EP0086993A1 - Poutre en treillis - Google Patents

Poutre en treillis Download PDF

Info

Publication number
EP0086993A1
EP0086993A1 EP83100828A EP83100828A EP0086993A1 EP 0086993 A1 EP0086993 A1 EP 0086993A1 EP 83100828 A EP83100828 A EP 83100828A EP 83100828 A EP83100828 A EP 83100828A EP 0086993 A1 EP0086993 A1 EP 0086993A1
Authority
EP
European Patent Office
Prior art keywords
struts
section
strut
profile
belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83100828A
Other languages
German (de)
English (en)
Other versions
EP0086993B1 (fr
Inventor
Klaus Dipl.-Ing. Mittelstaedt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Filigran Tragersysteme & Co KG GmbH
Original Assignee
Filigran Tragersysteme & Co KG GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Filigran Tragersysteme & Co KG GmbH filed Critical Filigran Tragersysteme & Co KG GmbH
Priority to AT83100828T priority Critical patent/ATE19666T1/de
Publication of EP0086993A1 publication Critical patent/EP0086993A1/fr
Application granted granted Critical
Publication of EP0086993B1 publication Critical patent/EP0086993B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C3/08Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with apertured web, e.g. with a web consisting of bar-like components; Honeycomb girders
    • E04C3/09Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with apertured web, e.g. with a web consisting of bar-like components; Honeycomb girders at least partly of bent or otherwise deformed strip- or sheet-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0486Truss like structures composed of separate truss elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0486Truss like structures composed of separate truss elements
    • E04C2003/0491Truss like structures composed of separate truss elements the truss elements being located in one single surface or in several parallel surfaces

Definitions

  • the invention relates to a welded truss of the type mentioned.
  • the strut bars In a known truss girder of this type (DE-OS 29 47 748), the strut bars have an open profile with a V-shaped cross section. The strut ends are deformed over a predetermined longitudinal section to form the flat strip cross section, which is perpendicular to the main beam plane and is used to form a welded node. At the node there is a common intersection between the lines of gravity of the two struts that meet and the respective belt.
  • the strut ends deformed into a flat strip cross section extend exactly the center of gravity of the undeformed, open strut profile, it is necessary to flatten the cross-sectional profile of the struts and also to bend them until the center of gravity in the flattened extension area is flush with the center of gravity of the rest of the profile profile.
  • the deformation of the strut ends is expensive and complex and must be carried out with great precision and using special tools. In practice, it has even proven to be more expedient to start from a flat strip material and to deform or emboss this strip material between the flat strut ends into the open strut profile. However, special tools are also required for this, so that the individual struts cannot be endlessly pre-produced.
  • a proposal for the formation of a truss girder is known (FR-PS 900 974), in which the struts of the strut structure are formed from profiles with a tubular cross-section, the struts being flattened at their ends as an extension of the center line of the strut profile.
  • this lattice girder does not meet modern requirements, since no common intersection points of all clashing lines of gravity are possible in the nodes, these struts have the disadvantage that they bend slightly in the exposed transition area from the full profile cross section to the flattened end cross section.
  • Such closed profiles for struts of a truss are also not compatible with the requirements of lightweight construction, since they drive the weight of the truss too high in relation to the load-bearing capacity.
  • the invention has for its object to provide a welded truss girder of the type mentioned To create, which is characterized by particularly buckling and twist-resistant struts in the strut, the struts should be particularly easy and inexpensive to manufacture and process.
  • Such a profile of the struts is characterized in that the pressure point lies in the center of gravity, that is to say that the kink or twist resistance of the strut is significantly higher than in the case of other, open profiles.
  • both the center of gravity and the pressure point remain unchanged regardless of the symmetrical deformation of the erofil cross section to the flat or flat band cross section, so that it is not difficult to find the center of gravity and the line on which the pressure point lies, right up to the point of intersection with the Continuing the center of gravity of the belt or the other strut.
  • Another particularly important aspect is the simple and inexpensive manufacture of this profile.
  • Such struts can be produced as endless rolled profiles, in which case it is sufficient to cut the individual struts, for example with a flat or impact shear, since in this cutting process the strut end is deformed down to a flat strip cross section, as required for the further processing of the struts in the truss is.
  • the individual struts that carry the extension section need only be rolled flat over the length of the extension section and bent accordingly, which is also quick and inexpensive to carry out with a simple tool.
  • Another advantage of this strut design is that despite a significantly increased buckling, pressure and torsion resistance of the struts a favorable support weight in relation to the load capacity.
  • the salient advantages of the profile cross-section are its simple deformation. Regardless of whether a rolled continuous profile with an S- or Z-shaped cross-section is assumed, which is flattened to form the flat strip cross-section, or whether a flat strip material is assumed that is rolled into the cross-sectional shape, the transition range from. Belt cross section on the S or Z cross section a straight-line continuation of the center of gravity. No special care needs to be taken when deforming, since the profile height decrease or increase in any case runs symmetrically, i.e. in the height direction from the center of gravity.
  • a truss in which the deformation of each strut end with a gradual transition and in the profile height symmetrical to the center of gravity up to the flat band cross section is accomplished in a predetermined longitudinal section, as is known for example from FR-PS 900 974 , explains claim 3. Because the actual flat belt cross-section is only at the common intersection of the lines of gravity, the gradual transition area from the full profile cross-section with the full profile height to the flat belt cross-section is moved into the belt where the profile side edges are welded to the belt. As a result, each end area of the strut, critical of itself against kinking or twisting, in which the profile height gradually decreases, is stably supported within the belt.
  • open or closed hollow profiles have high structural strength due to the profiling. They also desirably enter into an extraordinarily stable bond with the struts. Since the strut ends have diverging profile side edges due to the gradual deformation, the inner walls of the hollow profiles of the belt have to compensate or absorb this divergence, so that these divergent profile side edges do not need to be straightened or eliminated by additional and expensive measures during the production of the struts. Most conveniently, this is done by the oblique sections of the inner walls of the hollow profiles, which compensate for this divergence.
  • an embodiment of a carrier has now proven to be particularly useful with regard to the relationship between the carrier weight and the load-bearing capacity, as can be inferred from claim 5.
  • the ⁇ -shaped cross-section of the hollow profiles leads, in addition to the advantage of compensating for the divergence of the profile side edges of the longitudinal struts in the node, to the fact that the kinked inner wall of the hollow profile is significantly more resistant to buckling and kinking than an inner wall of comparable height with a comparable hollow profile with a flat inner wall .
  • a node K is shown in perspective of a lightweight truss, this node being provided here, for example, in a lower flange U of the truss.
  • the lower chord U is formed by two open hollow sections 11, 24 which are arranged in parallel and at a distance from one another and have a ⁇ -shaped cross section.
  • the strut 1 coming from top left in FIG. 3 is butted into the bend of the other strut and welded to it.
  • the struts 1 have an S-shaped cross-sectional profile, which is gradually flattened in the area of extension of the struts to a flat band cross-section, with which the struts extend into the lower flange U.
  • Figures 1 and 2 show the profile course and the formation of the node K in detail.
  • the struts have a cross section that approximately corresponds to an open S.
  • a middle, essentially straight web 2 merges into arc sections 3 and 4 running in opposite directions, to which end sections 5 and 6 approximately parallel to one another are connected.
  • One longitudinal edge of the profile is designated 7, while the other is designated 8.
  • the profile width of profile side edges 9 and 10 is determined and designated bA.
  • the profile width b A is measured in the direction of the so-called minimal axis X, which minimal axis is the axis of the minimum moment of inertia passing through the center of gravity S of the cross-sectional area or the profile.
  • the maximum axis Y that is the axis of the maximum moment of inertia, is perpendicular to this axis X. It also passes through the center of gravity S. In this rotationally symmetrical profile cross-sectional shape, the so-called pressure point D also coincides with the center of gravity S.
  • the profile height h A is measured in the direction of the maximum axis Y.
  • the struts 1 with the cross-sectional shape according to FIG. 1, bottom illustration, run between the straps of the carrier and form the strut mechanism.
  • they are deformed in their cross-section to a flat strip cross-section (Fig. 1, representation C).
  • Fig. 1, representation C This means that the profile height h A is gradually reduced to h C , at the same time the profile width b A increases to the value b C.
  • the profile side edges 9, 10 inevitably diverge in the area between A and C (see also FIG. 1), and approximately with a straight course, as the line drawn between points A1 through B1 to C1 in FIG. 1 shows.
  • the profile height of A h has decreased to h B, while the P r ofile has increased br G E b of A to B b.
  • the profile height h has decreased symmetrically with respect to the minimum axis or center of gravity (is the same as the line of center of gravity S). In other words, despite the change in cross section from the full profile height to the profile height of the strip cross section, the center of gravity has been continued in a straight line. This desirable effect is due to the selected profile shape.
  • FIG. 2 shows the ver bent at the node K in the direction of the center of gravity S of the belt Extension section 12, in which the flat band cross section is maintained.
  • This extension section 12 is also welded to the inner walls 30 of the hollow profiles 11 and 24 and form a so-called buckle with them.
  • a corrugation of the extension section 12 is expedient, at least in the area in which the weld seams 19, 20 end with the inner walls 30.
  • a corrugation 21 is indicated, which leads to a tongue 22 via a rounded transition 23 which avoids a notch effect.
  • the corrugation 21 creates a rounded bend in the area of the transition 23 to improve the resistance to buckling or buckling in this area.
  • extension section 12 is corrugated over a larger part of its longitudinal extent, which would contribute to improving the effect of the buckle.
  • the band-shaped cross-section of the strut 1 coming from the top right comes into the bend between the extension section 12 and the strut on the left in FIG. 2 in a blunt joint Sidewalls 30 in the other welds.
  • FIG. 4 shows the node K from FIGS. 3 and 2 in a view of the section plane IV-IV from FIG. 2.
  • the lines S of the struts 1 lead to the center of gravity S of the belt, which in FIG. 4 runs perpendicular to the plane of the drawing.
  • the hollow profile 11, which is designed here with a ⁇ -shaped cross-sectional configuration, can be seen in solid lines from the lower flange in FIG. 4.
  • the hollow profile 11 will of course be combined in the belt with a hollow profile 24 of the same cross-sectional shape arranged in a mirror image.
  • hollow profile shapes in dashed or dash-dotted lines are indicated on the side opposite the hollow profile 11.
  • a U-profile 31 which is inclined in accordance with the divergence of the profile side edges could be used to form the lower flange, the lower leg of this U-profile then also being able to be placed horizontally, as indicated at 32, for later placement of the carrier on a bearing.
  • a completely closed box section 33 could also be used to form the lower flange, which, however, would also have to be inclined due to the divergence of the side edges of the section.
  • the hollow profile 11 on the right in FIG. 4 could also be designed as a closed box profile or have an additional end plate (which can be borrowed with the one indicated at 33).
  • the hollow profile 11 with its ⁇ -shaped cross section has two mutually parallel legs 27 which are provided with bends 25 and 26 which improve the structural strength.
  • the two legs 27 are connected to each other by the profile inner wall 30, which profile inner wall consists of two symmetrically obliquely inwardly bent wall sections 30a and 30b, which meet in a continuous crease line 29.
  • the kink line 29 lies at the level of the heavy line S of the lower chord.
  • the inclination of at least the Waml section 30a is so matched to the divergence of the profile side edges of the struts 1 that the minimum axis designated X1 of the hollow profile 11 is parallel to the main plane labeled T, and that the upper side 34 or the legs 27 are perpendicular thereto Main plane T of the carrier lie.
  • the cross-sectional shape of the hollow profile 11 not only compensates for the divergence of the profile side edges as a result of the deformation of the profile of the struts from the S shape to the flat strip cross-section, but also brings about a significantly improved buckling resistance or kink resistance of the hollow profile 11. If the welding of the extension section 12 to the wall 30 of FIG. 2 is considered, it can be seen that, according to FIG.
  • the hollow profile 11 shown experiences a tensile load to the right parallel to the plane of the drawing
  • the hollow profile 24 of the same belt lying in front of the plane of the drawing has to absorb a tensile load directed parallel to the plane of the drawing
  • the welded longitudinal section 12 is rotated perpendicular to the plane of the drawing and thereby the Indent inner walls 30 on which he is supported.
  • these are significantly more buckled than flat inner walls due to the buckling, significantly higher loads can be absorbed in the directions explained above than with equally strong straps in belts with hollow profiles with flat inner walls.
  • This improvement in effectiveness is based on the interplay between the struts with their special profiling and the deformation area of the profile, which is shifted into the height region of the belt, on the strip cross section with the special cross section of the hollow profiles forming the belts.
  • Fig. 5 it is finally schematically emphasized how the extension section 12 welded between the hollow profiles 11 and 24 forms the buckle in the upper chord or lower chord (U, 0), where it is welded to the two hollow profiles 11, 24 along the buckling lines 29 .
EP83100828A 1982-02-01 1983-01-28 Poutre en treillis Expired EP0086993B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83100828T ATE19666T1 (de) 1982-02-01 1983-01-28 Fachwerktraeger.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3203245 1982-02-01
DE3203245A DE3203245C2 (de) 1982-02-01 1982-02-01 Fachwerkträger

Publications (2)

Publication Number Publication Date
EP0086993A1 true EP0086993A1 (fr) 1983-08-31
EP0086993B1 EP0086993B1 (fr) 1986-05-07

Family

ID=6154464

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83100828A Expired EP0086993B1 (fr) 1982-02-01 1983-01-28 Poutre en treillis

Country Status (3)

Country Link
EP (1) EP0086993B1 (fr)
AT (1) ATE19666T1 (fr)
DE (1) DE3203245C2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2239467A (en) * 1989-12-22 1991-07-03 Conder Group Plc Roof or floor support.

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3941470A1 (de) * 1989-12-15 1991-06-20 Martin Wiese Gittertraeger fuer raumfachwerke

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE499978C (de) * 1928-06-12 1930-06-16 E H Hugo Junkers Dr Ing Knotenpunkt fuer Stabnetzwerke mit abgebogenen und flach gegeneinandergelegten Enden duennwandiger Formstaebe
DE514205C (de) * 1929-09-26 1930-12-08 E H Hugo Junkers Dr Ing Netzwerkstab
US3064771A (en) * 1959-08-25 1962-11-20 Walter D Behlen Large span building covering unit
GB1427008A (en) * 1972-06-22 1976-03-03 Brockhouse Steel Structures Lt Construction of lattice beams

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR900974A (fr) * 1944-01-05 1945-07-13 Perfectionnements aux charpentes métalliques soudées
CH274742A (fr) * 1948-12-13 1951-04-30 A A I N S Treillis métallique.
AT279127B (de) * 1968-02-19 1970-02-25 Ernst Baumann Fachwerksträger, -stütze od.dgl. und Verfahren zu dessen bzw. deren Herstellung
DE2947748C2 (de) * 1979-11-27 1983-02-03 Norddeutsche Filigranbau Von Weiler Kg, 3071 Leese Verschweißter Fachwerkträger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE499978C (de) * 1928-06-12 1930-06-16 E H Hugo Junkers Dr Ing Knotenpunkt fuer Stabnetzwerke mit abgebogenen und flach gegeneinandergelegten Enden duennwandiger Formstaebe
DE514205C (de) * 1929-09-26 1930-12-08 E H Hugo Junkers Dr Ing Netzwerkstab
US3064771A (en) * 1959-08-25 1962-11-20 Walter D Behlen Large span building covering unit
GB1427008A (en) * 1972-06-22 1976-03-03 Brockhouse Steel Structures Lt Construction of lattice beams

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2239467A (en) * 1989-12-22 1991-07-03 Conder Group Plc Roof or floor support.
GB2239467B (en) * 1989-12-22 1994-03-02 Conder Group Plc Support structure

Also Published As

Publication number Publication date
DE3203245C2 (de) 1984-05-30
EP0086993B1 (fr) 1986-05-07
ATE19666T1 (de) 1986-05-15
DE3203245A1 (de) 1983-08-11

Similar Documents

Publication Publication Date Title
EP2372082B1 (fr) Support de grille
WO1987004207A1 (fr) Poutrelle profilee
DE102012108471B3 (de) Gitterträger
DD271307A5 (de) Druckfester tank
DE10126234A1 (de) Aufbaustruktur für ein Kraftfahrzeug mit zusammengesetzten Trägern
DE19711627C2 (de) Gitterträgerausbaurahmen und Aussteifungselemente für einen Gitterträgerausbaurahmen
EP0086993B1 (fr) Poutre en treillis
DE10158731B4 (de) Aus Stahlblech bestehendes Verbindungselement für Hohlprofile aus Stahlblech, insbesondere eine Rahmenstruktur einer Fahrzeugkarosserie
CH542975A (de) Stützenanordnung für Betonschalungen
EP1508654A1 (fr) Profilé creux pour attacher des objets
EP0079892B1 (fr) Poutre en treillis
DE10158679C2 (de) Aus Stahlblech bestehendes Verbindungselement für Hohlprofile aus Stahlblech, insbesondere eine Rahmenstruktur einer Fahrzeugkarosserie
DE3203244C2 (de) Fachwerkträger
LU86154A1 (de) Geruestrahmentafel
AT501334A1 (de) Rahmenkonstruktion
DD215518A5 (de) Ausleger fuer hebezeuge, insbesondere hebebuehnen, bagger oder dergleichen
DE3222307A1 (de) Fachwerktraeger
DE2947748C2 (de) Verschweißter Fachwerkträger
DE19616444C2 (de) Gitterträger für den Strecken- und Tunnelbau sowie Aussteifungselement zur Herstellung eines Gitterträgers
EP1693531B1 (fr) Cadre stabilisé
DE10014603A1 (de) Stabilisierungsstrebe, insbesondere für ein Fahrwerk eines Fahrzeugs
DE2950751A1 (de) Winkeltraeger in geschweisster kastenbauweise
DE4205834C1 (en) Framework of thin walled round fibre compound rods - has fibre compound joint plates connecting cross and diagonal bars to upright bars
DE102021133018B3 (de) Fertigungsverfahren einer Linearachse, Strukturelement und Strukturteil
DE10108320A1 (de) Vorrichtung zum Abdichten des Ringspalts zwischen einer Behälterinnenwand eines für eine Flüssigkeit bestimmten vertikalen Rundbehälters und einer Schwimmdecke

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19840224

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19860507

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19860507

REF Corresponds to:

Ref document number: 19666

Country of ref document: AT

Date of ref document: 19860515

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19860531

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941229

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950103

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950109

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950112

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950223

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960128

Ref country code: AT

Effective date: 19960128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960131

Ref country code: CH

Effective date: 19960131

Ref country code: BE

Effective date: 19960131

BERE Be: lapsed

Owner name: FILIGRAN TRAGERSYSTEME G.M.B.H. & CO. K.G.

Effective date: 19960131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST