Seite der Elektromagnetspule 31 des Linearmotors 23 und der Abzweig zwischen den Transistoren Q2 und Q4 auf der anderen Seite der Elektromagnetspule 31. Der Ausgang des Differentialverstärkers 0A5 ist mit dem invertierenden Eingang des Differentialverstärkers OA6 verbunden. Der Abzweig zwischen dem Emitter des Transistors Q3 und des Widerstandes R1 ist mit dem invertierenden Eingang des Differentialverstärkers 0A7 verbunden und der Abzweig zwischen dem Emitter des Transistors Q4 und des Widerstandes R2 mit dem nichtinvertierenden Eingang des Differentialverstärkers OA7. Der Ausgang des Differentialverstärkers OA7 ist mit dem nichtinvertierenden Eingang des Differentialverstärkers 0A6 verbunden und mit dem Regeleingang des Strombegrenzers 83. Der Ausgang des Differentialverstärkers 0A6 ist mit dem Regeleingang des Impulsbreitenmodulators 85 verbunden und der Ausgang des Strombegrenzers 83 mit dem Abschaltregeleingang des Impulsbreitenmodulators 85. Der Impulsbreitenmodulator 85 erzeugt vier Ausgänge, von denen einer jeweils an der Basis der Transistoren Ql, Q2, Q3 und Q4 liegt.
  • Wie aus der vorhergehenden Beschreibung leicht zu erkennen ist, bilden die Transistoren Ql bis Q4 die Zweige eines Brückenschaltkreises, der die Polarität des Stromflusses durch die Elektromagnetspule 31 des Linearmotors 23 regelt. Anders ausgedrückt bilden die Transistoren Ql und Q4 sowie Q2 und Q3 Schalterpaare, die sich zu einem Zeitpunkt jeweils in entgegengesetzten Betriebszuständen befinden (d.h. die Transistoren Ql und Q4 sind eingeschaltet, wenn die Transistroen Q2 und Q3 ausgeschaltet sind und umgekehrt), es sei denn, daß alle vier Transistoren Ql bis Q4 ausgeschaltet sind. Wenn ein Transistorpaar, also Ql und Q4 eingeschaltet ist, so fließt Strom von der Spannungsquelle +V durch den Filter 81, durch den Transistor Ql, durch die Elektromagnetspule 31 (in einer bestimmten Richtung), dann durch den Transistor Q4 und schließlich durch den Widerstand R2 zur Masse. Für den Fall, daß das andere Transistorpaar Q2 bzw. Q3 eingeschaltet ist, fließt Strom von der Spannungsquelle +V durch den Filter 81, durch den Transistor Q2, durch die Elektromagnetspule 31 (jetzt in die entgegengesetzte Richtung), dann durch den Transistor Q3 und schließlich durch den Widerstand Rl zur Masse.
  • Die jeweils offenen bzw. geschlossenen Schaltzustände der Transistoren Ql bis Q4 werden durch die High-Low-Zustände der Ausgänge des Impulsbreitenmodulators 85 geregelt. Die HL-Zustände der Ausgänge des Impulsbreitenmodulators 85 werden ihrerseits durch die Polarität des Ausgangs des Differentialverstärkers OA6 geregelt. Für den Fall, daß der Ausgang des Differentialverstärkers OA6 positiv ist, sind die Ausgänge des Impulsbreitenmodulators 85 derartig geschaltet, daß ein Paar Transistoren (Ql und Q4 oder Q2 und Q3) eingeschaltet ist und das jeweils andere Paar ausgeschaltet ist. Für den Fall, daß demgegenüber der Ausgang des Differentialverstärkers 0A6 negativ geschaltet ist, sind die Ausgänge des Impulsbreitenmodulators 85 derart geschaltet, daß das zweite Paar der Transistoren eingeschaltet ist und das erste Paar ausgeschaltet.
  • Da die Polarität des Ausgangs des Differentialverstärkers 0A6 davon abhängt, ob das durch den Differentialverstärker 0A7 entwickelte Stromrückkopplungssignal (das durch die Differenz der der Spannungsabfälle an den Widerständen R1 und R2 bestimmt wird) größer oder kleiner ist als der Ausgang des Differentialverstärkers OA5, so bestimmt das Verhältnis zwischen diesen beiden Spannungen die Polarität des Stromflusses durch die Elektromagnetspule 31 des Linearmotors 23. Für den Fall, daß die Positionsabweichungsspannung, die am Ausgang des Differentialverstärkers OA5 eintritt, über der Spannung am Ausgang des Differentialverstärkers 0A7 liegt, ist die Stromflußrichtung so, daß die Elektromagnetspule 31 den Schieber V in eine Richtung treibt, die den Spannungswert A-B auf eine Weise verändert, daß sich der Ausgang des Differentialverstärkers 0A5 erhöht. Liegt demgegenüber die Positionsabweichungsspannung, die an Ausgang des Differentialverstärkers 0A5 auftritt, unter der Spannung am Ausgang des Differentialverstärkers 0A7, so ist die Stromfließrichtung so, daß die Spule den Schieber V (und somit den Druckkopf 11) in eine Richtung bewegt, daß sich der Spannungswert A-B in einer Weise ändert, bei der sich der Ausgangsimpuls am Differentialverstärker OA5 verringert.
  • Der Ausgang des Differentialverstärkers OA6 regelt jedoch nicht nur die Richtung des Stromflusses durch die Elektromagnetspule 31 in der gerade beschriebenen Weise, sondern auch die Größe des Stromflusses. Genauer gesagt, regelt die Größe des Ausgangs am Differentialverstärker OA6 die Breite der Schaltimpulse, die auf das eingeschaltete Transistorpaar gelegt werden. Da die Breite bzw. Einschaltzeit der Transistorschalter die Größe des an der Elektromagnetspule 31 liegenden Stromes bestimmt, regelt die Größe des Ausgangs am Differentialverstärker OA6 die Größe des an der Elektromagnetspule 31 liegenden Stromes. Der Strombegrenzer 83 ist vorgesehen, um die Strommenge, die an die Elektromagnetspule gelegt werden kann, maximal festzulegen, damit eine Zerstörung der Elektromagnetspule und/oder der Transistroen Q1 bis Q4 verhindert wird.
  • Der Druckhammerauslöseregler 61 besteht im wesentlichen aus folgenden Baugruppen: Aus der Flipflop-Baugruppe 91, in der Daten vorübergehend gespeichert werden können, und aus einem Digital-Analog-Wandler 93. Der Hauptregler 53 erzeugt parallel Digitalsignale, die die Druckhammerauslösestellungen anzeigen. Die Digitalsignale werden in der Flipflop-Baugruppe 91 eingelesen und dort gespeichert, und zwar immer wenn der Hauptregler 53 ein Speichersignal erzeugt. Der Digitalausgang der Flipflop-Baugruppe 91 ist an den Digitaleingang des Digital-Analog-Wandlers 93 gelegt und wird dort von Digital form in Analogform umgesetzt. Die Analogform der Druckhammerauslösepositionssignale sind an den zweiten Eingang des Druckhammerauslösekomparators 63 gelegt.
  • Der Druckhammerauslösekomparator 63 umfaßt folgende wesentlichen Elemente: Einen Führungskreis 95 und einen Differentialverstärker OAB. Die vom Positionsfühler 51 erzeugten Signale A-B sind über den Führungskreis 95 an den nichtinvertierenden Eingang des Differentialverstärkers OA8 gelegt. Die von dem Digital-Analog-Wandler 93 des Druckhammerauslösereglers 61 erzeugten Analogsignale sind an den invertierenden Eingang des Differentialverstärkers OA8 gelegt. Der Differentialverstärker 0A8 vergleicht durch Differenzierung seine beiden Eingangssignale und erzeugt ein anderes Ausgangssignal, was an den in Fig. 3 gezeigten und bereits beschriebenen Druckhammerauslösekreis 65 gelegt ist. Der Führungskreis 95 bildet einen Teil des Pfades für das Ist-Stellungssignal zum Ausgleich der Druckhammerflugzeit. Im praktischen Betrieb wird ein Zeitvorlauf des tatsächlichen Druckhammerstellungssignals mit einem Signal verglichen, das die gewünschte Druckhammerauslösestellung darstellt. Für den Fall, daß die beiden Signale übereinstimmen, ändert sich der Zustand des Ausgangs am Differentialverstärker OA8 und bildet einen Druckhammerauslöseimpuls für den Druckhammerauslösekreis 65.
  • Wie sich aus der vorstehenden Beschreibung ergibt, stellt die Erfindung einen hochgenauen Schwingmechanismus dar, der sich für Matrix-Zeilendrucker besonders eignet und die Bewegung des Druckkopfes 11 sowie die Auslösung der Druckbetätigungseinrichtungen genau steuert. Die Erfindung benutzt ein relativ starres abgestimmtes Biegeelementsystem, das in der Nähe seiner Resonanz- schwingfrequenz arbeitet sowie einen relativ starken Linearmotor mit einer schwingenden Elektromagnetspule, um die Druckkopf-Bewegungszeit kleinzuhalten. Die Erfindung eignet sich somit ideal zum Einsatz in Matrix-Zeilendruckern, die mit hoher Geschwindigkeit arbeiten. Vorzugsweise wird die Elektromagnetspule 31 voll umgesteuert, wenn die letzte Punktstellung erreicht ist. Die volle Erregung des Linearmotors 23 in Verbindung mit der in den Biegeelementen 13, 15 bzw. 27, 29 gespeicherten Energie führt zu extrem kurzen Zykluszeiten. Bei einer Ausführungsform der Erfindung beträgt die Zykluszeit 3 Millisekunden. Im Gegensatz zu der Ausführungsart, wie sie in der USA-Patentschrift 4,180,766 beschrieben ist, die mehrere Zyklen erfordert, bevor die Druckkopfbewegung auf die Betriebsgeschwindigkeit ansteigt, erhöht sich bei der Ausführungsform gemäß der vorliegenden Erfindung die Druckkopfbewegung innerhalb eines Viertels auf die Betriebsgeschwindigkeit.
  • Die vorliegende Beschreibung bezieht sich auf eine bevorzugte Ausführung der Erfindung. Es sind jedoch verschiedene andere Ausführungsformen möglich, ohne vom Prinzip und Umfang der Erfindung abzuweichen. Daraus ergibt sich, daß innerhalb der bestehenden Patentansprüche die Erfindung auch in anderer Weise als hier spezifisch beschrieben, ausgeführt werden kann.

Claims (12)

1. Schwingmechanismus für geradlinige, gleichförmige Hin- und Herbewegungen eines Trägers oder dgl. mittels eines Linearantriebs, insbesondere eines Trägers für eine Matrixdruckeinrichtung, die in Zeilenrichtung vor einem senkrecht zur Zeilenrichtung vorschiebbaren Aufzeichnungsträger bewegbar ist,
dadurch gekennzeichnet,
daß der Träger (11) auf in einem Rahmen (16) eingespannten, parallel verlaufenden Biegeelementen (13,15) abgestützt ist, daß der Linearantrieb aus einem elektrisch angetriebenen Linearmotor (23) besteht, der in einem Gehäuse (25) angeordnet ist, daß der Linearmotor (23) Magnetmittel und eine Elektromagnetspule (31) aufweist, deren Polarität veränderbar ist, daß das Gehäuse (25) auf separate, ebenfalls eingespannte, parallel verlaufende Biegeelemente (27,29) gestützt ist, daß die Resonanzschwingfrequenz der Kombination aus dem Linearmotor (23) und den Gehäuse-Biegeelementen (27,29) auf die Resonanzschwingfrequenz der Kombination aus dem Träger (11) und den Biegeelementen (13,15) des Trägers (11) abgestimmt ist, wobei zwischen der Elektromagnetspule (31) und dem Träger (11) ein Verbindungsglied (33) vorgesehen ist und daß die Elektromagnetspule (31) an Stromversorgungsmittel und Regelmittel für die Polarität und Größe des Stromflusses elektrisch angeschlossen ist.
2. Schwingmechanismus nach Anspruch 1,
dadurch gekennzeichnet,
daß die Federkonstante der den Träger (11) stützenden Biegeelemente (13,15) derart gewählt ist, daß die Resonanzschwingfrequenz der Kombination aus dem Träger (11) und den Biegeelementen (13,15) weitestgehend mit der Hin- und Herbewegungsfrequenz übereinstimmt.
3. Schwingmechanismus nach den Ansprüchen 1 und 2,
dadurch gekennzeichnet,
daß die Regelmittel für die Polarität und Größe des Stromflusses in der Elektromagnetspule (31) aus einem Positionsfühler (51) für die Stellung des Trägers (11), aus Mitteln für die kontinuierliche Erzeugung eines Ist-Stellungssignals, aus Mitteln für die kontinuierliche Erzeugung eines Soll-Stellungssignals, aus Mitteln für den Vergleich der Ist-Stellungssignale mit den Soll- Stellungssignalen, aus Mitteln für die Erzeugung von Abweichungssignalen von der Größe der Differenz zwischen Ist- und Soll-Werten und aus Mitteln für die Regelung des Stromflusses in der Elektromagnetspule (31) nach Polarität und Größe bestehen.
4. Schwingmechanismus nach den Ansprüchen 1 bis 3,
dadurch gekennzeichnet,
daß die Mittel für die kontinuierliche Erzeugung eines Soll-Stellungssignals einen Hauptregler (53) zur Erzeugung der Soll-Stellungssignale in Digitalform sowie einen Digital-Analog-Wandler (77) aufweisen und daß die in Analogform vorliegenden Ist-Stellungssignale zusammen mit den Analog-Soll-Stellungssignalen in Analogsignalmitteln verglichen werden.
5. Schwingmechanismus nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet,
daß die Mittel für die Regelung des Stromflusses in der Elektromagnetspule (31) einen Impulsbreiten-Modulator (85) einschließen.
6. Schwingmechanismus nach Anspruch 5,
dadurch gekennzeichnet,
daß die Mittel für die Regelung des Stromflusses in der Elektromagnetspule (31) einen Brückenschaltkreis aufweisen, der vier Schalter (Q1,Q2,Q3,Q4) enthält, wobei jeweils ein Schalter in einem Brückenzweig und die Elektromagnetspule (31) in der Brückendiagonalen angeordnet sind und ein Brückenzweig an die Stromquelle (+V) angeschlossen ist, und daß der Impulsbreiten-Modulator (85) vier Ausgangsregelsignale an den vier Schaltern (Ql bis Q4) erzeugt.
7. Schwingmechanismus nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet,
daß der Positionsfühler (51) für die Stellung des Trägers (11) eine Lichtquelle (L) aufweist, außerdem ein Paar der Lichtquelle (L) zugeordnete Fotozellen (A,B) und einen Schieber (V), der ein Fensterpaar (W1,W2) besitzt und der mit dem Träger (11) verbunden ist.
8. Schwingmechanismus nach Anspruch 7,
dadurch gekennzeichnet,
daß die Fotozellen (A,B) aus länglich ausgebildeten, etwa gleichgroßen fotoelektrischen Zellen bestehen.
9. Schwingmechanismus nach den Ansprüchen 7 und 8,
dadurch gekennzeichnet,
daß die Fenster (W1,W2) in den Fotozellen (A,B) etwa gleichgroß, von länglicher Form und in Längsrichtung gegeneinander versetzt angeordnet sind.
10. Schwingmechanismus nach den Ansprüchen 7 bis 9,
dadurch gekennzeichnet,
daß die Fenster (W1,W2) sich in Richtung der länglich geformten Fotozellen (A,B) erstrecken.
11. Schwingmechanismus nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet,
daß der Positionsfühler (51) einen Differentialkomparator aufweist, der an die fotoelektrischen Zellen (A,B) angeschlossen ist, wobei das Ausgangssignal entsprechend der Spannungsdifferenz das Ist-Stellungssignal bildet.
12. Schwingmechanismus nach einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet,
daß der Positionsfühler (51) mit einem Lichtregelkreis verbunden ist, der an die Ausgänge der fotoelektrischen Zellen (A,B) und an die Lichtquelle (L) angeschlossen ist.
EP83104110A 1982-05-03 1983-04-27 Schwingmechanismus für geradlinige gleichförmige Hin- und Herbewegungen eines Trägers oder dgl. Expired EP0093389B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US373802 1982-05-03
US06/373,802 US4461984A (en) 1982-05-03 1982-05-03 Linear motor shuttling system

Publications (2)

Publication Number Publication Date
EP0093389A1 true EP0093389A1 (de) 1983-11-09
EP0093389B1 EP0093389B1 (de) 1986-01-29

Family

ID=23473934

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83104110A Expired EP0093389B1 (de) 1982-05-03 1983-04-27 Schwingmechanismus für geradlinige gleichförmige Hin- und Herbewegungen eines Trägers oder dgl.

Country Status (5)

Country Link
US (1) US4461984A (de)
EP (1) EP0093389B1 (de)
JP (1) JPS58192461A (de)
CA (1) CA1196528A (de)
DE (1) DE3361982D1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4637307A (en) * 1983-09-13 1987-01-20 Genicom Corporation Automatic mechanical resonant frequency detector and driver for shuttle printer mechanism
US4573363A (en) * 1983-10-17 1986-03-04 Mannesmann Tally Corporation Vibration isolating coupling
US4599007A (en) * 1984-10-09 1986-07-08 Hossein Khorsand Reciprocating drive mechanism
US4683818A (en) * 1984-10-25 1987-08-04 Genicom Corporation Print element control
US4772838A (en) * 1986-06-20 1988-09-20 North American Philips Corporation Tri-state switching controller for reciprocating linear motors
US4698576A (en) * 1986-06-20 1987-10-06 North American Philips Corporation Tri-state switching controller for reciprocating linear motors
EP0352397B1 (de) * 1988-07-26 1993-01-07 MANNESMANN Aktiengesellschaft Vorrichtung zum Regeln der Geschwindigkeit von pulsbreitenmodulierten Elektromotoren, insbesondere von Gleichstrommotoren
US4987526A (en) * 1989-02-02 1991-01-22 Massachusetts Institute Of Technology System to provide high speed, high accuracy motion
JPH0470642A (ja) * 1990-07-06 1992-03-05 Konica Corp 光学系制御機構
JPH04312868A (ja) * 1991-04-12 1992-11-04 Tokyo Electric Co Ltd プリンタのキャリア駆動方法
JP2948419B2 (ja) * 1992-07-27 1999-09-13 富士通株式会社 ワイヤドット印字ヘッド
US5551304A (en) * 1995-10-27 1996-09-03 Motorola, Inc. Method for setting sensing polarity of a sensor device
US6262553B1 (en) * 1999-04-13 2001-07-17 M. P. Menze Research & Development Inc. Control for material spreaders
US6609781B2 (en) 2000-12-13 2003-08-26 Lexmark International, Inc. Printer system with encoder filtering arrangement and method for high frequency error reduction
US6630825B2 (en) * 2001-08-23 2003-10-07 Lake Shore Cryotronics, Inc. Electromechanical drive for magnetometers
US6885116B2 (en) * 2002-05-06 2005-04-26 Jeffrey G. Knirck Moving coil linear motor positioning stage with a concentric aperture
FR2854959B1 (fr) * 2003-05-16 2005-07-08 Eastman Kodak Co Dispositif d'exposition pour l'ecriture de donnees mixtes sur un support photosensible
US8895239B2 (en) * 2006-09-20 2014-11-25 American Sterilizer Company Genetically engineered biological indicator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911814A (en) * 1974-05-15 1975-10-14 Data Products Corp Hammer bank move control system
US4180766A (en) * 1977-02-04 1979-12-25 Printronix, Inc. Reciprocating linear drive mechanism
DE2646740B2 (de) * 1976-10-15 1980-02-28 Oki Electric Industry Co., Ltd., Tokio Schnelldrucker
DE2945838A1 (de) * 1978-12-18 1980-07-03 Printronix Inc Schnelldrucker
US4306497A (en) * 1978-07-14 1981-12-22 Nippon Electric Company, Ltd. Dot matrix type printer
EP0044415A2 (de) * 1980-07-17 1982-01-27 Mannesmann Tally Corporation Pendelmechanismus für geradlinige Hin- und Herbewegungen eines Matrixdrucker-Schlittens bzw.-Wagens

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1672807A (en) * 1926-07-01 1928-06-05 Etzel Heinrich Driving mechanism for oscillating conveyers
US3376578A (en) * 1966-05-31 1968-04-02 Bruce A. Sawyer Magnetic positioning device
US3486094A (en) * 1966-11-02 1969-12-23 Atomic Energy Commission Circuitry for obtaining precisely controllable motion in a moving coil actuator
US3696204A (en) * 1970-05-28 1972-10-03 Teletype Corp Type carrier assembly
US3625142A (en) * 1970-06-10 1971-12-07 Datascript Terminal Equipment High-speed printing apparatus having slidably mounted character-forming elements forming a dot matrix
FR2135998A5 (de) * 1972-03-08 1972-12-22 Commissariat Energie Atomique
DE2309750B2 (de) * 1973-02-27 1976-08-05 Siemens AG, 1000 Berlin und 8000 München Vorrichtung zum antrieb von schreiboder druckerwagen in datenschreibern
US3917987A (en) * 1973-12-28 1975-11-04 Fujitsu Ltd Voice coil motor control system
US4169234A (en) * 1975-02-14 1979-09-25 Yonkers Edward H Reciprocating motor
US4325016A (en) * 1979-06-15 1982-04-13 Nippon Gakki Seizo Kabushiki Kaisha Device for controlling pickup arm movement in linear tracking pickup arm apparatus
JPS5662179A (en) * 1979-10-26 1981-05-27 Canon Inc Recording device
US4359289A (en) * 1979-11-20 1982-11-16 Printronix, Inc. Counterbalanced bidirectional shuttle drive having linear motor
US4292576A (en) * 1980-02-29 1981-09-29 The United States Of America As Represented By The Secretary Of The Air Force Mask-slice alignment method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911814A (en) * 1974-05-15 1975-10-14 Data Products Corp Hammer bank move control system
DE2646740B2 (de) * 1976-10-15 1980-02-28 Oki Electric Industry Co., Ltd., Tokio Schnelldrucker
US4180766A (en) * 1977-02-04 1979-12-25 Printronix, Inc. Reciprocating linear drive mechanism
US4306497A (en) * 1978-07-14 1981-12-22 Nippon Electric Company, Ltd. Dot matrix type printer
DE2945838A1 (de) * 1978-12-18 1980-07-03 Printronix Inc Schnelldrucker
EP0044415A2 (de) * 1980-07-17 1982-01-27 Mannesmann Tally Corporation Pendelmechanismus für geradlinige Hin- und Herbewegungen eines Matrixdrucker-Schlittens bzw.-Wagens

Also Published As

Publication number Publication date
DE3361982D1 (en) 1986-03-13
CA1196528A (en) 1985-11-12
JPS58192461A (ja) 1983-11-09
EP0093389B1 (de) 1986-01-29
US4461984A (en) 1984-07-24

Similar Documents

Publication Publication Date Title
EP0093389B1 (de) Schwingmechanismus für geradlinige gleichförmige Hin- und Herbewegungen eines Trägers oder dgl.
DE2715258C2 (de) Läufersteuerung für einen Serien-Zeilendrucker
DE2321675A1 (de) Hochgeschwindigkeitsdrucker
DE3033911C2 (de) Punktzeilendrucker
DE2710524A1 (de) Steuerung fuer die seitliche stellung von schreibkoepfen bei datenschreibern
DE2341754A1 (de) Antrieb fuer den druckkopf einer druckmaschine
WO1988008792A1 (en) Matrix printing head with swinging-armature magnets
DE1563610A1 (de) Elektromagnetische Stelleinrichtung
DE2901215A1 (de) Druckvorrichtung zum drucken von zeichen in punktmatrixform
DE2213198B2 (de) Vollelektronische einrichtung zum steuern eines punktschrift-schnelldruckers, unter verwendung eines permutationscodesignals
DE2521720C3 (de) Schaltungsanordnung zur Steuerung einer Hammerbank eines Anschlagdruckers
DE2507637A1 (de) Verschluss fuer eine kamera
DE3000595C2 (de)
DE3490330T1 (de) Druckhammerbank
DE2051838C3 (de) Verfahren zum Lichtsetzen und Einrichtung zur Durchführung dieses Verfahrens
DE3750144T2 (de) Schrittmotor-Antriebssequenzen.
DE3228546A1 (de) Druckwerk
DE1165665B (de) Vorrichtung zum wahlweisen Aufnehmen oder Auslesen von Signalen auf oder von einem Traeger mit einer Vielzahl von Signalspuren
DD142316A1 (de) Druckmagneteinheit fuer den typendruck in seriendruckwerken
DE2115956A1 (de) Druckkopf
DE2445279A1 (de) Druckvorrichtung mit mehreren einzeln elektromagnetisch einstellbaren zeichentraegern
EP0239077B1 (de) Drucker, insbesondere Matrixzeilendrucker
EP0463235B1 (de) Schreibeinrichtung zum Aufzeichnen von Messwerten, insbesondere von alphanumerischen Daten
DE2703115A1 (de) Lichtsatzmaschine und individuelles verfahren zum programmieren eines steuersystems fuer die optischen elemente einer einzelnen lichtsatzmaschine
DE2832954A1 (de) Schreibmaschine, bei der alle wesentlichen, energieverbrauchenden funktionen durch elektrische energie ausgefuehrt werden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19830830

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL SE

ITCL It: translation for ep claims filed

Representative=s name: ING. A. GIAMBROCONO & C. S.R.L.

TCNL Nl: translation of patent claims filed
EL Fr: translation of claims filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL SE

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3361982

Country of ref document: DE

Date of ref document: 19860313

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930315

Year of fee payment: 11

Ref country code: CH

Payment date: 19930315

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930317

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930322

Year of fee payment: 11

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930430

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930601

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940430

Ref country code: CH

Effective date: 19940430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19941101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19941229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950103

EUG Se: european patent has lapsed

Ref document number: 83104110.8

Effective date: 19941110

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST