EP0088198B1 - Procédé de réalisation d'une couverture dite "toiture inversée" pour un immeuble et élément préfabriqué pour la réalisation d'une telle couverture - Google Patents

Procédé de réalisation d'une couverture dite "toiture inversée" pour un immeuble et élément préfabriqué pour la réalisation d'une telle couverture Download PDF

Info

Publication number
EP0088198B1
EP0088198B1 EP82810279A EP82810279A EP0088198B1 EP 0088198 B1 EP0088198 B1 EP 0088198B1 EP 82810279 A EP82810279 A EP 82810279A EP 82810279 A EP82810279 A EP 82810279A EP 0088198 B1 EP0088198 B1 EP 0088198B1
Authority
EP
European Patent Office
Prior art keywords
slab
element according
layer
insulating material
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82810279A
Other languages
German (de)
English (en)
Other versions
EP0088198A2 (fr
EP0088198A3 (en
Inventor
Jean-Claude Deppen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT82810279T priority Critical patent/ATE19120T1/de
Publication of EP0088198A2 publication Critical patent/EP0088198A2/fr
Publication of EP0088198A3 publication Critical patent/EP0088198A3/fr
Application granted granted Critical
Publication of EP0088198B1 publication Critical patent/EP0088198B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
    • E04D13/16Insulating devices or arrangements in so far as the roof covering is concerned, e.g. characterised by the material or composition of the roof insulating material or its integration in the roof structure
    • E04D13/1687Insulating devices or arrangements in so far as the roof covering is concerned, e.g. characterised by the material or composition of the roof insulating material or its integration in the roof structure the insulating material having provisions for roof drainage
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
    • E04D13/16Insulating devices or arrangements in so far as the roof covering is concerned, e.g. characterised by the material or composition of the roof insulating material or its integration in the roof structure
    • E04D13/1606Insulation of the roof covering characterised by its integration in the roof structure
    • E04D13/1662Inverted roofs or exteriorly insulated roofs

Definitions

  • the present invention relates to a prefabricated element used for the production of a so-called "inverted roof” covering for a building.
  • the waterproofing layer was formed over the insulating layer, which exposed it to significant thermal shock and caused its relatively rapid degradation.
  • the layer for sealing against pressurized water and runoff inevitably has a higher resistance to the passage of steam than the other layers.
  • its temperature is below the dew point. For these two reasons the risks of condensation are certain.
  • classic waterproofing is undoubtedly the most vulnerable of the elements making up a traditional roof. Its lifespan is twenty years while that of other layers is at least sixty years. Aging is all the more rapid as the sealing is outside, therefore subjected to ultraviolet radiation, thermal and mechanical shock and that it rests on a thermal insulating support, which subjects it to a thermal cycle.
  • inverted roofing which has been developed in particular thanks to the particular properties of certain synthetic materials, in particular extruded polystyrene foams, has made it possible to remedy most of the drawbacks of traditional flat roofs. Indeed to remedy the risks of condensation, the inverted roof makes it possible to place the waterproofing in an area where the temperature is above the dew point. This solution called “hot sealing” saves the costs of a vapor barrier.
  • the inverted roof also provides a solution to the fragility of the waterproofing layer, the service life of which can be considerably increased, since it is the waterproofing and not the thermal insulation which is protected against external agents. Finally, in inverted roofs, the waterproofing rests on an insulated support, where the movements are small, which eliminates the deterioration of the waterproofing caused by the expansion of the structural layers.
  • US Patent No. 3,892,899 which describes a method of producing a so-called "inverted roof” covering for a building, comprising a structured support, at least one layer of waterproof material disposed on the structure support, at least one layer of insulating material placed on the waterproof material and at least one protective charge placed on the waterproof material and at least one protective charge placed on the insulating material, in which the layer of deposited insulating material is formed on the waterproof layer and the protective filler by means of prefabricated elements comprising a rigid slab made of a material composed of aggregates linked by a binder and a plate of a thermally insulating material, in which the thermally insulating material is made of a material synthetic non hygroscopic.
  • the present invention proposes to overcome all of the aforementioned drawbacks concerning both traditional roofs and inverted roofs.
  • the element and the method according to the invention are characterized in that the plate of a thermally insulating material is integral with the lower surface of the rigid slab.
  • the prefabricated element is described in the claim. Thanks to the prefabricated slabs made integral with the insulation plates, the drawbacks due to the bimetallic strip effect are eliminated.
  • the absence of gravel as a ballast layer considerably reduces the penetration of sand between the joints of the insulating plates and almost completely eliminates the risk of lifting of these plates by sands or gravels entrained by runoff water.
  • the extruded polystyrene foams which degrade under the effect of ultraviolet rays, are effectively protected by the compact ballast tiles effectively covering the entire surface of the insulating layer.
  • the traditional roof generally consists of a structural support 10 consisting of a concrete slab, on which are successively arranged a vapor barrier 11, a layer of insulating material 12, the sealing layer 13 and a filler protective 14. It can be seen that the sealing layer 13 is on the one hand in direct contact with the external ambient medium and with the insulated lower layers, which subjects it to significant thermal shocks which are at the origin of its relatively rapid degradation.
  • the covers which consist, as shown in fig 2, of a structural support 20 consisting of a concrete slab, on which are successively deposited the layer sealing 21, the insulating layer 22 and the protective filler 23 preferably consisting of gravel.
  • the waterproof layer 21 is well protected by the insulating layer 22 which is itself protected, in particular against ultraviolet radiation which degrades the extruded polystyrene, by a relatively large layer of gravel 23.
  • the opening of the seals 24 between the viosine plates may be sufficiently fine to allow the passage of sands or grains of gravel entrained by the runoff of rain water, which ultimately become encrusted between the tight layer 21 and the insulating layer 22.
  • the relative movements of the plates constituting the insulating layer 22 are further amplified by the bimetallic strip effect due to the temperature difference appearing between the two faces of this insulating layer.
  • the inverted roof of fig. 3 again consists of a structural support 30 consisting of a concrete slab on which a waterproof layer 31 is deposited. This layer is then covered with prefabricated elements 32 each comprising a rigid slab 33 made of a material comprising bound aggregates by a hydraulic binder of the cement type, and a plate 34 of an insulating material bonded to the lower surface of the slab 34.
  • the plates 34 are preferably made of extruded polystyrene.
  • the plates 34 have the same shape and the same dimensions as the slabs 33. They are however offset laterally in one or two directions perpendicular to the slabs 33, to allow a partial superposition of the elements 32 placed adjacent.
  • Fig. 4 shows a particular embodiment, in which an inverted roof according to the invention has been put in place over an existing traditional roof.
  • This roof consists of a structural support 40, a vapor barrier 41, an insulating layer 42 and a waterproof layer 43.
  • a protective filler constituted by a layer of gravel which has been removed.
  • prefabricated elements 44 have been put in place as previously constituted by a concrete slab 45 and an extruded polystyrene plate 46.
  • the slabs 45 have, on at least one of their sides, a staircase-shaped rim 47 which corresponds to a complementary groove 48 which cooperates to allow the prefabricated elements to be superimposed during their installation.
  • the insulating plates 46 are offset relative to the tiles 45, so as to constitute an additional baffle in the junction zone of two juxtaposed elements.
  • the existence of these baffles limits the penetration of sand or gravel entrained by the runoff of rainwater, and their deposition between the insulating layer 46 and the sealing layer 45.
  • Fig. 5 illustrates a particular embodiment of the prefabricated elements 50, constituted by a slab 51 of rectangular or square shape made of a material comprising aggregates linked by a hydraulic binder of cement type, and a plate 52 of the same shape and the same dimensions, preferably made of extruded polystyrene, and bonded to the base of the slab 51 using an appropriate adhesive.
  • the plate 52 is offset in two directions perpendicular to the slab 50 to allow superimposition of the adjacent elements.
  • the lower surface of the slab 51 preferably comprises a series of longitudinal grooves 53 parallel to each other and oriented along the line of the greatest slope when the elements are in place on the roof of a building. These grooves 53 channel the rainwater, facilitate its rapid evacuation and thereby prevent the floating phenomenon which is likely to occur in the event of rainwater accumulating between the sealing layer and the insulation provided. Above.
  • the plate 52 could of course be replaced by several plates of insulating material superimposed and connected together by gluing.
  • the tiles can be made of an impermeable material or a permeable material.
  • the prior carbonation makes it possible to remove the limestone concretions.
  • pozzolan cement or a mixture of cement.
  • Portland and Trass cement as a binder for aggregates used in the composition of this slab.
  • the load formed by this slab provides effective protection against the effects of ultraviolet rays, against the effects of floating and aspiration due to the infiltration of rainwater between the joints.
  • the grooves 53 intended to channel the runoff water which has entered between the joints may have any shape designed so as to favor the flow of the variable quantity of rainwater which would have entered between the joints of the juxtaposed elements. This structure could be determined from case to case depending on the slopes of the roof. It should be planned in such a way that the water path is as short as possible, that is to say that the grooves follow approximately or form an acute angle with the line of greatest slope of the roof.
  • the insulating plates 52 are preferably fixed to the slabs 51 by a thin intermediate layer 54 ensuring good adhesion between the two extreme elements.
  • This layer may consist of a solvent-free layer capable of attacking and dissolving the insulating material, or an adhesive mortar of the Polyton @ 2470 type, which will preferably have a breaking strength of at least 2 kg / cm 2 . This mortar will also have the property of validly diffusing water vapor.
  • the manufacture of the prefabricated elements 50 can be done in two ways.
  • the slabs 51 are subjected to an accelerated carbonation treatment, the actual slab is first molded and dried, the plate of insulating material being fixed thereafter.
  • the plate 52 can be fixed directly to the outlet of the slab manufacturing machine. In both cases, the slab 51 is placed in such a way that its lower surface faces upwards, the insulating plate 52 is placed appropriately and the assembly is turned over so that the weight of the slab 51 ensures the pressure necessary to obtain good adhesion of the two elements 51 and 52.
  • FIG. 6 illustrates another form of the element of FIG. 5.
  • the slab 61 comprises a first series of grooves 62 of square or rectangular profile and a second series of grooves 63, identical or not, arranged perpendicular to the grooves 62.
  • the slab 61 is as previously fixed to the plate 64 at using a layer of glue or adhesive mortar 65.
  • Figures 7, 8, 9 and 10 illustrate by way of example four tiles 71, 81, 91 and 101 respectively, the contact surface of which with a plate (not shown) identical to the plates 52 and 64 of the elements shown in Figures 5 and 6, are profiled so as to facilitate the flow of runoff water. Thanks to the symmetry of these profiles, the runoff water does not encounter any obstacle to flow in the direction of the greatest slope of the roof, whatever the direction in which the elements produced using these slabs are placed. .
  • FIG. 11 represents a perspective view of another embodiment of a slab 111.
  • the lower surface of the slab has a symmetrical profile which promotes the flow of runoff water whatever the directions of pose of the element.
  • FIG. 12 illustrates an embodiment according to which the tiles 121 have an octagonal shape, and the tiles 122 intended to close the areas not covered by the tiles 121 have a diamond or square shape.
  • the insulating plates 123 can be square in shape and are offset laterally with respect to the tiles. In this way, the slots between slabs and plates are not superimposed and the risks of sand being inserted under the plates are greatly reduced.
  • the slabs do not have a metallic reinforcement.
  • the insulating plates have sufficient crush resistance to support the weight of a vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)
  • Building Environments (AREA)

Description

  • La présente invention concerne un élément préfabriqué servant à la réalisation d'une couverture dite "toiture inversée" pour un immeuble.
  • Elle concerne également un procédé utilisant cet élément.
  • Sur les toitures plates traditionnelles, la couche d'étanchéité se formait par dessus la couche isolante ce qui l'exposait à des chocs thermiques importants et provoquait sa dégradation relativement rapide. En effet la couche d'étanchéité à l'eau sous pression et de ruissellement a inévitablement une résistance au passage de la vapeur plus élevée que les autre couches. De plus, placée à l'extérieur, sa température se situe au dessous du point de rosée. Pour ces deux raisons les risques de condensation sont certains. D'autre part, l'étanchéité classique est incontestablement le plus vulnérable des éléments composant une toiture traditionnelle. Sa dureté de vie est de vingt ans alors que celle des autres couches est d'au moins soixante ans. Le vieillissement est d'autant plus rapide que l'étanchéité est à l'extérieur, donc soumise aux rayonnements ultra-violets, aux chocs thermiques et mécaniques et qu'elle repose sur un support isolant thermique, ce qui la soumet à un cycle thermique de forte amplitude, c'est-à-dire à des dilatations importantes ainsi qu'à un ramollissement et à un durcissement périodiques. Dans les étanchéités classiques, on diminue ces risques en la protégeant par un écran thermique, par exemple du gravier, du sable, une couche de fond et de finition des crépis de façade. Enfin dans les toitures traditionnelles les mouvements sont d'autant plus importants que la couche structurelle est soumise à des variations de température élevées. Ils ont pour conséquences des désordres dans les enveloppes extérieures (fissures des dalles de toiture et façades) et le déplacement des couches qu'elles sustentent, notamment de l'étanchéité. On diminue l'amplitude de la dilatation des dalles en plaçant l'isolation thermique au-dessus des couches structurelles, ce qui n'est pas particulièrement favorable à la durabilité de l'étanchéité.
  • Le principe constructif dit de "toiture inversée", qui a pu être developpé notamment grâce aux propriétés particulières de certaines matières synthétiques, notamment les mousses extrudées de polystyrène, a permis de remédier à la plupart des inconvénients des toitures plates traditionnelles. En effet pour remédier aux risques de condensation, la toiture inversée permet de placer l'étanchéité dans une zone où la température est en dessus du point de rosée. Cette solution dite "étanchéité chaude" permet d'économiser les frais d'une barrière de vapeur. La toiture inversée apporte également une solution à la fragilité de la couche d'étanchéité dont la durée de vie peut être considérablement augmentée, étant donné que c'est l'étanchéité et non pas l'isolation thermique qui est protégée contre les agents extérieurs. Enfin dans les toitures inversées, l'étanchéité repose sur un support isolé, où les mouvements sont de faible amplitude ce qui supprime les dégradations de l'étanchéité engendrées par la dilatation des couches structurelles.
  • Toutefois, de récentes enquêtes démontrent que la solution de la toiture inversée ne résoud pas tous les problèmes liés à la réalisation de toitures plates. Par temps de pluie par exemple, l'eau s'infiltre dans les joints entre plaques calorifuges et constitue ainsi un pont de froid. A épaisseurs égales de matériaux semblables, deux toitures traditionnelle et inversée ont en principe le même coefficient d'isolation thermique couramment appelé coefficient K. Cependant, dans les toitures inversées, par temps de pluie, l'eau s'infiltre dans les joints entre plaques calorifuges et absorbe de l'énergie thermique. Ainsi, le coefficient K de la toiture inversée augmente par temps de pluie proportionnellement à la longueur, à la largeur des joints et à l'épaisseur du vide entre la plaque et le joint. Pour réduire ces pertes il convient de donner une légère pente à la toiture. Cependant, dans le meilleur cas, par temps de pluie des pertes de l'ordre de 8 à 10% doivent être envisagées, ce qui oblige le constructeur à majorer légèrement l'épaisseur de l'isolation pour que la température de l'etanchéite ne puisse en aucun cas descendre en dessous de 0°C.
  • Du fait du faible poids spécifique des plaques d'isolation, l'inondation de la couche d'étanchéité entraînerait le soulèvement de ces plaques dont l'efficacité se trouverait fortement réduite. Il importe donc d'assurer un écoulement de l'eau de ruissellement efficace en donnant un pente suffisante au toit en direction de l'écoulement, en assurant une naissance d'ouverture suffisante avec entrée au niveau des plaques et au niveau de l'étanchéité et en effectuant un lestage des plaques d'isolation pour éviter leur soulèvement, étant entendu que ce lestage ne doit pas opposer une résistance importante à l'écoulement de l'eau de ruissellement. En général un lestage de l'ordre de 80 kg . m2 est constitué par une .couche d'alourdissement de gravier dont l'épaisseur est au moins égale à celle des plaques d'isolation. Toutefois, le ruissellement entre les plaques et la couche d'étanchéité draine des sables et des graviers qui ont tendance à la longue à soulever la couche de plaques calorifuges, ce qui réduit considérablement l'efficacité thermique de la couche isolante. En outre, les différences de température entre la face extérieure et la face intérieure, qui peuvent atteindre plus de dix degrés, ont pour conséquence une dilatation différentielle des faces des plaques d'isolation avec soulévement des rives. Ce phénomène appelé effet bilame peut provoquer une ouverture des joints entre les plaques d'isolation et une pénétration de sable et de gravier entraînés par les eaux de ruissellement. Comme mentionné précédemment, ce phénomène provoque le soulèvement des plaques et réduit de ce fait la qualité et l'efficacité de la couche d'isolation.
  • L'art antérieur le plus proche est illustré par le brevet américain No. 3.892.899 qui décrit un procédé de réalisation d'une couverture dite "toiture inversée" pour un immeuble, comportant un support structure, au moins une couche de matériau étanche disposée sur le support structure, au moins une couche de matériau isolant disposée sur le matériau étanche et au moins une charge protectrice disposée sur le matériau étanche et au moins une charge protectrice disposée sur Is matériau isolant, dans lequel on forme la couche de matériau isolant déposée sur la couche étanche et la charge protectrice au moyen d'éléments préfabriqués comportant une dalle rigide réalisée en un matériau composé de granulats liés par un liant et une plaque d'un matériau thermiquement isolant, dans lequel le matériau thermiquement isolant est réalisé en une matière synthétique non hygroscopique.
  • La mise en place séparée de la couche isolante et des dalles rigides complique l'exploitation de ce procédé et ne supprime pas totalement le risque d'un soulèvement des plaques isolantes ou des dalles rigides.
  • Un autre procédé consistant à coller entre elles des plaques de matière isolante, à l'aide de bitume, est décrit par la demande de brevet allemand publié sous le No. 27 36 992. La réalisation reste compliquée et la réparation, en cas de dégradation des joints est coûteuse en temps et en main-d'oeuvre.
  • La présente invention se propose de pallier l'ensemble des inconvénients susmentionnés concernant aussi bien les toitures traditionnelles que les toitures inversées.
  • Dans ce but, l'élément et le procédé selon l'invention sont caractérisés en ce que la plaque d'un matériau thermiquement isolant est solidaire de la surface inférieure de la dalle rigide.
  • L'élément préfabriqué est décrits dans la revendication. Grâce aux dalles préfabriquées rendues solidaires des plaques d'isolation, on supprime les inconvénients dûs à l'effet bilame. L'absence de gravier comme couche de lestage réduit considérablement la pénétration de sable entre les joints des plaques isolantes et supprime quasi totalement le risque de soulèvement de ces plaques par les sables ou graviers entraînés par l'eau de ruissellement. Enfin, les mousses de polystyrène extrudées qui se dégradent sous l'effet des rayons ultra-violets, sont efficacement protégées par les dalles de lestage compactes recouvrant efficacement toute la surface de la couche isolante.
  • La présente invention sera mieux comprise en référence à la description d'un exemple de réalisaiton et du dessin annexé dans lequel:
    • La figure 1 représente une vue en coupe d'une toiture réalisée selon la conception traditionnelle.
    • La figure 2 représente une vue en coupe des couvertures dites toitures inversées,
    • La figure 3 représente une vue en coupe d'une toiture inversée réalisée au moyen des éléments préfabriqués selon l'invention,
    • La figure 4 représente une autre forme de réalisation d'une toiture inversée construite avec les éléments préfabriqués selon l'invention,
    • Les figures 5 à 11 illustrent différentes formes de réalisation des éléments préfabriqués selon l'invention, et
    • La figure 12 représente un arrangement des éléments préfabriqués qui allie l'utile à l'esthétique.
  • En référence à la fig. 1, la toiture traditionnelle se compose généralement d'un support structurel 10 constitué par une dalle en béton, sur laquelle sont disposées successivement une barrière à vapeur 11, une couche d'un matériau isolant 12, la couche d'étanchéité 13 et une charge protectrice 14. On constate que la couche d'étanchéité 13'est d'une part en contact direct avec le milieu ambiant extérieur et avec les couches inférieures isolées, ce qui la soumet à des chocs thermiques importants qui sont à l'origine de sa dégradation relativement rapide.
  • Pour pallier aux inconvénients de ces toitures traditionnelles, on a imaginé les couvertures dites "toitures inversées" qui se composent, comme le montre la fig 2, d'un support structurel 20 constitué par une dalle en béton, sur laquelle sont successivement déposées la couche d'étanchéité 21, la couche isolante 22 et la charge protectrice 23 constituée de préférence par du gravier. Dans ce dispositif, la couche étanche 21 est bien protégée par la couche isolante 22 qui est elle-même protégée, notamment contre le rayonnement ultra-violet qui dégrade le polystyrène extrudé, par une couche relativement importante de gravier 23. En raison des dilatations longitudinales des plaques constituant la couche isolante 22, l'ouverture des joints 24 entre plaques viosines peut être suffisamment grende pour laisser passer des sables ou des grains de gravier entraînés par le ruissellement de l'eau de pluie, qui viennent finalement s'incruster entre la couche étanche 21 et la couche isolante 22. Les mouvements relatifs des plaques constituant la couche isolante 22 sont encore amplifiés par l'effet bilame dû à la différence de température apparaissant entre les deux faces de cette couche isolante.
  • La toiture inversée de la fig. 3 se compose à nouveau d'un support structurel 30 constitué par une dalle en béton sur laquelle est déposée une couche étanche 31. Cett couche est ensuite recouverte d'éléments préfabriqués 32 comportant chacun une dalle rigide 33 réalisée en un matériau comportant des granulats liés par un liant hydraulique du type ciment, et une plaque 34 d'un matériau isolant collé à la surface inférieure de la dalle 34. Les plaques 34 sont de préférence réalisées en polystyrène extrudé. Les plaques 34 ont la même forme et les mêmes dimensions que les dalles 33. Elles sont cependant décalées latéralement dans une ou deux directions perpendiculaires par rapport aux dalles 33, pour permettre une superposition partielle des éléments 32 placés de façon adjacente.
  • Ces éléments qui suppriment sensiblement tous les inconvénients de l'art antérieur, permettent en outre une pose extrêmement rapide. Le collage des plaques 34 sur les dalles 33 permet en outre d'absorber les tensions générées par l'effet bilame. Enfin l'utilisation de dalles ayant subi un traitement de carbonatation accélérée supprime les inconvénients dus à la carbonatation naturelle et lente des dalles traditionnelles perméables à base de ciment.
  • La Fig. 4 représente une forme de réalisation particulière, dans laquelle une toiture inversée selon l'invention a été mise en place par dessus une toiture traditionnelle existante. Cette toiture se compose d'un support structurel 40, une barrière de vapeur 41, une couche isolante 42 et une couche étanche 43. A l'origine, elle comportait une charge protectrice constituée par une couche de gravier qui a été supprimée. Après révision et remise en état de la couche d'étanchéité 43, on a mis en place des éléments préfabriqués 44 constitués comme précédemment d'une dalle en béton 45 et d'une plaque en polystyrène extrudé 46. Dans cet exemple, les dalles 45 comportent, sur au moins un de leurs côtés, un rebord en forme d'escalier 47 qui correspond à une gorge complémentaire 48 qui coopère pour permettre une superposition des éléments préfabriqués lors de leur mise en place.
  • Comme dans l'exemple illustré par la fig. 4, les plaques isolantes 46 sont décalées par rapport aux dalles 45, de façon à constituer une chicane supplémentaire dans la zone de jonction de deux éléments juxtaposés. L'existence de ces chicanes limite la pénétration de sables ou de graviers entraînés par le ruissellement des eaux de pluie, et leur dépôt entre la couche isolante 46 et la couche d'étanchéité 45.
  • La fig. 5 illustre une forme de réalisation particulière des éléments préfabriqués 50, constitués par une dalle 51 de forme rectangulaire ou carrée réalisée en un matériau comportant des granulats liés par un liant hydraulique de type ciment, et une plaque 52 de même forme et de mêmes dimensions, de préférence en polystyrène extrudé, et collée à la .base de la dalle 51 au moyen d'une colle appropriée. Comme mentionné précédemment, la plaque 52 est décalée selon deux directions perpendiculaires par rapport à la dalle 50 pour permettre une superposition des éléments adjacents. La surface inférieure de la dalle 51 comporte de préférence une série de gorges longitudinales 53 parallèles entre elles et orientées selon la ligne de la plus grande pente lorsque les éléments sont en place sur lu toiture d'un immeuble. Ces gorges 53 canalisent l'eau de pluie, facilitent son évacuation rapide et empêchent de ce fait le phénomène de flottement qui risque de se produire en cas d'accumulation de l'eau de pluie entre la couche d'étanchéité et l'isolation disposée par dessus.
  • La plaque 52 pourrait bien entendu être remplacée par plusieurs plaques de matériau isolant superposées et reliées entre elles par collage.
  • Les dalles peuvent être réalisées en un matériau imperméable ou en un matériau perméable. Dans ce dernier cas, la carbonatation préalable permet de supprimer les concrétions calcaires. En effet, pour supprimer les hydroxydes de calcium solubles susceptibles d'obturer les cheneaux et les descentes d'eau de pluie, on peut soit soumettre la dalle 51 a un traitement de carbonatation accelérée, soit utiliser du ciment dit pouzzolane ou un mélange de ciment Portland et de ciment Trass comme liant des granulats entrant dans la composition de cette dalle. La charge constituée par cette dalle assure une protection efficace contre les effets des rayons ultra-violets, contre les effets de flottement et d'aspiration dus à l'infiltration des eaux de pluie entre les joints. Les gorges 53 destinées à canaliser l'eau de ruissellement ayant pénétré entre les joints peuvent avoir une forme quelconque conçue de façon à favoriser l'écoulement de la quantité variable d'eau de pluie qui aurait pénétré entre les joints des éléments juxtaposés. Cette structuration pourrait être déterminée de cas en cas en fonction des pentes de la toiture. Elle devrait être prévue de telle manière que le cheminement de l'eau soit le plus court possible, c'est-à-dire que les gorges suivent approximativement ou forment un angle aigu avec la ligne de plus grande pente du toit.
  • Les plaques isolantes 52 sont de préférence fixées aux dalles 51 par une fine couche intermédiaire 54 assurant une bonne adhérence entre les deux éléments extrêmes. Cette couche peut être constituée par une couche exempte de solvant susceptible d'attaquer et de dissoudre la matière isolante, ou un mortier adhésif du type Polyton@ 2470, qui aura de préférence une résistance à la rupture d'au moins 2 kg/cm2. Ce mortier aura en outre la propriété de diffuser valablement la vapeur d'eau.
  • La fabrication des éléments préfabriqués 50 peut se faire de deux manières. Lorsque les dalles 51 sont soumises à une traitement de carbonatation accélérée, la dalle proprement dite est tout d'abord moulée et séchée, la plaque de matière isolante étant fixée par la suite. Lorsque la dalle 51 est étanche la plaque 52 peut être fixée directement à la sortie de la machine de fabrication des dalles. Dans les deux cas, on dispose la dalle 51 de telle manière que sa surface inférieure soit tournée vers le haut, on place la plaque isolante 52 de façon appropriée et on retourne l'ensemble de telle manière que le poids de la dalle 51 assure la pression nécessaire pour obtenir une bonne adhésion des deux éléments 51 et 52.
  • La figure 6 illustre une autre forme de l'élément de la fig. 5. Dans cet exemple, la dalle 61 comporte une première série de gorges 62 de profil carré ou rectangulaire et une seconde série de gorges 63 identiques ou non, disposées perpendiculairement aux gorges 62. La dalle 61 est comme précédemment fixée à la plaque 64 au moyen d'une couche de colle ou de mortier adhésif 65.
  • Les figures 7, 8, 9 et 10 illustrent à titre d'exemple quatre dalles respectivement 71, 81, 91 et 101 dont la surface de contact avec une plaque (non représentée) identique aux plaques 52 et 64 des éléments représentés par les figures 5 et 6, sont profilées de manière à faciliter l'écoulement de l'eau de ruissellement. Grâce à la symétrie de ces profils, l'eau de ruissellement ne rencontre aucun obstacle pour s'écouler dans le sens de la plus grande pente du toit, quelque soit le sens dans lequel sont posés les éléments réalisés à l'aide de ces dalles.
  • La figure 11 représente une vue en perspective d'une autre forme de réalisation d'une dalle 111. Comme précédemment, la surface inférieure de la dalle présente un profil symétrique qui favorise l'écoulement de l'eau de ruissellement quelque soit les sens de pose de l'élément.
  • La figure 12 illustre une réalisation selon laquelle les dalles 121 ont une forme octogonale, et les dalles 122 destinées à fermer les zones non recouvertes par les dalles 121 ont une forme de losange ou de carré. Les plaques isolantes 123 peuvent être de forme carrée et sont décalées latéralement par rapport aux dalles. De cette manière, les fentes entre dalles et plaques ne sont pas superposées et les risques d'insertion de sable sous les plaques sont fortement diminués.
  • Pour la réalisation des toitures habituelles, les dalles ne comportent pas d'armature métallique. Toutefois, pour réaliser des terrasses carrossables on peut prévoir d'armer les dalles de telle manière qu'elles supportent le poids d'un véhicule. Les plaques isolantes ont une résistance à l'écrasement suffisante pour supporter le poids d'un véhicule.
  • Bien que ces éléments pourraient théoriquement être utilisés pour d'autres applications que celle relative à la réalisation de toitures inversées, ces utilisations ne présentent un intérêt réel que lorsque les éléments décrits sont en contact direct avec l'extérieur et subissent de ce fait toutes les contraintes dues aux agents extérieurs tels que la pluie, le gel, les ultra-violets et tous les agents atmosphériques.

Claims (13)

1. Elément préfabriqué comportant une dalle rigide (33, 45) réalisée en un matériau comprenant des granulats liés par un liant, et au moins une plaque (34, 46) de matériau thermiquement isolant comprenant une matière synthétique non hydroscopique, caractérisé en ce que la plaque (34, 46) de matériau thermiquement isolant est solidaire de la surface inférieure de la dalle rigide (33, 45).
2. Elément selon la revendication 1, caractérisé en ce que la dalle est réalisée en un matériau perméable à l'eau, et a été soumise à un traitement de carbonatation accélérée avant d'être fixée à la plaque isolante.
3. Elément selon la revendication 1, caractérisé en ce que la dalle rigide (33, 45) est réalisée en un matériau imperméable à l'eau.
4. Elément selon la revendication 1, caractérisé en ce que le matériau thermiquement isolant est une matière synthétique extrudée.
5. Elément selon la revendication 4, caractérisé en ce que la matière synthétique extrudée est du polystyrène extrudé.
6. Elément selon la revendication 1, caractérisé en ce que la dalle rigide (61) a sa surface en contact avec la plaque isolante (64) structurée de manière à favoriser l'écoulement de l'eau qui s'infiltre entre les éléments de la toiture.
7. Elément selon la revendication 6, caractérisé en ce que la surface structurée de la dalle rigide (61) comporte au moins une rainure (62, 63) orientée de manière à former un angle inférieur à 90° avec la ligne de plus grande pente 'du toit.
8. Elément selon l'une quelconque des revendications 1 à 7, caractérisé en ce que chaque plaque isolante (64) est décalée latéralement par rapport à au moins un des côtés de la dalle rigide (61 de manière à assurer un décalage des joints des dalles et des plaques des éléments juxtaposés composant la toiture dite inversée.
9. Elément selon la revendication 1, caractérisé en ce que la dalle est armée pour permettre la réalisation de terrasses carrossables.
10. Elément selon la revendication 1, caractérisé en ce que la forme des dalles est différente de celle des plaques, le nombre des dalles d'une surface recouverte de ces éléments étant différent du nombre de plaques.
11. Procédé de réalisation d'une couverture dite "toiture inversée" pour un immeuble, comportant un support structurel (30, 40), au moins une couche de matériau étanche (31, 41, 43) disposée sur le support structurel, au moins une couche de matériau isolant (34, 46) disposée sur le matériau étanche et au moins une charge protectrice (33, 45) disposée sur le matériau isolant, dans lequel on forme la couche de matériau isolant déposée sur la couche étanche et la charge protectrice au moyen d'éléments préfabriqués (32, 44) comportant une dalle rigide (33, 45) réalisée en un matériau composé de granulats liés par un liant et une plaque (34, 46) d'un matériau thermiquement isolant, dans lequel le matériau thermiquement isolant est réalisé en une matière synthétique non hydroscopique, caractérisé en ce qu'on utilise un élément prefabriqué selon l'une quelconque des revendications 1 à 10.
12. Procédé selon la revendication 11, caractérisé en ce que les dalles rigides (33, 45) comportent un liant les rendant étanches ou ne contenant pas d'hydroxydes de calcium.
13. Procédé selon la revendication 11, caractérisé en ce que l'on réalise les dalles rigides (33, 45) en utilisant un liant hydraulique du type ciment et en ce qu'on les soumet à un traitement de carbonatation accélérée.
EP82810279A 1982-03-04 1982-06-29 Procédé de réalisation d'une couverture dite "toiture inversée" pour un immeuble et élément préfabriqué pour la réalisation d'une telle couverture Expired EP0088198B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82810279T ATE19120T1 (de) 1982-03-04 1982-06-29 Verfahren zur herstellung einer dacheindeckung fuer ein gebaeude, ''umgekehrtes dach'' genannt, und vorgefertigtes element zur herstellung einer solchen eindeckung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1319/82 1982-03-04
CH131982A CH646222A5 (fr) 1982-03-04 1982-03-04 Element prefabrique pour la realisation d'une couverture d'immeuble, procede de fabrication d'un tel element et procede de realisation d'une couverture d'immeuble a l'aide de tels elements.

Publications (3)

Publication Number Publication Date
EP0088198A2 EP0088198A2 (fr) 1983-09-14
EP0088198A3 EP0088198A3 (en) 1984-02-08
EP0088198B1 true EP0088198B1 (fr) 1986-04-09

Family

ID=4207657

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82810279A Expired EP0088198B1 (fr) 1982-03-04 1982-06-29 Procédé de réalisation d'une couverture dite "toiture inversée" pour un immeuble et élément préfabriqué pour la réalisation d'une telle couverture

Country Status (4)

Country Link
EP (1) EP0088198B1 (fr)
AT (1) ATE19120T1 (fr)
CH (1) CH646222A5 (fr)
DE (1) DE3270387D1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7658050B2 (en) 2002-05-22 2010-02-09 Les Materiaux De Construction Oldcastle Canada Inc. Artificial masonry unit, a masonry wall, a kit and a method for forming a masonry wall
CN102116078A (zh) * 2011-01-26 2011-07-06 沈阳金铠建筑节能科技有限公司 一种保温防水一体化建筑屋面及其施工方法
US8101113B2 (en) 2005-04-21 2012-01-24 Oldcastle Building Products Canada, Inc. Molding apparatus for producing dry cast products having textured side surfaces

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3444728A1 (de) * 1984-12-07 1986-06-12 Christoph M. 2808 Syke Franke Auf einem dach oder einer wand verlegbare daemmelemente, sowie daraus erstelltes umkehrdach
ATE64975T1 (de) * 1986-03-14 1991-07-15 Anjap Nv Mehrschichtige dachabdeckungsplatte bestehend aus einer isolierenden tragschicht und aus einer begehbaren abdeckungsschicht und aus solchen mehrschichtigen platten gebildete dachabdeckung.
EP0469218A1 (fr) * 1990-07-30 1992-02-05 Intemper Espanola S.A. Panneau de dallage
GB9217797D0 (en) * 1992-08-21 1992-10-07 Forticrete Ltd Novel building element
AT402083B (de) * 1994-03-08 1997-01-27 Steinbacher Daemmstoff Ges M B Dachplatte
US6105328A (en) * 1996-09-10 2000-08-22 Boral Industries, Inc. Method and apparatus for manufacturing and installing roof tiles having improved strength and stacking features
US6205742B1 (en) 1996-09-10 2001-03-27 United States Tile Co. Method and apparatus for manufacturing and installing roof tiles
US5974756A (en) * 1997-04-15 1999-11-02 Boral Industries, Inc. Roof tile design and construction
US5993551A (en) * 1997-06-02 1999-11-30 Boral Industries, Inc. Roof tile and method and apparatus for providing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE626977A (fr) *
GB1215464A (en) * 1967-05-02 1970-12-09 Miller London Ltd W Improvements in or relating to coatings for roofs
US3892899A (en) * 1973-07-19 1975-07-01 Paul P Klein Roof construction
DE2736992B2 (de) * 1977-08-17 1981-01-29 Friedrich 6702 Bad Duerkheim Heck Flachdachbelag
NL7900821A (nl) * 1979-02-01 1980-08-05 Te Riet Betonwaren Ind B V Werkwijze voor het windveilig afdekken van daken.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7658050B2 (en) 2002-05-22 2010-02-09 Les Materiaux De Construction Oldcastle Canada Inc. Artificial masonry unit, a masonry wall, a kit and a method for forming a masonry wall
US8101113B2 (en) 2005-04-21 2012-01-24 Oldcastle Building Products Canada, Inc. Molding apparatus for producing dry cast products having textured side surfaces
CN102116078A (zh) * 2011-01-26 2011-07-06 沈阳金铠建筑节能科技有限公司 一种保温防水一体化建筑屋面及其施工方法
CN102116078B (zh) * 2011-01-26 2012-12-19 沈阳金铠建筑节能科技有限公司 一种保温防水一体化建筑屋面及其施工方法

Also Published As

Publication number Publication date
ATE19120T1 (de) 1986-04-15
DE3270387D1 (en) 1986-05-15
EP0088198A2 (fr) 1983-09-14
EP0088198A3 (en) 1984-02-08
CH646222A5 (fr) 1984-11-15

Similar Documents

Publication Publication Date Title
EP0088198B1 (fr) Procédé de réalisation d'une couverture dite "toiture inversée" pour un immeuble et élément préfabriqué pour la réalisation d'une telle couverture
FR2504174A1 (fr) Procede de pose d'une couverture de toiture a membrane d'etancheite a simple epaisseur, et couverture et bande pour sa mise en oeuvre
EP1350922A1 (fr) Dispositif de drainage, d'isolation thermique et d'étanchement d'un tunnel
FR2999362A1 (fr) Systeme de fixation et d'etancheite pour la realisation d'une toiture solaire comprenant des collecteurs solaires, et toiture solaire obtenue
CA2581395C (fr) Membrane d'etancheite bitumineuse resistante aux u.v., systeme integrant une telle membrane et procede de fabrication
FR2949132A1 (fr) Dispositif modulaire pour le montage d'un panneau solaire et ensemble de couverture d'un batiment comportant une pluralite de tels dispositifs modulaires
EP2496775B1 (fr) Batiment integrant un dispositif de paroi etanche a l'air et son procede de fabrication
KR20060036176A (ko) 역지붕 외단열 옥상녹화구조
FR2506813A1 (fr) Element de toiture
FR2874947A1 (fr) Procede d'assemblage et de jonction pour panneaux composites
FR2809129A1 (fr) Procede de refection et/ou d'isolation de toitures ou couvertures etagees et dispositifs obtenus par ledit procede
FR2549511A1 (fr) Panneaux isolants prefabriques pour constructions industrialisees et applications
FR2979650A1 (fr) Toiture de veranda amelioree
FR2539785A1 (fr) Revetement etanche et isolant pour un support, notamment pour une toiture-terrasse, selon la technique de l'etancheite inversee
CN220686540U (zh) 一种平坡屋面免渗漏结构
EP1496169B1 (fr) Procédé de réalisation d'une toiture construite en tuiles canal et toiture obtenue
EP0635079A1 (fr) Materiau resistant au feu pour toiture et bardage
FR2586738A1 (fr) Procede de fixation d'elements de couverture
FR2514798A1 (fr) Element de construction normalise pour terrassements, fondations et travaux hydrauliques
JPS5985061A (ja) コンクリ−ト建造物における屋上断熱防水工法
CN112196190A (zh) 一种屋顶卷材的保护层结构及其施工方法
FR3135102A1 (fr) Système d’étanchéité et de protection mécanique d’un joint de dilatation
FR2546948A1 (fr) Panneau complexe isolant de couverture
FR2613402A1 (fr) Panneau de construction porteur comportant une couche d'isolation
CH663044A5 (fr) Procede de refection de courts de tennis en dur et courts refaits selon ce procede.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19840107

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19860409

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19860409

Ref country code: AT

Effective date: 19860409

REF Corresponds to:

Ref document number: 19120

Country of ref document: AT

Date of ref document: 19860415

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19860430

REF Corresponds to:

Ref document number: 3270387

Country of ref document: DE

Date of ref document: 19860515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19860630

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: DEPPEN JEAN-CLAUDE

Effective date: 19880630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890630

REG Reference to a national code

Ref country code: FR

Ref legal event code: RC

REG Reference to a national code

Ref country code: FR

Ref legal event code: DA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930618

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930629

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930721

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: PROCIM S.A.

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940630

Ref country code: CH

Effective date: 19940630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST