EP0090212B1 - Vorrichtung zum selbsttätigen Einstellen des optimalen Arbeitspunktes einer Gleichspannungsquelle - Google Patents

Vorrichtung zum selbsttätigen Einstellen des optimalen Arbeitspunktes einer Gleichspannungsquelle Download PDF

Info

Publication number
EP0090212B1
EP0090212B1 EP83102274A EP83102274A EP0090212B1 EP 0090212 B1 EP0090212 B1 EP 0090212B1 EP 83102274 A EP83102274 A EP 83102274A EP 83102274 A EP83102274 A EP 83102274A EP 0090212 B1 EP0090212 B1 EP 0090212B1
Authority
EP
European Patent Office
Prior art keywords
power
voltage
sign
theoretical value
voltage source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83102274A
Other languages
English (en)
French (fr)
Other versions
EP0090212A3 (en
EP0090212A2 (de
Inventor
Franz Dipl.-Ing. Assbeck
Volker Dipl.-Ing. Fleckenstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT83102274T priority Critical patent/ATE31983T1/de
Publication of EP0090212A2 publication Critical patent/EP0090212A2/de
Publication of EP0090212A3 publication Critical patent/EP0090212A3/de
Application granted granted Critical
Publication of EP0090212B1 publication Critical patent/EP0090212B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/906Solar cell systems

Definitions

  • the invention relates to a device for automatically setting the optimum working point of a DC voltage source with an internal resistance, in particular a solar generator.
  • a device for automatically setting the optimum working point of a DC voltage source with an internal resistance, in particular a solar generator is already known from EP-A-0 029 743.
  • Such a DC voltage source can e.g. B. an accumulator, a thermocouple, a fuel cell or in particular a solar generator.
  • a DC voltage source can e.g. B. an accumulator, a thermocouple, a fuel cell or in particular a solar generator.
  • these DC voltage sources have in common that between their two electrical state variables (output voltage and output current) there is a certain physical relationship, which is usually described in the equivalent circuit diagram by an internal resistance.
  • a direct current controller a voltage converter or another matching converter, which is fed to a downstream load
  • the maximum output voltage that can be achieved per se drops the more current is drawn via the voltage converter.
  • the voltage converter is controlled or regulated in such a way that a specific output voltage of the DC voltage source is maintained, the current which can be drawn is thus fixed.
  • the voltage source has only a single electrical degree of freedom, which can be specified as the operating point of the voltage source or the adapter. The power output of such a voltage source is determined by a function of the corresponding degree of freedom, i. H.
  • maximum power point "MPP"
  • MPP maximum power point
  • the system Especially for voltage sources whose primary energy is free (e.g. solar energy) or practically free compared to the installation effort, it is desirable for the system to be used optimally to keep the system running at full load, i.e. always work at the MPP to get as much electrical energy from the DC voltage source into a load, e.g. B. feed an energy storage.
  • the DC voltage transformer can also serve as a charge controller for an accumulator and the accumulator can be followed by a controllable inverter which, for. B. the busbar of an "island network", d. H. a remote group of consumers not supplied by a "public utility grid.
  • controllable inverter generally: a controllable power transformer
  • DC voltage transformer to convert the primary energy consumed by the DC voltage source into another electrical energy in a controllable manner
  • AC consumers such as feed pumps
  • the preamble of claim 1 takes this prior art into account.
  • the power output by the panel to a consumer is set by controlling an inverter in particular so that it becomes maximum.
  • a so-called “maximum power tracker” loads the consumer circuit with a disturbance current ⁇ I at fixed time intervals and evaluates the panel output voltage change AU that occurs.
  • the "maximum power point” itself is defined as the point on the panel U / I characteristic curve with the slope minus one, which is mapped into a reference voltage derived from the panel output voltage itself.
  • a comparison The differential voltage change d ⁇ U / d ⁇ l resulting from the interference current feed-in with the reference voltage enables the operating point to be shifted in the direction of the "maximum power point".
  • a sinusoidal search signal is superimposed on the panel output current in order to optimize the panel operating point.
  • the phase position of the first derivative of the panel output power relative to the search current is evaluated in a demodulator and it is determined whether the current operating point is to the left or right of the "maximum power point".
  • the pulse duty factor of a transistor used as a controllable power transformer is set by the demodulator output signal such that the panel operating point shifts in the direction of the "maximum power point".
  • a method described in FR-A-2 175 653 uses even more complicated relationships to define and set the "maximum power point".
  • the invention has for its object to provide a further device for automatically setting the optimal operating point of a DC voltage source, especially a solar generator.
  • the device according to the invention enables, in addition to practical implementations which are carried out entirely in analog technology, embodiments in which digital and / or program-controlled components can also be used, in particular in the control part.
  • the starting point is accordingly a DC voltage source, in particular a solar generator, which is followed by a controllable power transformer for feeding a consumer.
  • the transmitter is controlled or regulated so that its power consumption, i. H. the electrical power output by the panel is maximum.
  • a state variable that determines the operating point of the panel i.e. the panel voltage or panel current
  • a corresponding setpoint is specified for a state variable that determines the operating point of the panel, i.e. the panel voltage or panel current.
  • An additional value in the sense of a disturbance variable is temporarily applied to this setpoint at certain time intervals and the differential change in the panel power caused thereby is recorded. After the activation of the additional value (removal of the disturbance variable), the setpoint is corrected, i. H.
  • the sign of this setpoint change being chosen to be the same as the sign of the additional value if a positive differential change in the panel power was determined during the connection, i. H. the time derivative of the measured power value caused by the activation is positive.
  • the direction of correction (the sign of the change in the setpoint) must be selected opposite the sign of the additional setpoint. So there is a setpoint correction that always leads to an operating point with higher panel performance until the MPP is exceeded. From then on, the further corrections cause the operating point to oscillate around the MPP.
  • the Störstednamplituden can be selected so low here that she only 1 0 / 0th preferably less than 1%. Cause a change in the panel performance, i.e. practically no longer disturb the actual panel control.
  • the amount and sign of the additional setpoint are given the same and fixed for all connections.
  • the amount of the setpoint change itself can be determined as a function of the respective change in the panel power caused by the activation of the additional setpoint, whereby the working point is initially quickly approximated to the MPP in the event of large deviations between the maximum power point and the respective working point.
  • the method can be carried out even more simply if the amount of the setpoint changes for all setpoint changes is given in the same and fixed manner, in particular the amount of the setpoint changes can be chosen to be smaller than the amount of the additional setpoint.
  • the change in the output panel power is preferably determined by differentially evaluating the steady state of the panel power before and after the additional setpoint is applied.
  • the actual power value (for example, slightly smoothed) that is in the stationary state is detected before a disturbance variable feed-in, immediately before the start of the disturbance variable feed-in into a memory, which places this temporarily stored actual value at the input of a differentiating element until, when the disturbance variable is applied, a steady-state actual power value is set, which then inputs the differentiating element instead of temporarily stored actual power value is switched on.
  • an unchangeable setpoint can be specified as soon as the power output falls below a set minimum value.
  • FIG. 1 shows the course of the current-voltage characteristic of a solar generator and the dependence of the panel power on the degree of freedom of the arrangement.
  • FIG. 2 shows a device for carrying out the method and
  • FIG. 3 shows the most important part of an evaluation circuit for detecting the stationary power change.
  • FIG. 4 shows the control of the individual switching elements of the device.
  • the relationship between the output voltage U (panel voltage) of a solar generator and the current I drawn (panel current) is plotted in FIG. Furthermore, the solar power P, ie the product of the panel voltage and panel current, is shown.
  • the solar power P has a pronounced maximum P opt , which on the U / I state diagram corresponds to the values U opt and I opt of the two electrical state variables U and I.
  • the diagrams shown, which differ slightly even for different panels of the same type, are measured at an irradiation of 930 W / m 2 , an ambient temperature of 24 ° C and a panel temperature of 36 ° C. If these external, non-electrical parameters are changed, different diagrams result.
  • the optimum operating point which is given by U opt and l opt , is set automatically.
  • a solar generator 1 feeds a consumer 3 via an electrical power transformer 2.
  • the power transformer is designed as a DC controller and serves as a charge controller of a battery 3.
  • the terminal voltage of the battery changes only very slightly during a disturbance variable connection, so that the electrical power supplied to the battery and which is taken from the solar generator via the DC controller is practically proportional is the charging current of the battery, which can be measured on the measuring cell 4.
  • the input voltage of the battery is also used to supply the operating voltage for the control unit 6 of the DC chopper and the further control devices via a power supply unit 5.
  • the aim of the control according to the invention is to regulate the state variable U (in this case, the panel voltage) as the reference variable of the arrangement to the optimum working point U o t , which is done by changing the pulse-pause ratio of the switch contained in the direct current controller 2.
  • U the state variable
  • U o t the current flowing through the actuator 2 as the manipulated variable of the system is changed in such a way that it corresponds to the desired working point.
  • the setpoint generator (7) advantageously provides a basic setpoint Ü o and a correction setpoint U corr . which are put together to the Sollwe o + U corr . It is initially assumed that the device operates at an operating point which deviates from the optimal operating point (maximum power point MPP), which is given by the voltage o and is permanently set on an adjusting device 7a in the setpoint generator. The arrangement can be operated in a controlled manner, but regulation can also be provided. So z. B. on a comparator 8, the control deviation between the target value U o and an actual value U tapped off by means of a corresponding measuring element 9, are formed for the panel voltage in order to obtain the control variable of the control device 6 of the actuator 2.
  • a time stage 10 now generates a disturbance variable (additional setpoint AU '), which is temporarily applied to the setpoint U o set on the setpoint generator, for example as an interference voltage surge.
  • B. 8 at comparator If the sign of the additional setpoint .DELTA.U 'is negative, it leads in the example shown in Figure 1 case U o ⁇ U o p t to a decrease in tillbebenen of solar generator panel power P.
  • the setpoint value U o supplied by the setpoint generator is then changed.
  • the setpoint generator 7 advantageously an integrator 7b, to which two antiparallel Zener diodes are connected in parallel to limit the voltage.
  • the evaluation circuit 11 contains at its output a limit indicator 12, which provides the sign of the power change in the form of a digital signal and in a memory, for. B. a flip-flop circuit 13 inputs.
  • the memory output is connected in such a way that a positive or negative voltage ⁇ U 0 (corresponding to an increase or decrease in the power) of a constant amount is provided in accordance with the stored signal.
  • the time stage 10 closes a switch 14 between the memory 13 and the integrator 7, so that the integrator is now briefly connected to the voltage provided by the memory as an input voltage with a sign corresponding to the sign of the differential power change.
  • the setpoint U o is thus changed by a constant, fixed, predetermined correction amount ⁇ U o after each connection.
  • ⁇ U o a constant, fixed, predetermined correction amount
  • the sign and amount of the additional setpoint value ⁇ U ' is fixed in the given case by the time step 10. Because of the highly sensitive differential detection of the change in performance can .DELTA.U selected 'so that caused by the feed-forward change in the output voltage U o 1% to a maximum of 1%, the voltage U o p t in the MPP.
  • the setpoint change ⁇ U o is determined by the closing time of the switch 14 and is advantageously chosen such that ⁇ U o is somewhat smaller than ⁇ U '.
  • the time stage 10 also controls a switching device consisting of two switches 16a and 16b within the evaluation circuit 11.
  • a current measuring element is sufficient for the evaluation circuit 11 to detect the power output of the DC voltage source, since the terminal voltage of the consumer is therefore the battery input voltage when open - And switching off the disturbance variable remains practically constant and a slow change in the terminal voltage dependent on the state of charge of the battery is of no importance for the differential power change.
  • current and voltage must be recorded and multiplied with one another in order to record the power or its differential change.
  • the switch 16a which is opened immediately before or at least when the additional setpoint starts to be connected, connects the measuring element 4 (or a downstream actual value smoothing element 17 with a small time constant) to a spoke 18a, in which the one measured before the activation is then connected value of the power output belonging to a steady state of the panel is stored. Even before the end of the connection, as soon as the arrangement has settled to a new stationary value belonging to U o + ⁇ U ', the switch 16a is closed again and the memory 18a contains the new stationary measured value.
  • a differentiating element 18c is connected downstream of the memory, wherein the memory and differentiating element can be combined to form a common differentiating device 18, which is shown in FIG. 3.
  • Memory 18a and switch 16a cooperate in such a way that at the input of the differentiator 18c the respective power measurement value before opening the switch, with the switch open the measured value measured and stored immediately before the disturbance variable connection and after the switch is closed again the measured value, now at U o + ⁇ U 'belonging measured value are supplied. Since these measured values are obtained in each case in steady-state conditions, the differentiator 18c thus only records the change in the steady-state power P stat caused by the disturbance variable, ie its change ⁇ P stat . This can e.g. B. are formed by means 18b and is present after the switch 16a is closed again as a surge and is differentiated. The differential change in the steady-state power output of the DC voltage is therefore present at the output of the differentiating element 18c.
  • the capacitor 31 connected upstream of an operational amplifier 30 acts as a memory which charges when the highly insulating switch 16a is closed in accordance with the input signal applied and retains this charge virtually unchanged until the switch 16a is closed again.
  • the operational amplifier 30 is designed via the capacitance 31 and the resistor 34 as a differentiator and via the RC circuit 33, 34 as additional smoothing.
  • the switch 16b which is actuated and actuated together with the switch 16a via a control signal S1, prevents currents from flowing out of the differentiating device 18 into a downstream smoothing element 18d during the opening time of 16a.
  • This smoothing member 18d can e.g. B. consist of a passive low-pass filter and an active smoothing element and serve a superimposed AC component of the differentiator output voltage, the harmonics of the actual power value prevails to smooth.
  • the limit value detector 12 already mentioned detects the sign of this (smoothed) change in power and leads, via the connection already described, by means of the elements 13 and 14 to readjusting the correction setpoint U corr or the setpoint U o by the voltage ⁇ Uo.
  • a further limit value indicator 19 is provided, which checks the actual value of the output power for falling below a minimum value, closes a bypass switch 20 on the integrator 7 and thus disengages the means for adjusting the setpoint value U o as soon as the output power of the solar generator is so low that a perfect detection in the evaluation circuit 11 is no longer possible.
  • connection of the additional setpoint ⁇ U 'and readjustment of the setpoint takes place in work cycles which are specified by the time control circuit 10.
  • the duration of such a cycle can e.g. B. 2 seconds and divided into 256 time steps by a corresponding oscillator with a downstream counter.
  • the oscillator 21 can be matched to the actuator cycle.
  • the addresses of a memory 22 are controlled in succession with the oscillator pulses, in which the corresponding control pulses for the tracking control are stored for each time step.
  • FIG. 4 shows an example of the course of the corresponding control signals as a function of the time steps n.
  • the initially closed switching device 16a, 16b is opened (control signal S1) and the additional setpoint ⁇ U 'of the addition point 8 is applied immediately thereafter (voltage S2). If the panel has settled to a steady state actual power value in accordance with the new voltage setpoint U o + ⁇ U ', the switching device 16a is closed - with ⁇ U' still applied. The input voltage of the differentiating element 18c thereby jumps to the new actual power value and a pulse is generated at the differentiator output and the smoothing element 18d, the sign of which is evaluated by the threshold value element 12.
  • the memory 13 is opened briefly with the control signal S3 and the pending output signal of the threshold value element 12 is stored for the duration of one cycle. Subsequently, the disturbance variable connection ⁇ U 'is ended and the correction of the setpoint U corr begins.
  • the output of the memory is given to the integrator 7b for a fixed correction time, the output voltage U corr of which changes by the voltage time area ⁇ U o belonging to the signal S4.
  • the control of the DC chopper shown here primarily acts on the transmitted current via the pulse-pause control, the voltage being set according to the load resistance.
  • the control of the DC chopper shown here primarily acts on the transmitted current via the pulse-pause control, the voltage being set according to the load resistance.
  • other power converters can also be used.
  • the device thus makes it possible to track the working point to the optimum working point, all displacements of the optimal working point being taken into account automatically.

Landscapes

  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zum selbsttätigen Einstellen des optimalen Arbeitspunktes einer mit einem Innenwiderstand behafteten Gleichspannungsquelle, insbesondere eines Solargenerators. Eine solche Vorrichtung ist bereits aus der EP-A-0 029 743 bekannt.
  • Eine derartige Gleichspannungsquelle kann z. B. ein Akkumulator, ein Thermoelement, eine Brennstoffzelle oder insbesondere ein Solargenerator sein. Abgesehen davon, daß die von diesen Gleichspannungsquellen abgegebene Leistung von nicht-elektrischen Parametern, wie der Umgebungstemperatur, der Innentemperatur, dem Ladezustand bei Akkumulatoren bzw. der eingestrahlten Leistung bei Solargeneratoren abhängig ist, ist diesen Gleichspannungsquellen gemeinsam, daß zwischen ihren beiden elektrischen Zustandsgrößen (Ausgangsspannung und Ausgangsstrom) ein bestimmter physikalischer Zusammenhang besteht, der im Ersatzschaltbild meist durch einen Innenwiderstand beschrieben wird. Wird daher durch einen Gleichstromsteller, einen Spannungswandler oder einen anderen Anpaßwandler diesen Gleichspannungsquellen elektrische Leistung entnommen, die einer nachgeschalteten Last zugeführt wird, so bricht die an sich erreichbare maximale Ausgangsspannung umso stärker ein, je mehr Strom über den Spannungswandler entnommen wird. Wird umgekehrt der Spannungswandler so gesteuert oder geregelt, daß eine bestimmte Ausgangsspannung der Gleichspannungsquelle aufrecht erhalten wird, so ist damit der entnehmbare Strom festgelegt. Die Spannungsquelle besitzt nur einen einzigen elektrischen Freiheitsgrad, der als Arbeitspunkt der Spannungsquelle bzw. des Anpaßwandlers vorgegeben werden kann. Die Leistungsabgabe einer derartigen Spannungsquelle ist dabei durch eine Funktion des entsprechenden Freiheitsgrades, d. h. des Arbeitspunktes, gegeben, die im allgemeinen bei einem bestimmten Wert, der hinsichtlich der Ausnutzung der Spannungsquelle den optimalen Arbeitspunkt darstellt ("Maximum power point", "MPP"), ihr Maximum an. Vor allem bei Spannungsquellen, deren Primärenergie kostenlos (z. B. Solarenergie) oder im Vergleich zum Installationsaufwand praktisch kostenlos ist, ist es für eine optimale Ausnutzung der Anlage wünschenswert, die Anlage praktisch stets auf Vollast laufen zu lassen, d.h. stets beim MPP zu arbeiten, um möglichst viel elektrische Energie aus der Gleichspannungsquelle in eine Last, z. B. einen Energiespeicher, einzuspeisen.
  • Als Last kommen - in Verbindung mit einem Gleichstromsteller oder einem anderen Gleichspannungsübertrager-Gleichstromverbraucher (z. B. das Bordnetz eines Fahrzeuges) infrage. Dabei kann der Gleichspannungsübertrager auch als Laderegler für einen Akkumulator dienen und dem Akkumulator ein steuerbarer Wechselrichter nachgeschaltet sein, der z. B. die Sammelschiene eines "Inselnetzes", d. h. einer abgelegenen, nicht von einem "öffentlichen Versorgungsnetz gespeisten Gruppe von Verbrauchern, speist. Wird anstelle eines Gleichspannungsübertragers ein steuerbarer Wechselrichter (allgemein: ein steuerbarer Leistungsübertrager) verwendet, um die von der Gleichspannungsquelle aufgenommene Primärenergie in eine andere elektrische Energie auf steuerbare Weise umzuwandeln, so kommen als Verbraucher auch Wechselstromverbraucher wie etwa Förderpumpen infrage, die zur weiteren Energieumwandlung, beispielsweise die Förderarbeit eines Mediums, dienen können.
  • Aus DE-A-29 03 559 ist es bereits bekannt, die Leistungsaufnahme einer Last mittels eines an einen Solargenerator angeschlossenen Gleichspannungswandlers zu steuern, wobei dem Gleichspannungswandler eine Stellspannung zugeführt wird, durch die die Ausgangsspannung des Solargenerators auf dem zum optimalen Arbeitspunkt gehörigen optimalen Spannungswert gesteuert werden soll. Dementsprechend wird die Stellspannung aus der Regelabweichung der Generatorausgangsspannung von einer Referenzspannung gebildet, wobei die Referenzspannung von einer baugleichen, aber unbelasteten Solarzelle geliefert wird, um die Einflüsse nicht-elektrischer Umweltgrößen zu berücksichtigen. Der Einfluß einer Arbeitspunktveränderung infolge des aus der (auch als "Panel" bezeichneten) Gleichspannungsquelle fließenden Stromes mit seiner abfallenden Kennlinie kann durch die künstliche, durch die unbelastete Meßzelle gebildete Referenzspannung jedoch nicht ausreichend berücksichtigt werden. Ferner führen Exemplarstreuungen infolge der Fertigungstoleranzen zu Fehleinstellungen des Arbeitspunktes.
  • Bei dieser bekannten Vorrichtung ist außerdem bei einer teilweisen Abschattung oder Verschmutzung des Solargenerators oder der die Referenzspannung liefernden unbelasteten Meßzelle das Auffinden des optimalen Arbeitspunktes überhaupt nicht mehr möglich.
  • Der Oberbegriff des Anspruchs 1 trägt diesem Stand der Technik Rechnung.
  • Auch nach der EP-A1-0 029 743 wird die vom Panel an einen Verbraucher abgegebene Leistung durch Steuerung speziell eines Wechselrichters so eingestellt, daß diese maximal wird. Hierzu belastet ein sogenannter "Maximum Power Tracker" in festen Zeitabständen den Verbraucherstromkreis mit einem Störstrom Δ I und wertet die sich einstellende Panelausgangsspannungsänderung A U aus. Der "Maximum Power Point" selbst ist definiert als der Punkt auf der Panel-U/I-Kennlinie mit der Steigung minus eins, die in eine aus der Panelausgangsspannung selbst abgeleitete Referenzspannung abgebildet wird. Ein Vergleich der sich auf Grund der Störstromaufschaltung ergebenden differentiellen Spannungsänderung dΔU/dΔl mit der Referenzspannung ermöglicht das Verschieben des Arbeitspunktes in Richtung "Maximum Power Point".
  • Dem Panel wird bedingt durch den Störstrom Leistung entzogen, die nicht dem Verbraucher zur Verfügung steht. Ferner muß u. U. durch Nachjustieren der Referenzspannung sichergestellt werden, daß diese ein Maß für den Kennlinienpunkt mit der Steigung minus eins bleibt.
  • Nach DE-A-1 513 195, die dem Dokument US-A-3 384 806 entspricht, wird zur Optimierung des Panelarbeitspunktes dem Panelausgangsstrom ein sinusförmiges Suchsignal überlagert. In einem Demodulator wird die Phasenlage der ersten Ableitung der Panelausgangsleistung relativ zum Suchstrom ausgewertet und festgestellt, ob der momentane Arbeitspunkt sich links oder rechts vom "Maximum Power Point" befindet. Das Tastverhältnis eines als steuerbarer Leistungsübertrager eingesetzten Transistors wird durch das Demodulatorausgangssignal so eingestellt, daß sich der Panelarbeitspunkt in Richtung "Maximum Power Point" verschiebt.
  • Ein in FR-A-2 175 653 dargestelltes Verfahren benutzt noch kompliziertere Zusammenhänge, um den "Maximum Power Point" zu definieren und einzustellen.
  • Der Erfindung liegt die Aufgabe zugrunde, eine weitere Vorrichtung zur selbsttätigen Einstellung des optimalen Arbeitspunktes einer Gleichspannungsquelle, insbesondere eines Solargenerators, anzugeben. Die erfindungsgemäße Vorrichtung ermöglicht neben vollkommen in Analogtechnik ausgeführten praktischen Ausführungen auch solche Ausführungsformen, bei denen insbesondere im Steuerungsteil auch digitale und/oder programmgesteuerte Bauelemente einsetzbar sind.
  • Die Aufgabe wird gelöst durch eine Vorrichtung gemäß Anspruch 1. Vorteilhafte Ausführungsformen sind in den Unteransprüchen angegeben.
  • Ausgangspunkt ist demnach eine Gleichspannungsquelle, insbesondere ein Solargenerator, der ein steuerbarer Leistungsübertrager zur Speisung eines Verbrauchers nachgeschaltet ist. Der Übertrager wird so gesteuert oder geregelt, daß seine Leistungsaufnahme, d. h. die vom Panel abgegebene elektrische Leistung, maximal ist. Hierzu wird für eine den Arbeitspunkt des Panels bestimmende Zustandsgröße, d.h. die Panelspannung oder den Panelstrom, ein entsprechender Sollwert vorgegeben. Diesem Sollwert wird in bestimmten Zeitabständen ein Zusatzwert im Sinn einer Störgröße vorübergehend aufgeschaltet und die dadurch hervorgerufene differentielle Änderung der Panelleistung wird erfaßt. Nach beendeter Aufschaltung des Zusatzwertes (Wegnahme der Störgröße) wird der Sollwert korrigiert, d. h. bleibend geändert, wobei das Vorzeichen dieser Sollwertänderung gleich dem Vorzeichen des Zusatzwertes gewählt wird, wenn während der Aufschaltung eine positive differentielle Änderung der Panelleistung festgestellt wurde, d. h. die durch die Aufschaltung hervorgerufene zeitliche Ableitung des Leistungsmeßwertes positiv ist. Hat die Aufschaltung des Zusatzsollwertes jedoch zu einer negativen differentiellen Änderung der abgegebenen Panelleistung geführt, so ist der Korrektursinn (das Vorzeichen der Sollwertänderung) entgegengesetzt dem Vorzeichen des Zusatzsollwertes zu wählen. Es erfolgt also eine Sollwertkorrektur, die stets zu einem Arbeitspunkt mit höherer Panelleistung führt, bis der MPP überschritten ist. Von da ab bewirken die weiteren Korrekturen, daß der Arbeitspunkt um den MPP pendelt. Die durch diese Pendelungen bedingten Schwankungen können umso geringer gehalten werden, je kleiner die Korrekturschritte und die Störgrößenamplitude (Zusatzsollwert) gewählt werden können. Gemäß der Erfindung wird nicht die Änderung ΔF der Panelleistung P selbst ausgewertet, sondern deren zeitliche Ableitung ei , so daß bereits kleine Störgrößenamplituden genügen, um eine exakte qualitative Aussage über Zu- oder Abnahme der Panelleistung zu machen.
  • Die Störgrößenamplituden können dabei so gering gewählt werden, daß sie nur noch 1 0/0. vorzugsweise weniger als 1 %. Änderung in der Panelleistung bewirken, also die eigentliche Panelregelung praktisch nicht mehr stören.
  • Würde man andererseits die Leistungsistwerte selbst vor und während der Störgrößenaufschaltung miteinander vergleichen, so wären bei der Genauigkeit der üblichen Meß- und Auswerteeinrichtungen die Differenzen dieser Leistungsistwerte nicht mehr mit der gewünschten Zuverlässigkeit erfaßbar.
  • Bei einer besonders einfachen Vorrichtung werden Betrag und Vorzeichen des Zusatzsollwertes für alle Aufschaltungen gleich und fest vorgegeben. Der Betrag der Sollwertänderung selbst kann in Abhängigkeit von der jeweiligen, durch die Aufschaltung des Zusatzsollwerts bedingten Änderung der Panelleistung bestimmt werden, wodurch bei großen Abweichungen zwischen dem maximum power point und dem jeweiligen Arbeitspunkt der Arbeitspunkt zunächst rasch an den MPP angenähert wird. Das Verfahren läßt sich aber noch einfacher durchführen, wenn der Betrag der Sollwertänderungen für alle Sollwertänderungen gleich und fest vorgegeben wird, insbesondere kann der Betrag der Sollwertänderungen kleiner als der Betrag des Zusatzsollwertes gewählt werden.
  • Bevorzugt wird die Änderung der abgegebenen Panelleistung durch differentielles Auswerten der eingeschwungenen Zustände der Panelleistung vor und nach Aufschalten des Zusatzsollwertes festgestellt. Hierzu kann der (beispielsweise geringfügig geglättete) Leistungsistwert, der im stationären Zustand vor einer Störgrößenaufschaltung erfaßt wird, unmittelbar vor Beginn der Störgrößenaufschaltung in einen Speicher gegeben werden, der diesen zwischengespeicherten Istwert solange an den Eingang eines Differenziergliedes legt, bis sich bei aufgeschalteter Störgröße wieder ein stationärer Leistungsistwert einstellt, der dann dem Eingang des Differenziergliedes anstelle des zwischengespeicherten Leistungsistwertes aufgeschaltet wird. Dadurch entsteht eine sprunghafte Änderung ΔP am Eingang des Differenziergliedes, das selbst bei sehr kleinem ΔP ein großes Ausgangssignal d Δ P/dt erzeugt.
  • Da z. B. bei geringer Beleuchtungsintensität eines Solargenerators eine Sollwertänderung nur noch zu entsprechend kleineren, schwer auswertbaren Änderungen der Panelleistung führt, kann ein unveränderlicher Sollwert vorgegeben werden, sobald die Leistungsabgabe einen eingestellten Minimalwert unterschreitet.
  • Anhand von vier Figuren und einem Ausführungsbeispiel wird die Erfindung näher erläutert.
  • Figur 1 zeigt den Verlauf der Strom-Spannungskennlinie eines Solargenerators sowie die Abhängigkeit der Panelleistung von dem Freiheitsgrad der Anordnung. In Figur 2 ist eine Vorrichtung zur Durchführung des Verfahrens und in Figur 3 der wichtigste Teil einer Auswerteschaltung zum Erfassen der stationären Leistungsänderung dargestellt, Figur 4 zeigt die Ansteuerung der einzelnen Schaltglieder der Vorrichtung.
  • In Figur 1 ist der Zusammenhang zwischen der Ausgangsspannung U (Panelspannung) eines Solargenerators und dem entnommenen Strom I (Panelstrom) aufgetragen. Ferner ist die Solarleistung P, d. h. das Produkt aus Panelspannung und Panelstrom, gezeigt. Die Solarleistung P weist ein ausgeprägtes Maximum Popt auf, dem auf dem U/I-Zustandsdiagramm die Werte Uopt und lopt der beiden elektrischen Zustandsgrößen U und I entsprechen. Die gezeigten Diagramme, die selbst für verschiedene Panels des gleichen Types noch etwas voneinander abweichen, sind bei einer Einstrahlung von 930 W/m2, einer Umgebungstemperatur von 24°C und einer Paneltemperatur von 36° C gemessen. Werden diese äußeren, nicht-elektrischen Parameter verändert, so ergeben sich andere Diagramme. Mit der Erfindung wird jeweils der optimale Arbeitspunkt, der durch Uopt und lopt gegeben ist, selbsttätig eingestellt.
  • Im folgenden wird der Fall betrachtet, daß gemäß Fig. 2 ein Solargenerator 1 über einen elektrischen Leistungsübertrager 2 einen Verbraucher 3 speist. Im gegebenen Fall ist der Leistungsübertrager als Gleichstromsteller ausgebildet und dient als Laderegler einer Batterie 3. Die Klemmenspannung der Batterie ändert sich während einer Störgrößenaufschaltung nur ganz geringfügig, so daß die der Batterie zugeführte elektrische Leistung, die über den Gleichstromsteller dem Solargenerator entnommen wird, praktisch proportional dem Ladestrom der Batterie ist, welcher an der Meßzelle 4 gemessen werden kann. Die Eingangsspannung der Batterie dient ferner dazu, über ein Netzgerät 5 die Betriebsspannung für das Steuergerät 6 des Gleichstromstellers sowie die weiteren Regeleinrichtungen zu liefern.
  • Ziel der erfindungsgemäßen Regelung ist es, die Zustandsgröße U (in diesem Fall also die Panelspannung) als Führungsgroße der Anordnung auf den optimalen Arbeitspunkt Uopt einzuregeln, was durch Veränderung des PulsPausen-Verhältnisses des im Gleichstromsteller 2 enthaltenen Schalters geschieht. Dadurch wird der über den Steller 2 fließende Strom als Stellgröße des Systems so verändert, wie es dem anbestrebten Arbeitspunkt entspricht.
  • Vorteilhaft liefert der Sollwertbildner (7) einen Grund-Sollwert Üo und einen Korrektursollwert Ukorr. die zu dem Sollweo + Ukorr zusammengesetzt werden. Es sei zunächst angenommen, daß die Vorrichtung bei einem vom optimalen Arbeitspunkt (maximum power point MPP) abweichenden Arbeitspunkt arbeitet, der durch die Spannungo gegeben und an einer Einstelleinrichtung 7a im Sollwertbildner fest eingestellt ist. Die Anordnung kann gesteuert betrieben werden, es kann aber auch eine Regelung vorgesehen sein. So kann z. B. an einem Vergleichsglied 8 die Regelabweichung zwischen dem Sollwert Uo und einem mittels eines entsprechenden Meßgliedes 9 abgegriffenen Istwertes U, für die Panelspannung gebildet werden, um die Steuergröße der Steuereinrichtung 6 des Stellers 2 zu erhalten.
  • Eine Zeitstufe 10 erzeugt nun eine Störgröße (Zusatzsollwert AU'), die als Störspannungsstoß dem am Sollwertbildner eingestellten Sollwert Uo vorübergehend aufgeschaltet wird, z. B. am Vergleichsglied 8. Ist das Vorzeichen des Zusatzsollwertes ΔU' negativ, so führt es in dem in Figur 1 gezeigten Fall Uo< Uopt zu einer Abnahme der von Solargenerator abgebebenen Panelleistung P. Das Vorzeichen dieser Leistungsänderung AP', die durch die Differenz der zum eingestellten Arbeitspunkt Uo gegebenen Panelleistung Po und der durch die Störgrößen-Aufschaltung ΔU' bewirkten Panelleistung gebeben ist, zeigt somit an, in welcher Richtung Uo verändert werden muß, um zu einer Annäherung an Uopt zu kommen. Eine Auswerteschaltung 11, die die zeitliche Ableitung der vor und während der Störgrößenaufschaltung abgegebenen Panelleistung auswertet, stellt daher die durch die Aufschaltung hervorgerufene Änderung der Leistungsabgabe des Solargenerators fest.
  • In Abhängigkeit von dem Vorzeichen der von der Auswerteschaltung festgestellten Leistungsänderung wird dann der vom Sollwertbildner gelieferte Sollwert Uo verändert. Zu diesem Zweck enthält der Sollwertbildner 7 vorteilhaft einen Integrator 7b, dem zur Spannungsbegrenzung zwei antiparallele Zenerdioden parallel geschaltet sind. Zum Nachstellen des Sollwertes kann vorgesehen sein, daß die Auswerteschaltung 11 an ihrem Ausgang einen Grenzwertmelder 12 enthält, der das Vorzeichen der Leistungeänderung in Form eines digitalen Signals liefert und in einen Speicher, z. B. eine Flip-Flop-Schaltung 13, eingibt. Der Speicherausgang ist so beschaltet, daß entsprechend dem gespeicherten Signal eine positive oder negative Spannung ΔU0 (entsprechend einer Zunahme oder Abnahme der Leistung) konstanten Betrages bereitgestellt ist. Nach Beendigung der Aufschaltung des Zusatzsollwertes ΔU' schließt die Zeitstufe 10 einen Schalter 14 zwischen den Speicher 13 und dem Integrator 7, so daß nun dem Integrator kurzfristig die vom Speicher bereitgestellte Spannung als Eingangsspannung mit einem dem Vorzeichen der differentiellen Leistungsänderung entsprechenden Vorzeichen aufgeschaltet ist. Der Integrator summiert diese kurzfristigen Spannungsstöße ΔUo, so daß die Integratorausgangsspannung Ukorr=ΣΔU0 als Korrekturgröße des Grund-Sollwerts Üo entsprechend nachgeführt wird.
  • Der Sollwert Uo wird somit nach jeder Aufschaltung um einen konstanten, fest vorgegebenen Korrekturbetrag ΔUo geändert. Nach einer endlichen Zahl von derartigen Korrekturschritten, die jeweils aus einer vorübergehenden Aufschaltung des Zusatzsollwertes ΔU' und einer anschließenden bleibenden Sollwertänderung um ΔUo bestehen, wird damit der Maximum Power Point MPP erreicht und bei allen weiteren Aufschaltungen kann der Arbeitspunkt nur noch geringfügig um diesen optimalen Arbeitspunkt pendeln.
  • Vorzeichen und Betrag des Zusatzsollwertes ΔU' ist im gegebenen Fall durch die Zeitstufe 10 fest vorgegeben. Wegen der sehr empfindlichen differentiellen Erfassung der Leistungsänderung kann ΔU' so gewählt werden, daß die durch die Störgrößenaufschaltung bedingte Änderung der Ausgangsspannung U 1 %o bis maximal 1 %, der Spannung Uopt im MPP beträgt. Die Sollwertänderung ΔUo ist durch die Schließzeit des Schalters 14 festgelegt und wird vorteilhaft so gewählt, daß ΔUo etwas kleiner als ΔU' ist.
  • Die Zeitstufe 10 steuert ferner eine aus zwei Schaltern 16a und 16b bestehende Schaltvorrichtung innerhalb der Auswerteschaltung 11. Im gebebenen Fall ist für die Auswerteschaltung 11 ein Strommeßglied zur Erfassung der Leistungsabgabe der Gleichspannungsquelle ausreichend, da die Klemmenspannung des Verbrauchers also die Batterie-Eingangsspannung, bei Auf- und Abschalten der Störgröße praktisch konstant bleibt und eine vom Ladezustand der Batterie abhängige langsame Änderung der Klemmenspannung für die differentielle Leistungsänderung ohne Bedeutung ist. In anderen Fällen muß zur Erfassung der Leistung bzw. deren differentieller Änderung Strom und Spannung erfaßt und miteinander multipliziert werden.
  • Der Schalter 16a, der unmittelbar vor oder wenigstens mit Beginn der Aufschaltung des Zusatzsollwertes geöffnet wird, verbindet das Meßglied 4 (bzw. ein nachgeschaltetes Istwert-Glättungsglied 17 mit kleiner Zeitkonstante) mit einem Speiche 18a, in dem dann der vor der Aufschaltung gemessene, zu einem eingeschwungenen Zustand des Panels gehörende Wert der Leistungsabgabe gespeichert ist. Noch vor dem Ende der Aufschaltung wird, sobald die Anordnung auf einen neuen, zu Uo + ΔU' gehörenden stationären Wert eingeschwungen ist, der Schalter 16a wieder geschlossen und der Speicher 18a enthält den neuen stationären Meßwert. Dem Speicher ist ein Differenzierglied 18c nachgeschaltet, wobei Speicher und Differenzierglied zu einer gemeinsamen Differenziereinrichtung 18, die in Fig 3 dargestellt ist, zusammengefaßt sein können.
  • Speicher 18a und Schalter 16a wirken so zusammen, daß am Eingang des Differenziergliedes 18c vor dem Öffnen des Schalters der jeweilige Leistungsmeßwert, bei geöffnetem Schalter der unmittelbar vor der Störgrößenaufschaltung gemessene und abgespeicherte Meßwert und nach dem Schließen des Schalters wieder der gemessene, jetzt zu Uo + ΔU' gehörende Meßwert zugeführt sind. Da diese Meßwerte jeweils bei eingeschwungenen Zuständen gewonnen sind, erfaßt das Differenzierglied 18c also nur die störgrößenbedingte Änderung der stationären Leistung Pstat, d. h. deren Änderung ΔPstat. Diese kann z. B. durch Mittel 18b gebildet werden und liegt nach dem erneuten Schließen des Schalters 16a als Spannungsstoß an und wird differenziert. Am Ausgang des Differenziergliedes 18c liegt also die differentielle Änderung der stationären Leistungsabgabe der Gleichspannung an.
  • Gemäß Figur 3 wirkt der einem Operationsverstärker 30 vorgeschaltete Kondensator 31 als Speicher, der sich beim Schließen des hochisolierenden Schalters 16a entsprechend dem angelegten Eingangssignal auflädt und diese Ladung praktisch unverändert bis zum Wiederschließen des Schalters 16a beibehält. Der Operationsverstärker 30 ist über die Kapazität 31 und den Widerstand 34 als Differenzierer und über die RC-Beschaltung 33, 34 als zusätzliche Glättung ausgelegt. Der Schalter 16b, der über ein Steuersignal S1 gemeinsam mit dem Schalter 16a angesteuert und betätigt wird, verhindert, daß während der Öffnungszeit von 16a Ströme aus der Differenziereinrichtung 18 in ein nachgeschaltetes Glättungsglied 18d fließen. Dieses Glättungsglied 18d kann z. B. aus einem passiven Tiefpaß und einem aktiven Glättungsglied bestehen und dazu dienen, einen überlagerten Wechselspannungsanteil der Differenziererausgangsspannung, der von Oberschwingungen des Leistungsistwertes herrürt, zu glätten.
  • Der bereits erwähnte Grenzwertmelder 12 erfaßt das Vorzeichen dieser (geglätteten) Leistungsänderung und führt über die bereits beschriebene Aufschaltung mittels der Elemente 13 und 14 zum Nachstellen des Korrektur-Sollwertes Ukorr bzw. des Sollwertes Uo um die Spannung ΔUo.
  • Ferner ist ein weiterer Grenzwertmelder 19 vorgesehen, der den Istwert der abgegebenen Leistung auf Unterschreiten eines Minimalwertes überprüft, einen Überbrückungsschalter 20 am Integrator 7 schließt und damit die Mittel zum Nachstellen des Sollwertes Uo außer Eingriff bringt, sobald die abgegebene Leistung des Solargenerators so gering ist, daß eine einwandfreie Erfassung in der Auswerteschaltung 11 nicht mehr möglich ist.
  • Das Wechselspiel zwischen Aufschaltung des Zusatzsollwertes ΔU' und Nachstellen des Sollwertes geschieht in Arbeitszyklen, die von der Zeitsteuerschaltung 10 vorgegeben werden. Die Dauer eines derartigen Zyklus kann z. B. 2 Sekunden betragen und durch einen entsprechenden Oszillator mit nachgeschaltetem Zähler in 256 Zeitschritte unterteilt werden.
  • Sind Störungen der Leistungserfassung durch den Arbeitstakt des Stellers 2 zu befürchten, so kann der Oszillator 21 auf den Stellertakt abgestimmt werden. Mit den Oszillatorimpulsen werden nacheinander die Adressen eines Speichers 22 angesteuert, in dem für jeden Zeitschritt die entsprechenden Ansteuerimpulse für die Nachführregelung abgespeichert sind. Figur 4 zeigt einen beispielhaften Verlauf der entsprechenden Steuersignale in Abhängigkeit von den Zeitschritten n.
  • Bei Beginn eines Zyklus' wird die zunächst geschlossene Schalteinrichtung 16a, 16b geöffnet (Steuersignal S1) und unmittelbar darauf der Zusatzsollwert ΔU' der Additionsstelle 8 aufgeschaltet (Spannung S2). Ist das Panel entsprechend dem neuen Spannungssollwert Uo + ΔU' auf einen stationären Leistungsistwert eingeschwungen, wird - bei beibehaltener Aufschaltung von ΔU' - die Schalteinrichtung 16a geschlossen. Die Eingangsspannung des Differenziergliedes 18c springt dadurch auf den neuen Leistungsistwert und es entsteht ein Impuls am Differenziererausgang und dem Glättungsglied 18d, dessen Vorzeichen vom Schwellwertglied 12 ausgewertet ist. Wenn die Spannung des Glättungsgliedes etwa auf ihren Höchstwert angewachsen ist, wird mit dem Steuersignal S3 der Speicher 13 kurzzeitig geöffnet und das anstehende Ausgangssignal des Schwellwertgliedes 12 für die Dauer eines Zyklus' gespeichert. Anschließend wird die Störgrößenaufschaltung ΔU' beendet und es beginnt die Korrektur des Sollwertes Ukorr. Dazu wird für eine fest vorgegebene Korrekturzeit der Ausgang des Speichers auf den Integrator 7b gegeben, dessen Ausgangsspannung Ukorr sich dadurch um die zum Signal S4 gehörende Spannungszeitfläche ΔUo ändert.
  • Die hier gezeigte Steuerung des Gleichstromstellers wirkt über die Puls-Pause-Steuerung primär auf den übertragenen Strom, wobei sich die Spannung entsprechend dem Lastwiderstand einstellt. Selbstverständlich können auch andere Leistungswandler verwendet werden.
  • Die Vorrichtung ermöglicht es somit, den Arbeitspunkt jeweils auf den optimalen Arbeitspunkt nachzuführen, wobei alle Verschiebungen des optimalen Arbeitspunktes selbsttätig berücksichtigt werden.

Claims (6)

1. Vorrichtung zum selbsttätigen Einstellen des optimalen Arbeitspunktes einer mit einem Innenwiderstand behafteten Gleichspannungsquelle (1), insbesondere eines Solargenerators, mit
a) einem der Gleichspannungsquelle (1) nachgeschalteten Energieübertrager mit Steuereinrichtung (6), welcher ein Sollwert (Uo) für die Ausgangsspannung (U1) der Gleichspannungsquelle (1) vorgegeben ist,
b) einem Meßglied (4) zum Erfassen einer Größe, die der von der Gleichspannungsquelle (1) an den Verbraucher (5, 3), insbesondere eine Batterie, abgegebenen Leistung (P) entspricht,
c) einem Sollwertbildner (7) für den Sollwert (Uo),
d) einer Aufschaltvorrichtung, welche vorübergehend den Arbeitspunkt der Gleichspannungsquelle (1) durch Aufschaltung einer Störgröße (ΔU') auf den Energieübertrager (2) verändert (S2),
e) einer Auswerteschaltung (11) mit Differenziereinrichtung (18), welche das Vorzeichen der durch die Aufschaltung hervorgerufenen Änderung der von der Gleichspannungsquelle (1) abgegebenen Leistung feststellt, und mit Nachstellmitteln (13, 14), welche abhängig von dem Vorzeichen den Sollwertbildner (7) nachstellen (S4), gekennzeichnet durch
f) einen Speicher (18a) in der Differenziereinrichtung (18), der mit Beginn einer Aufschaltung den am Meßglied (4) anstehenden Wert (P) abtastet und speichert (S1),
g) einen Schalter (16a) am Eingang der Auswerteschaltung (11), der mit Beginn einer Aufschaltung die Auswerteschaltung vom Meßglied (4) abkoppelt und vor dem Ende der Aufschaltung wieder ankoppelt (S1),
h) Mittel (18b), welche in der Differenziereinrichtung (18), vor dem Ende einer Aufschaltung die hervorgerufene Leistungsänderung (AP) ermitteln und einem Differenzierglied (18c) zuführen (dΔP dt),
i) einen Vorzeichenspeicher (13) in den Nachstellmitteln (13, 14), in den das über einen Komparator (12) detektierende Vorzeichen der zeitlichen Ableitung der Leistungsänderung (sign
Figure imgb0001
mit dem Ende einer Aufschaltung hinterlegt wird (S3), und
k) eine Zeitstufe (10) als Aufschaltvorrichtung, welche Steuersignale (S1, S3) für den Speicher (18a), den Schalter (16a) und den Vorzeichenspeicher (13) zeitkoordiniert abgibt.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Zeitstufe (10) dem Sollwert (Uo) für die Steuereinrichtung (6) als Störgröße einen Zusatzsollwert (AU') vorgegebener Größe für eine vorbestimmte Zeitdauer aufschaltet (8).
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Zeitstufe (10) einen von einem Taktgeber (21) angesteuerten Speicher (22) enthält, in dem die zur Aufschaltung der Störgröße und der anschließenden Nachstellung des Sollwertbildners notwendigen Steuersignale (S1 bis S4) in speicherprogrammierter Form hinterlegt sind.
4. Vorrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß das Meßglied (4) zwischen Energieübertrager (2) und Verbraucher (5, 3) in den Stromkreis eingeschaltet ist.
5. Vorrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß ein Grenzwertmelder (19) die Nachstellmittel (13, 14) außer Eingriff bringt (Schalter 20), wenn ein Minimalwert der Leistungsabgabe unterschritten ist.
6. Vorrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß der Sollwertbildner (7) den Sollwert (Uo) als Summe eines Grund-Sollwertes (Uo) und eines Korrektur-Sollwertes (Ukorr) bildet, zur Bildung des Grund-Sollwertes eine Einstelleinrichtung (7a) und zur Bildung des Korrektur-Sollwertes einen Integrator (7b) enthält, dem nach jeder Aufschaltung der Zusatzgröße kurzzeitig (Fig 4, Signal S4) eine vorgegebene Eingangsspannung (ΔUo) mit dem im Vorzeichenspeicher (13) hinterlegten Vorzeichen aufgeschaltet wird.
EP83102274A 1982-03-31 1983-03-08 Vorrichtung zum selbsttätigen Einstellen des optimalen Arbeitspunktes einer Gleichspannungsquelle Expired EP0090212B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83102274T ATE31983T1 (de) 1982-03-31 1983-03-08 Vorrichtung zum selbsttaetigen einstellen des optimalen arbeitspunktes einer gleichspannungsquelle.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3212022 1982-03-31
DE19823212022 DE3212022A1 (de) 1982-03-31 1982-03-31 Verfahren und vorrichtung zum selbsttaetigen einstellen des optimalen arbeitspunktes einer gleichspannungsquelle

Publications (3)

Publication Number Publication Date
EP0090212A2 EP0090212A2 (de) 1983-10-05
EP0090212A3 EP0090212A3 (en) 1984-11-28
EP0090212B1 true EP0090212B1 (de) 1988-01-13

Family

ID=6159903

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83102274A Expired EP0090212B1 (de) 1982-03-31 1983-03-08 Vorrichtung zum selbsttätigen Einstellen des optimalen Arbeitspunktes einer Gleichspannungsquelle

Country Status (5)

Country Link
US (1) US4510434A (de)
EP (1) EP0090212B1 (de)
JP (1) JPS58182726A (de)
AT (1) ATE31983T1 (de)
DE (2) DE3212022A1 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4494180A (en) * 1983-12-02 1985-01-15 Franklin Electric Co., Inc. Electrical power matching system
US4614879A (en) * 1984-08-30 1986-09-30 Pulstar Corporation Pulsed motor starter for use with a photovoltaic panel
US4649334A (en) * 1984-10-18 1987-03-10 Kabushiki Kaisha Toshiba Method of and system for controlling a photovoltaic power system
JPS61239312A (ja) * 1985-04-15 1986-10-24 Mitsubishi Electric Corp 太陽光発電装置
EP0231211A4 (de) * 1985-07-11 1987-09-02 Allan Russell Jones Elektronische regelungsschaltung.
WO1988004801A1 (en) * 1986-12-19 1988-06-30 Stuart Maxwell Watkinson Electrical power transfer apparatus
DE4030494C1 (en) * 1990-09-26 1992-04-23 Helmut 6753 Enkenbach De Jelonnek Solar power generator setter - has indicator in centre of concentric circles calibrated in ambient temperatures
AT401976B (de) * 1993-04-08 1997-01-27 Sassmann Alfred Anordnung zur einregelung der leistungsabgabe von solarzellenanlagen
DE4343822C1 (de) * 1993-12-22 1994-12-22 Ant Nachrichtentech Einrichtung zur selbsttätigen Einstellung eines optimalen Arbeitspunktes für den Betrieb eines Verbrauchers an einer Spannungsquelle
JPH0962387A (ja) * 1995-08-29 1997-03-07 Canon Inc 電池電源の電力制御方法及び装置並びに電池電源システム
US5747967A (en) * 1996-02-22 1998-05-05 Midwest Research Institute Apparatus and method for maximizing power delivered by a photovoltaic array
DE19846818A1 (de) * 1998-10-10 2000-04-13 Karl Swiontek Maximumregler
AT409674B (de) * 1999-03-22 2002-10-25 Felix Dipl Ing Dr Himmelstoss Verfahren zur erfassung der messdaten von solargeneratoren zur bestimmung des punktes maximaler leistung
AT413610B (de) * 2000-02-01 2006-04-15 Felix Dipl Ing Dr Himmelstoss Verfahren zum betrieb von nichtlinearen quellen im punkt maximaler leistung
AT413611B (de) * 2000-02-07 2006-04-15 Felix Dipl Ing Dr Himmelstoss Ansteuerverfahren zum betrieb nichtlinearer quellen im punkt maximaler leistung mit analogem zwischenspeicher
DE10216691A1 (de) * 2002-04-16 2003-11-06 Ballard Power Systems System zur Einstellung einer Brennstoffzellenanlage
US7087332B2 (en) * 2002-07-31 2006-08-08 Sustainable Energy Systems, Inc. Power slope targeting for DC generators
DE10248447A1 (de) * 2002-10-17 2004-04-29 Badische Stahl-Engineering Gmbh Verfahren und Vorrichtungen zur Impedanzanpassung
BRPI0520424A2 (pt) * 2005-07-20 2009-05-05 Ecosol Solar Technologies Inc dispositivo que utiliza saìda de potência de conjunto fotovoltaico e método para utilizar saìda de potência proveniente de um dispositivo de conjunto fotovoltaico que possui um conjunto capacitor
US7808125B1 (en) 2006-07-31 2010-10-05 Sustainable Energy Technologies Scheme for operation of step wave power converter
US8031495B2 (en) * 2007-06-04 2011-10-04 Sustainable Energy Technologies Prediction scheme for step wave power converter and inductive inverter topology
DE102010000350B4 (de) 2010-02-10 2023-10-05 Adkor Gmbh Energieversorgungssystem mit regenerativer Stromquelle und Verfahren zum Betrieb eines Energieversorgungssystems
AT509824B1 (de) * 2010-04-29 2014-02-15 Werner Atzenhofer Vorrichtung zur erzeugung thermischen energie
FR2961040B1 (fr) * 2010-06-04 2012-06-29 Commissariat Energie Atomique Circuit convertisseur et systeme electronique comportant un tel circuit
CN203965988U (zh) * 2011-10-25 2014-11-26 K·卡梅伦 电力调节器电路藉由非线性发电机以最大化功率的输出
CN102707619A (zh) * 2012-05-25 2012-10-03 深圳市中兴昆腾有限公司 太阳能最大功率点追踪所用模糊控制器及方法
US11634264B2 (en) 2013-09-26 2023-04-25 Va-Q-Tec Ag Foil-wrapped vacuum insulation element
DE102014100690A1 (de) * 2014-01-22 2015-07-23 Sma Solar Technology Ag Wechselrichter, insbesondere als teil eines energieerzeugungsverbundes, und verfahren

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3384806A (en) * 1964-10-16 1968-05-21 Honeywell Inc Power conditioing system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1460787A (fr) * 1964-10-16 1966-01-07 Honeywell Inc Dispositif de transfert d'énergie électrique d'une source à une charge
FR2175653B1 (de) * 1972-03-17 1977-04-01 Labo Cent Telecommunicat
JPS5042281A (de) * 1973-08-20 1975-04-17
US4143314A (en) * 1978-03-29 1979-03-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Closed loop solar array-ion thruster system with power control circuitry
US4375662A (en) * 1979-11-26 1983-03-01 Exxon Research And Engineering Co. Method of and apparatus for enabling output power of solar panel to be maximized

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3384806A (en) * 1964-10-16 1968-05-21 Honeywell Inc Power conditioing system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Buch von H.S. Tsien "Technische Kybernetik" (1957), Verlag Berliner Union, S. 214-218 *

Also Published As

Publication number Publication date
DE3375336D1 (en) 1988-02-18
US4510434A (en) 1985-04-09
EP0090212A3 (en) 1984-11-28
EP0090212A2 (de) 1983-10-05
JPS58182726A (ja) 1983-10-25
ATE31983T1 (de) 1988-01-15
DE3212022A1 (de) 1983-10-06

Similar Documents

Publication Publication Date Title
EP0090212B1 (de) Vorrichtung zum selbsttätigen Einstellen des optimalen Arbeitspunktes einer Gleichspannungsquelle
DE19720427B4 (de) Solarzellen-Spannungsquellenvorrichtung mit Hochsetzsteller und Regelung des Maximum-Power-Points
DE69401497T2 (de) Notstromaggregat
DE3027725C2 (de)
DE2437872A1 (de) Verfahren zum schnellen laden von batterien und vorrichtung zur durchfuehrung des verfahrens
DE102014200740A1 (de) Verfahren und Regel- und/oder Steuereinrichtung zum Betrieb einer Windenergieanlage und/oder eines Windparks sowie Windenergieanlage und Windpark
WO2017016870A1 (de) Verfahren und vorrichtung zum erfassen einer elektrischen spannung in einem versorgungsnetz
DE2834381A1 (de) Vorrichtung zur leistungsuebertragung
DE2744387A1 (de) Automatisches batterieladegeraet
DE2845511A1 (de) Batterieladeschaltung
CH621879A5 (de)
DE2911315C2 (de)
EP0144754B1 (de) Sperrwandler-Schaltnetzteil
EP0381789A1 (de) Verfahren und Vorrichtung zur Steuerung von ein- oder mehrphasigen Wechselstromstellern
CH662015A5 (de) Verfahren zum statischen kompensieren der blindleistung eines stromversorgungssystems.
CH695811A5 (de) Einrichtung und Verfahren zur Erzeugung von Hochspannung aus einer Niedervolt-Versorgungsquelle.
DE2541436A1 (de) Konstantstrom-batterieladeschaltung
DE3905261A1 (de) Verfahren und einrichtung zur stabilisation eines elektrischen versorgungsnetzes
DE69029711T2 (de) Schaltungsanordnung zur Steuerung eines Freikolbenmotors, insbesondere eines Kühlschrankkompressors
DE102009008255B4 (de) Verfahren und Vorrichtung zum Betrieb eines Energiebordnetzes
EP0790689B1 (de) Verfahren zur Verbesserung der Spannungsqualität in einem Drehstromnetz und Anlage für die Durchführung des Verfahrens
EP2388603A1 (de) Verfahren und Vorrichtung zur Überwachung von Kontakten einer Photovoltaikanlage
DE2907478C2 (de) Verfahren zur Steuerung der von einer Wechselstromquelle über elektrische Ventile an einen vorwiegend induktiven Verbraucher gelieferten elektrischen Leistung
DE60300396T2 (de) Methode und Gerät zum Anpassen des Ladestromes in einem Batterieladegerät
DE10065483A1 (de) Verfahren zur Steuerung der Aufladung einer Batterie und Vorrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT DE FR GB IT NL

17P Request for examination filed

Effective date: 19841221

17Q First examination report despatched

Effective date: 19860826

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT NL

REF Corresponds to:

Ref document number: 31983

Country of ref document: AT

Date of ref document: 19880115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3375336

Country of ref document: DE

Date of ref document: 19880218

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890308

Ref country code: AT

Effective date: 19890308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19891001

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19891130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19891201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST